Leadership Evolution for Planetary Health: A Genomics Perspective
Abstract
:1. Introduction
2. A Historical Perspective of Leadership
3. Genomics, Leadership Theory and Evolution
3.1. The Nature of Evolution-Enabling Evolution
3.2. The Role of The Genome in Evolution and Adaptation
3.3. Adaptive Response to Daily Exposure and Experiences
3.4. Epigenetic Modifications Resultant from Experiences in the Womb and Early Childhood
3.5. Inheritance of Epigenetic Modifications from Parent and Grandparent Generations (Transgenerational Epigenetic Inheritance)
4. Genomics Research and The Leadership Debate
5. Developing Leadership-Evolving Business
5.1. Metaphorical
5.2. Literal
5.2.1. In the modern business environment
- (1)
- The use of genetics or epigenetics to identify and create leaders capable of adapting themselves and their leadership to the changing modern business environment.
- (2)
- The use of genetic or epigenetic mechanisms to facilitate adaptation of others to the changing modern business environment.
- (3)
- Creating a workplace that supports genomic health to facilitate adaptive capacity.
5.2.2. In relationship with the natural environment
- Separate entities, largely mutually exclusive (often exploitative) of any relationship to the natural environment;
- Separate entities attempting to become more organic, thus recognising they have a relationship with the natural environment;
- Separate entities that recognise their ethical responsibility to the natural environment;
- Interdependent entities that are reflective of, and in an inter-dependent relationship with, the natural environment.
- Parallel: In this, the organisation and its leadership continue to view their modern business environment as separate to the natural environment but are becoming increasingly cognisant of the natural environment. Here, evolution requires a continued focus on the organisation’s environmental responsibility through practices such as engaging in acts of CSR. This is a relationship well represented in the business literature.For leadership to support this evolutionary perspective requires focus on much of the current views of leadership (e.g., transformational, situational). However, there is an increasing need to rely on the interpersonal and adaptive capacity of its leadership to facilitate adaptation to the changing modern business environment.
- Partially integrated: In this, the organisation and its leadership shift to view their modern business environment as being in relationship with the natural environment. Evolution requires a focus on partnering with the natural environmental.For leadership to support this evolutionary perspective requires focus on much of the current views of leadership (e.g., transformational, situational). However, there is an increasing need to rely on the interpersonal and adaptive capacity of its leadership, as well as the ethical and servant capacity of its leadership. This is key to leaders taking up their role as leaders of a community working in partnership with, and as guardians of, the natural environment.
- Nested: In this, the organisation and its leadership shift to view their modern business environment as being nested within the natural environment. Evolution requires a focus on redesigning organisations to be more biological, to reflect their natural environment.For leadership to support this evolutionary perspective requires a shift in focus of its leadership to being increasingly interpersonal and adaptive, but more importantly to the ethical and servant capacity of its leadership. This could also be facilitated by introduction of more indigenous leadership approaches. This will allow leaders take up their role as elders of a community and servants to the needs of the natural environment.
- Co-evolving: In this, the organisation and its leadership shift to view their modern business environment as being integrated along with the natural environment into a meta-system. The nature and role of a meta-system needs to be determined as do the meta-governance structures of this meta-system.For leadership to support this evolutionary perspective requires a leadership capable of identifying and crafting a broader meta-construct into which business and the biological fit. This could be akin to Lubchenco [59] concept of the biosphere. The leadership broadens its scope from the role within the organisation to a leadership role within the meta-system. They need to be able to ask the questions around purpose, values, and norms of this meta-system. They need to participate in the meta-governance structure tasked with evolving within, and as participants of, the meta-system.
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Crutzen, P. Geology of mankind. Nature 2002, 415, 23. [Google Scholar] [CrossRef] [PubMed]
- Zalasiewicz, J.; Waters, C.N.; Williams, M.; Barnosky, A.D.; Cearreta, A.; Crutzen, P.; Ellis, E.; Ellis, M.A.; Fairchild, I.J.; Grinevald, J.; et al. When did the Anthropocene begin? A mid-twentieth century boundary level is stratigraphically optimal. Quat. Int. 2015, 383, 196–203. [Google Scholar] [CrossRef] [Green Version]
- Council, N.R. Landscapes on the Edge: New Horizons for Research on Earth’s Surface; The National Academies Press: Washington, DC, USA, 2010. [Google Scholar]
- Chakrabarty, D. Anthropocene time. History Theory 2018, 57, 5–32. [Google Scholar] [CrossRef]
- Gill, R. Change management—Or change leadership. JOCM 2002, 3, 307–318. [Google Scholar] [CrossRef]
- Moser, S. Getting Real about it: Navigating the Psychological and Social Demands of a World in Distress; Thousand Oaks: Sage, CA, USA, 2012. [Google Scholar]
- Stoknes, P.E. What We Think ABOUT When We Try Not to Think About Global Warming: Toward a New Psychology of Climate Action; Chelsea Green Books: White River Junction, VT, USA, 2015. [Google Scholar]
- Basáñez, M.E. A World of Three Cultures: Honor, Achievement and Joy; Oxford University Press: Oxford, UK, 2016. [Google Scholar]
- Vidas, D.; Fauchald, O.K.; Jensen, Ø.; Tvedt, M.W. International law for the Anthropocene? Shifting perspectives in regulation of the oceans, enviornment and genetic resources. Anthropocene 2015, 9, 1–13. [Google Scholar] [CrossRef]
- Goethals, G.R.; Sorenson, G.L. The Quest for a General Theory of Leadership; Edward Elgar Publising Ltd.: Cheltenham, UK, 2006. [Google Scholar]
- Heng, H.H.Q.; Liu, G.; Stevens, J.B.; Bremer, S.W.; Ye, K.J.; Abdallah, B.Y.; Horne, S.D.; Ye, C.J. Decoding the genome beyond sequencing: The new phase of genomic research. Genomics 2011, 98, 242–252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Felekkis, K.; Voskarides, K. Genomic Elements in Health, Disease and Evolution; Springer: New York, NY, USA, 2015. [Google Scholar]
- Rodríguez, J.A.; Marigorta, U.M.; Navarro, A. Integrating genomics into evolutionary medicine. Curr. Opin. Genet. Dev. 2014, 29, 97–102. [Google Scholar] [CrossRef] [Green Version]
- Simonti, C.; Capra, J.A. The evolution of the human genome. Curr. Opin. Genet. Dev. 2015, 35, 9–15. [Google Scholar] [CrossRef] [Green Version]
- Johns, H.; Moser, H.R. From traits to transformation: The evolution of leadership theory. Education 1989, 110, 115–122. [Google Scholar]
- DuBrin, A.J.; Lussier, R.N.; Achua, C.F.; Daft, R.L.; Pirola-Merlo, A.; Waddell, D.; Worley, C.G. Leading for Change; Cengage Learning: Melbourne, Australia, 2017. [Google Scholar]
- Hersey, P.; Blanchard, K.H. Management of Organizational Behavior: Utilizing Human Resources, 3rd ed.; Prentice-Hall: Englewood Cliffs, NJ, USA, 1977. [Google Scholar]
- Vroom, V.; Yetton, P. Leadership and Decision Making; University of Pittsburgh Press: Pittsburgh, PA, USA, 1973. [Google Scholar]
- Kouzes, J.M.; Posner, B.Z. The Leadership Challenge, 3rd ed.; Josey-Bass Publishers, Inc.: San Francisco, CA, USA, 2003. [Google Scholar]
- Li, W.-D.; Arvey, R.D.; Zhang, Z.; Song, Z. Do leadership role occupancy and transformational leadership share the same genetic and environmental influences? Leadersh. Q. 2012, 23, 233–243. [Google Scholar] [CrossRef]
- Goleman, D.; Boyatzis, R.; McKee, A. The New Leaders; Time Warner Paperbacks: London, UK, 2003. [Google Scholar]
- Knights, J. Ethical Leadership: How to Develop Ethical Leader. Available online: https://www.crcpress.com/rsc/downloads/WP-TL1V2-2016_Transpersonal_Leadership_WP_1_r4.pdf (accessed on 15 January 2019).
- Greenleaf, R.K. Servant Leadership: A Journey into the Nature of Legitimate Power and Greatness; Paulist Press: Mahwah, NJ, USA, 1977. [Google Scholar]
- Day, D.; Antonakis, J. The Nature of Leadership; SAGE Publicatoins: Thousand Oaks, CA, USA, 2012. [Google Scholar]
- Litz, D. Globalization and the changing face of educational leadership: Current trends and emerging dilemmas. Int. Educ. Stud. 2011, 4, 47–61. [Google Scholar] [CrossRef]
- Raeilin, J.A. The End of Managerial Control? GOM 2011, 36, 135–160. [Google Scholar]
- Carroll, A.B.; Levy, L.; Richmond, D. Leadership as practice: Challenging the competency framework. Leadership 2008, 4, 363–380. [Google Scholar] [CrossRef]
- Gentle, P. Engaging Leaders: The Challenge of Inspiring Collective Commitment in Universities; Routledge: London, UK, 2014. [Google Scholar]
- Bolden, R.; Jones, S.; Davis, H.; Gentle, P. Developing and Sustaining Shared Leadership in Higher Education; Leadership Foundation for Higher Education: London, UK, 2015. [Google Scholar]
- Van Vugt, M.; Ronay, R. The evolutonary psychology of leadership: Theory, review, and roadmap. Org. Psychol. Rev. 2014, 4, 74–95. [Google Scholar]
- Heifetz, R.; Grashow, A.; Linksy, M. Adaptive Leadership; Harvard Business Press: Boston, MA, USA, 2009. [Google Scholar]
- Hagen, J.; Hammerstein, P. Game theory and human evolution: A critique of some recent interpretations of experiemtnal games. Theor. Popul. Biol. 2006, 69, 339–348. [Google Scholar] [CrossRef]
- Bansal, P.; Hoffman, A.J. The Oxford Handbook of Business and the Natural Environment; Oxford University Press: Oxford, UK, 2012. [Google Scholar]
- Andrew, R.; Johansen, M. Organizational environments and performance: A linear or nonlinear relationship? Public Org. Rev. 2012, 12, 175–189. [Google Scholar] [CrossRef]
- Vaduva, S.; Alistar, V.T.; Thomas, A.R.; Lupiţu, C.D.; Neagoie, D.S. Moral Leadership in Business; Springer Nature: Cham, Switzerland, 2016. [Google Scholar]
- Zhang, X.; Fu, P.; Xi, Y.; Li, L.; Xu, L.; Cao, C.; Li, G.; Ma, L.; Ge, J. Understanding indigenous leadership research: Explication and Chinese examples. Leadersh. Q. 2012, 23, 1063–1079. [Google Scholar] [CrossRef]
- Chen, Y.; Yu, E.; Son, J. Beyond leader–member exchange (LMX) differentiation: An indigenous approach to leader–member relationship differentiation. Leadersh. Q. 2014, 25, 611–627. [Google Scholar] [CrossRef]
- Stewart, J.; Warn, J. Between two worlds: Indigenous leaders exercising influence and working across boundaries. AJPA 2017, 76, 3–17. [Google Scholar] [CrossRef]
- Arvey, R.-D.; Wang, N.; Song, Z.; Li, W.; Day, D. The Biology of Leadership; Oxford University Press: Oxford, UK, 2014; pp. 73–90. [Google Scholar]
- Arvey, R.D.; Li, W.D.; Wang, N. Genetics and organizational behavior. Annu. Rev. Org. Psychol. Org. Behav. 2016, 3, 167–190. [Google Scholar] [CrossRef]
- Daft, R. Organization Theory and Design; South-Western Cengage Learning: Mason, OH, USA, 2013. [Google Scholar]
- Hodgson, G.M. Organisational evolution versus the cult of change. CFR 2011, 16, 5. [Google Scholar]
- Anderson, D.J. Kanban: Successful Evolutionary Change for Your Technology Business; Blue Hole Press: Sequim, WA, USA, 2017. [Google Scholar]
- Colenso, M. Kaizen Strategies for Successful Organizational Change: Enabling Evolution and Revolution within the Organization; Prentice Hall: London, UK, 2000. [Google Scholar]
- Scott, B. The Political Economy of Capitalism. Available online: https://hbswk.hbs.edu/item/the-political-economy-of-capitalism (accessed on 15 January 2019).
- Andrews, C.A. Natural selection, genetic drift, and gene flow do not act in isolation in natural populations. Nature 2010, 3, 5. [Google Scholar]
- Tessera, M. Research program for a search of the origin of Darwinian evolution. Orig. Life Evol. Biosph. 2017, 47, 57–68. [Google Scholar] [CrossRef] [PubMed]
- Ridley, M. Nature via Nurture: Genes, Experience and What Makes us Human; Harper Perennial: London, UK, 2011. [Google Scholar]
- Burkhard, R., Jr. Lamarck, evolution, and the inheritance of acquired characteristics. Genetics 2013, 194, 793–805. [Google Scholar] [CrossRef] [PubMed]
- De Beer, G. Charles Darwin: Evolution by Natural Selection; Thomas Nelson & Sons: London, UK, 1963. [Google Scholar]
- Fisher, R.A. The Genetic Theory of Evolution; At The Clarendon Press: Oxford, UK, 1930. [Google Scholar]
- Gould, S.J.; Eldredge, N. Punctuated equilibrium: The tempo and mode of evolution reconsidered. Paleobiology 1977, 3, 115–151. [Google Scholar] [CrossRef]
- Feinberg, A.P.; Irizarry, R.A. Stochastic epigenetic variation as a driving force of development, evolutionary adaptation, and disease. PNAS 2010, 107, 1757. [Google Scholar] [CrossRef] [PubMed]
- Jablonka, E.; Lamb, M.J. Evolutioin in 4 Dimensions; MIT Press: London, UK, 2005. [Google Scholar]
- Dickins, T.E.; Rahman, Q. The extended evolutionary synthesis and the role of soft inheritance in evolution. Proc. Biol. Soc. 2012, 279, 2913–2921. [Google Scholar] [CrossRef] [Green Version]
- Moore, D. The Developing Genome; Oxford University Press: New York, NY, USA, 2015. [Google Scholar]
- Van Vugt, M. Evolutionary psychology: Theoretical foundations for the study of organizations. J. Organ. Des. 2017, 6, 1–16. [Google Scholar] [CrossRef]
- Thompson, J.A. The popular lecture: Vis medicatrix naturae. BMJ 1914, 2, 277–279. [Google Scholar]
- Lubchenco, J. Entering the centry of the environment: A new social contract for science. Science 1998, 279, 491–497. [Google Scholar] [CrossRef]
- Van Speybroeck, L.; De Waele, D.; Van de Vijver, G. Theories in early embryology. Ann. N. Y. Acad. Sci. 2002, 981, 7–49. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.; Mango, S.E. Hunting for Darwin’s gemmules and Lamarck’s fluid: Transgenerational signaling and histone methylation. Biochim. Biophys. Acta 2014, 1839, 1440–1453. [Google Scholar] [CrossRef] [PubMed]
- Van Speybroeck, L. From epigenesis to epigenetics. Ann. N. Y. Acad. Sci. 2002, 981, 61–81. [Google Scholar] [CrossRef]
- Waddington, C. Canalization of development and the inheritance of acquired characters. Nature 1942, 150, 563–565. [Google Scholar] [CrossRef]
- Weber, B.H.; Depew, D.J. Natural selection and self-organization. Biol. Philos. 1996, 11, 33–65. [Google Scholar] [CrossRef]
- Pluess, M. The Genetics of Psychological Well-Being; Oxford University Press: Oxford, UK, 2015. [Google Scholar]
- 1000 Genomes Project Consortium. An integrated map of genetic variation from 1,092 human genomes. Nature 2012, 491, 56–65. [Google Scholar] [CrossRef] [Green Version]
- Choudhuri, S.; Cui, Y.; Klaassen, C.D. Molecular targets of epigenetic regulation and effectors of environmental influences. Toxicol. Appl. Pharmacol. 2010, 245, 378–393. [Google Scholar] [CrossRef]
- Pagani, M.; Rossetti, G.; Panzeri, I.; de Candia, P.; Bonnal, R.J.P.; Rossi, R.L.; Geginat, J.; Abrignani, S. Role of microRNAs and long-noncoding RNAs in CD4+ T-cell differentiation. Immun. Rev. 2013, 253, 82–96. [Google Scholar] [CrossRef]
- Bjorklund, D.F. Mother knows best: Epigenetic inheritance, maternal eVects, and the evolution of human intelligence. Dev. Rev. 2006, 26, 213–242. [Google Scholar] [CrossRef]
- Mameli, M. Nongenetic selection and nongenetic inheritance. Br. J. Phil. Sci. 2004, 55, 35–71. [Google Scholar] [CrossRef]
- Alberts, B.; Johnsonby, A.; Lewis, J.; Raff, M.; Roberts, K.; Walter, P. Molecular Biology of the Cell; Garland Science: New York, NY, USA, 2002. [Google Scholar]
- Bacalini, M.G.; Friso, S.; Olivieri, F.; Pirazzini, C.; Giuliani, C.; Capri, M.; Santoro, A.; Franceschi, C.; Garagnani, P. Present and future of anti-ageing epigenetic diets. Mech. Ageing Dev. 2014, 136–137, 101–115. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Wang, J.; Zhang, K.; Zhao, M.; Ellenbroek, B.; Shao, F.; Wang, W. Effects of adolescent social stress and antidepressant treatment on cognitive inflexibility and Bdnf epigenetic modifications in the mPFC of adult mice. Psychoneuroendocrinology 2018, 88, 92–101. [Google Scholar] [CrossRef] [PubMed]
- Uauy, R.; Kain, J.; Corvalan, C. How can the developmental origins of health and disease (DOHaD) hypothesis contribute to improving health in developing countries? Am. J. Clin. Nutr. 2011, 94, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Heijmansa, B.T.; Tobia, E.W.T.; Steinb, A.D.; Putterc, H.; Blauwd, G.J.; Sussere, E.S.; Slagbooma, E.; Lumeye, L.H. Persistent epigenetic differences associated with prenatal exposure to famine in humans. PNAS 2008, 105, 17046–17049. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hellstrom, I.C.; Dhir, S.K.; Diorio, J.C.; Meaney, M.J. Maternal licking regulates hippocampal glucocorticoid receptor transcription through a thyroid hormone–serotonin– NGFI-A signalling cascade. Philos. Trans. R. Soc. Lond. B 2012, 367, 2495–2510. [Google Scholar] [CrossRef] [PubMed]
- Russo, V.E.A.; Martienssen, R.A.; Riggs, A.D. Epigenetics Mechanisms of Gene Regulation; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, USA, 1996. [Google Scholar]
- Bajrami, E.; Spiroski, M. Genomic imprinting. J. Med. Sci. 2016, 4, 181–184. [Google Scholar] [CrossRef]
- Horsthemke, B.; Buiting, K. Imprinting defects on human chromosome 15. Cytogenet. Genome Res. 2006, 113, 292–299. [Google Scholar] [CrossRef]
- Grossniklaus, U.; Kelly, W.G.; Fergusonn-Smith, A.C.; Pembrey, M. Transgenerational epigenetic inheritance: How important is it? Nat. Rev. Genet. 2013, 14, 228–235. [Google Scholar] [CrossRef]
- Szyf, M. The early life social environment and DNA methylation. Epigenetics 2011, 6, 971–978. [Google Scholar] [CrossRef]
- Klironomos, F.D.; Berg, J.; Collins, S. How epigenetic mutations can affect genetic evolution: Model and mechanism. Bioessays 2013, 35, 571–578. [Google Scholar] [CrossRef]
- Boteroa, C.A.; Weissingc, F.J.; Wrightd, J.; Rubenstein, D.R. Evolutionary tipping points in the capacity to adapt to environmental change. PNAS 2015, 112, 184–189. [Google Scholar] [CrossRef] [PubMed]
- Nava, E.; Röder, B. Adaptation and maladaptation insights from brain plasticity. Prog. Brain Res. 2011, 191, 177–194. [Google Scholar] [PubMed]
- Moore, T.; Arefadib, N.; Deery, A.; West, S. The First Thousand Days: An Evidence paper; Centre of Community Child Health, Murdoch Children’s Reserch Institute: Parkville, Australia, 2017. [Google Scholar]
- Sassone-Corsi, P.; Christen, Y. Epigenetics, Brain and Behaviour; Springer: California, CA, USA, 2012. [Google Scholar]
- Juster, R.-P.; Russell, J.J.; Almeida, D.; Picard, M. Allostatic load and comorbidities: A mitochondrial, epigenetic, and evolutionary perspective. Dev. Psychopathol. 2016, 28, 1117–1146. [Google Scholar] [CrossRef] [PubMed]
- Stankiewicza, A.M.; Swiergielb, A.H.; Lisowski, P.; Stankiewicza, A.M.; Swiergielb, A.H.; Lisowski, P. Epigenetics of stress adaptations in the brain. Brain Res. Bull. 2013, 98, 76–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- You, J.S.; Jones, P.A. Cancer genetics and epigenetics: Two sides of the same coin? Cancer Cell 2012, 22, 9–20. [Google Scholar] [CrossRef]
- Mattick, J. Challenging the dogma: The hidden layer of non-protein-coding RNAs in complex organisms. Bioessays 2003, 25, 930–939. [Google Scholar] [CrossRef] [PubMed]
- Mercer, T.R.; Mattick, J.S. Structure and function of long noncoding RNAs in epigenetic regulation. Nat Struct. Mol. Biol. 2013, 20, 300–307. [Google Scholar] [CrossRef]
- Mattick, J.; Mehler, M.F. RNA editing, DNA recoding and the evolution of human cognition. Trends Neurosci. 2008, 31, 227–233. [Google Scholar] [CrossRef]
- Frías-Lasserre, D.; Villagra, C. The importance of ncRNAs as epigenetic mechanisms in phenotypic variation and organic evolution. Front. Microbiol. 2017, 22, 1–13. [Google Scholar] [CrossRef]
- Benjamin, J.; Ebstein, R.P.; Belmaker, R.H. Molecular Genetics and the Human Personality; American Psychiatric Publishing, Inc.: Washington, DC, USA, 2002. [Google Scholar]
- Grech, G.; Scerri, C.; Scerri, J.; Cesuroglu, T. Preventive and predictive genetics: A perspective. In Preventive and Predictive Genetics: Towards Personalised Medicine, 1st ed.; Grech, G., Grossman, I., Eds.; Springer International Publishing: Cham, Switzerland, 2015. [Google Scholar]
- Wilson, A.S.; Power, B.E.; Molloy, P.L. DNA hypomethylation and human diseases. Biochim. Biophys. Acta 2007, 1775, 138–162. [Google Scholar] [CrossRef]
- Choi, S.-W.; Friso, S. Epigenetics: A new bridge between nutrition and health. Adv. Nutr. 2010, 1, 8–16. [Google Scholar] [CrossRef] [PubMed]
- De Almeida, R.A.; Fraczek, M.G.; Parker, S.; Delneri, D.; O’Keefe, R.T. Non-coding RNAs and disease: The classical ncRNAs make a comeback. Biochem. Soc. Trans. 2016, 44, 1073–1078. [Google Scholar] [CrossRef] [PubMed]
- Kanherkar, R.R.; Bhatia-Dey, N.; Csoka, A. Epigenetics across the human lifespan. Front. Cell Dev. Biol. 2014, 2, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Mut, J.; Huertas, D.; Esteller, M. Aberrant epigenetic landscape in intellectual disability. Prog. Brain Res. 2012, 197, 53–71. [Google Scholar] [PubMed]
- Samuelsson, J.; Alonso, S.; Yamamoto, F.; Perucho, M. DNA Fingerprinting Techniques for the analysis of genetic and epigenetic alterations in colorectal cancer. Mutat. Res. 2010, 693, 61–78. [Google Scholar] [CrossRef] [PubMed]
- Ordovás, J.M.; Smith, C.E. Epigenetics and cardiovascular disease. Nat Rev Cardiol 2010, 7, 510–519. [Google Scholar] [CrossRef] [Green Version]
- Judge, T.A.; Bono, J.E.; Ilies, R.; Gerhardt, M.W. Personality and leadership: A qualitative and quantitative review. J. Appl. Psychol. 2002, 87, 765–780. [Google Scholar] [CrossRef]
- Judge, T.A.; Colbert, A.E.; Ilies, R. A meta-analysis of the relationship between intelligence and leadership. J. Appl. Psychol. 2004, 89, 542–552. [Google Scholar] [CrossRef]
- Loehlin, J.C.; McCrae, R.R.; Costa, P.T., Jr. Heritabilities of common and measure-specific components of the Big Five personality factors. J. Res. Pers. 1998, 32, 431–453. [Google Scholar] [CrossRef]
- Stricker, L.J.; Rock, D.A. Assessing leadership potential with a biographical measure of personality traits. Int. J. Sel. Assess. 1998, 6, 164–184. [Google Scholar] [CrossRef]
- Bleidorn, W.; Kandler, C.; Caspi, A. The behavioural genetics of personality development in adulthood—Classic, contemporary, and future trends. Eur. J. Pers. 2014, 28, 244–255. [Google Scholar] [CrossRef]
- Penke, L.; Denissen, J.J.; Miller, G.F. The evolutionary genetics of personality. Eur. J. Pers. 2007, 21, 549–587. [Google Scholar] [CrossRef] [Green Version]
- Johnson, A.M.; Vernon, P.A.; McCarthy, J.M.; Molson, M.; Harris, J.A.; Jang, K.L. Nature vs nurture: Are leaders born or made? A behavior genetic investigation of leadership style. Twin Res. 1998, 1, 216–223. [Google Scholar] [CrossRef] [PubMed]
- Hamstra, M. ‘Big’ men: Male leaders’ height positively relates to followers’ perception of charisma. Pers. Individ. Differ. 2014, 56, 190–192. [Google Scholar] [CrossRef]
- Laustsen, L.; Bang Petersen, M. Winning faces vary by ideology: How nonverbal source cues influence election and communication success in politics. Polit. Commun. 2016, 33, 188–211. [Google Scholar] [CrossRef]
- Van Vugt, M.; Grabo, A.E. The many faces of leadership: An evolutionary-psychology approach. Curr. Dir. Psychol. Sci. 2015, 24, 484–489. [Google Scholar] [CrossRef]
- De Neve, J.-E.; Mikhaylov, S.; Dawes, C.T. Born to lead? A twin design and genetic association study of leadership role occupancy. Leadersh. Q. 2013, 24, 45–60. [Google Scholar] [CrossRef] [Green Version]
- Chaturvedi, S.; Zyphur, M.J.; Arvey, R.D.; Avolio, B.J.; Larsso, G. The heritability of emergent leadership: Age and gender as moderating factors. Leadersh. Q. 2012, 23, 219–232. [Google Scholar] [CrossRef]
- Robinson, G.G.; Grozinger, C.M.; Whitfield, C.W. Sociogenomics: Social life in molecular terms. Nat. Rev. Genet. 2005, 6, 257–271. [Google Scholar] [CrossRef]
- Fenech, M.; Knasmueller, S.; Bolognesi, C.; Bonassi, S.; Holland, N.; Migliore, L.; Kirsch-Volders, M. Molecular mechanisms by which in vivo exposure to exogenous chemical genotoxic agents can lead to micronucleus formation in lymphocytes in vivo and ex vivo in humans. Mutat. Res. 2016, 770, 12–25. [Google Scholar] [CrossRef]
- Takaki, J. Associations of job stress indicators with oxidative biomarkers in Japanese men and women. Int. J. Environ. Res. Public Health 2013, 10, 6662–6671. [Google Scholar] [CrossRef] [PubMed]
- Bisht, S.; Dada, R. Oxidative stress: Major executioner in disease pathology, role in sperm DNA damage and preventive strategies. Front. Biosci. 2017, 9, 420–447. [Google Scholar]
- Radwan, M.; Jurewicz, J.; Merecz-Kot, D.; Sobala, W.; Radwan, P.; Bochenek, M.; Hanke, W. Sperm DNA damage—The effect of stress and everyday life factors. Int. J. Impot. Res. 2016, 28, 148–154. [Google Scholar] [CrossRef] [PubMed]
- Henkel, R.R.; Franken, D.R. Sperm DNA fragmentation: Origin and impact on human reproduction. J. Reprod. Stem Cell Biotechnol. 2011, 2, 88–108. [Google Scholar] [CrossRef]
- Noonan, J.P. Neanderthal genomics and the evolution of modern humans. Genome Res. 2010, 20, 547–553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marin, M.-F.; Lord, C.; Andrews, J.; Juster, R.-P.; Sindi, S.; Arsenault-Lapierre, G.; Fiocco, A.J.; Lupien, S.J. Chronic stress, cognitive functioning and mental health. Neurobiol. Learn. Mem. 2011, 96, 583–595. [Google Scholar] [CrossRef] [PubMed]
- Perera, F.; Herbtsman, J. Prenatal environmental exposures, epigenetics, and disease. Reproduct. Toxicol. 2011, 31, 363–373. [Google Scholar] [CrossRef] [Green Version]
- Hymel, P.; Loeppke, R.; Baase, C.; Burton, W.; Hartenbaum, N.; Hudson, T.; McLellan, R.; Mueller, K.; Roberts, M.; Yarborough, C.; et al. Workplace health protection and promotion: A new pathway for a healthier—and safer—workforce. JOEM 2011, 53, 695–702. [Google Scholar] [CrossRef]
- Keverne, E.-B.; Curley, J.-P. Epigenetics, brain evolution and behaviour. Front. Neuroendocrinol. 2008, 29, 398–412. [Google Scholar] [CrossRef]
- Kogan, M.-D.; Blumberg, S.-J.; Schieve, L.-A.; Boyle, C.-A.; Perrin, J.-M.; Ghandour, R.-M.; Singh, G.-K.; Strickland, B.-B.; Trevathan, E.; van Dyck, P.-C. Prevalence of parent-reported diagnosis of autism spectrum disorder among children in the US, 2007. Pediatrics 2009, 124, 1395–1403. [Google Scholar] [CrossRef]
- Ornoya, A.; Weinstein-Fudima, L.; Ergazb, Z. Prenatal factors associated with autism spectrum disorder(ASD). Reproduct. Toxicol. 2015, 56, 155–169. [Google Scholar] [CrossRef] [PubMed]
- Dupras, C.; Ravitsky, V. The ambiguous nature of epigenetic responsibility. J. Med. Ethics 2016, 42, 534. [Google Scholar] [CrossRef] [PubMed]
- Davison, A. Can Workplace Stress Cause Transgenerational Ripples of Employer Liability? Risk Edge Consulting: Melbourne, Australia, 2013. [Google Scholar]
- Mondal, T.; Kanduri, C. Maintenance of epigenetic information: A noncoding RNA perspective. Chromosome Res. 2013, 21, 615–625. [Google Scholar] [CrossRef] [PubMed]
- Rodgers, A.B.; Morgan, C.; Bronson, S.L.; Revello, S.; Bale, T.L. Paternal stress exposure alters sperm microRNA content and reprograms offspring HPA stress axis regulation. J. Neurosci. 2013, 33, 9003–9012. [Google Scholar] [CrossRef] [PubMed]
- Short, A.K.; Fennell, K.A.; Perreau, V.M.; Fox, A.; O’Bryan, M.K.; Kim, J.H.; Bredy, T.W.; Pang, T.Y.; Hannan, A.J. Elevated paternal glucocorticoid exposure alters the small noncoding RNA profile in sperm and modifies anxiety and depressive phenotypes in the offspring. Transl. Psychiatry 2016, 6, e837. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.-L.; Xu, S.-Y.; Ren, Z.-G.; Tao, L.; Jiang, J.-W.; Zheng, S.-S. Application of metagenomics in the human gut microbiome. World J. Gastroenterol. 2015, 21, 803–814. [Google Scholar] [CrossRef] [PubMed]
- Cui, H.; Li, Y.; Zhang, X. An overview of major metagenomic studies on human microbiomes in health and disease. Quant. Biol. 2016, 4, 192–206. [Google Scholar] [CrossRef] [Green Version]
- Prescott, S.L.; Logan, A.C. The Secret Life of Your Microbiome: Why Nature and Biodiversity are Essential to Health and Happiness; New Society Publishers: Gabriola Island, BC, Canada, 2017. [Google Scholar]
- Rea, K.; Dinan, T.; Cryan, J.F. The microbiome: A key regulator of stress and neuroinflammation. Neurobiol. Stress 2016, 4, 23–33. [Google Scholar] [CrossRef] [Green Version]
- Flandroy, L.; Poutahidis, T.; Berg, G.; Clarke, G.; Dao, M.; Decaestecker, E.; Furman, E.; Haahtela, T.; Massart, S.; Plovier, H.; et al. The impact of human activities and lifestyles on the interlinked microbiota and health of humans and of ecosystems. Sci. Total Environ. 2018, 627, 1018–1038. [Google Scholar] [CrossRef]
- Foster, J.A.; Rinaman, L.; Cryan, J.F. Stress & the gut-brain axis: Regulation by the microbiome. Neurobiol. Stress 2017, 7, 124–136. [Google Scholar] [Green Version]
- Baquero, F. Metagenomic epidemiology: A public health need for the control of antimicrobial resistance. Clin. Microbiol. Infect. 2012, 18, 67–73. [Google Scholar] [CrossRef] [PubMed]
- The National Academy of Sciences. Microbiomes of the Built Environment: A Research Agenda for Indoor Microbiology, Human Health, and Buildings; The National Academies Press: Washington, DC, USA, 2017. [Google Scholar]
- Faghih, N.; Bavandpour, M.; Forouharfar, A. Biological metaphor and analogy upon organizational management research within the development of clinical organizational pathology. QScience Connect 2016, 4, 2–27. [Google Scholar]
- Palmberg, K. Complex adaptive systems as metaphors for organizational management. Learn. Organ. 2009, 16, 483–498. [Google Scholar] [CrossRef] [Green Version]
- Mars, M.M.; Bronstein, J.L. The promise of the organizational ecosystem metaphor: An argument for biological rigor. J. Manag. Inq. 2017, 0, 1–10. [Google Scholar] [CrossRef]
- Tylerm, M.; Wilkinson, A. The tyranny of corporate slenderness:“corporate anorexia” as a metaphor for our age. Work Employ. Soc. 2007, 21, 537–549. [Google Scholar] [CrossRef]
- Du, L.; Bakish, D.; Hrdina, P.D. Gender differences in association between serotonin transporter gene polymorphism and personality traits. Psychiatr. Genet. 2000, 10, 159–164. [Google Scholar] [CrossRef] [PubMed]
- Bergeman, C.S.; Chlpuer, H.M.; Plomin, R.; Pedersen, N.L.; McClearn, G.E.; Nesselroade, J.R.; Costa, P.T.J.; McCrae, R.R. Genetic and environmental effects on openness to experience, agreeableness, and conscientiousness: An adoption/twin study. J. Pers. 1993, 61, 159–179. [Google Scholar] [CrossRef]
- Feder, A.; Nestier, E.; Charney, D. Psychobiology and molecular genetics of resilience. Nat. Rev. Neurosci. 2009, 10, 446–457. [Google Scholar] [CrossRef] [Green Version]
- Gloster, A.T.; Gerlach, A.L.; Hamm, A.; Höfler, M.; Alpers, G.W.; Kircher, T.; Ströhle, A.; Lang, T.; Wittchen, H.U.; Deckert, J. 5HTT is associated with the phenotype psychological flexibility: Results from a randomized clinical trial. Eur. Arch. Psychiatry Clin. Neurosci. 2015, 265, 399–406. [Google Scholar] [CrossRef]
- Vartanian, O.; Bristol, A.; Kaufman, J.C. Neuroscience of Creativity; MIT Press: Cambridge, MA, USA, 2013. [Google Scholar]
- Wasserman, D.; Geijer, T.; Sokolowski, M.; Rozanov, V.; Wasserman, J. Nature and nurture in suicidal behavior, the role of genetics: Some novel findings concerning personality traits and neural conduction. Physiol. Behav. 2007, 92, 245–249. [Google Scholar] [CrossRef]
- Craig, J.M.; Logan, A.C.; Prescott, S.L. Natural environments, nature relatedness and the ecological theater: Connecting satellites and sequencing to shinrin-yoku. J. Physiol. Anthropol. 2016, 35, 2–10. [Google Scholar] [CrossRef] [PubMed]
- Diamond, J. Guns, Germs and Steel; W. W. Norton & Company Inc.: New York, NY, USA, 1997. [Google Scholar]
- McMichael, A.J. Planetary Overload: Global Environmental Change and the Health of the Human Species; Cambridge University Press: Cambridge, UK, 1994. [Google Scholar]
- Chen, C.; Nakagawa, S. Planetary health and the future of human capacity: The increasing impact of planetary distress on the human brain. Challenges 2018, 9, 1–10. [Google Scholar] [CrossRef]
- Hendriques, I.; Sadorsky, P. The relationship between envrinoment commitmment and managerial perceptions of stakeholder importance. AMJ 1999, 42, 87–99. [Google Scholar]
- Hunt, C.B.; Auster, E. Proactive environmental management: Avoiding the toxic trap. SMR 1990, 31, 7–18. [Google Scholar]
- Roome, N. Developing environmental management systems. BSE 1992, 1, 11–24. [Google Scholar]
- Carroll, A.B. The pyramid of corporate social responsbility: Towards the moral management of organizational stakeholders. Bus. Horiz. 1991, 34, 39–48. [Google Scholar] [CrossRef]
- Von Rueden, C.; van Vugt, M. Leadership in small scale societies: Some implications for theory, research, and practice. Leadersh. Q. 2015, 26, 978–990. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ryan, J.T.; Jones, S.; Hayes, P.A.; Craig, J.M. Leadership Evolution for Planetary Health: A Genomics Perspective. Challenges 2019, 10, 4. https://doi.org/10.3390/challe10010004
Ryan JT, Jones S, Hayes PA, Craig JM. Leadership Evolution for Planetary Health: A Genomics Perspective. Challenges. 2019; 10(1):4. https://doi.org/10.3390/challe10010004
Chicago/Turabian StyleRyan, Jacinta T, Sandra Jones, Peter A Hayes, and Jeffrey M Craig. 2019. "Leadership Evolution for Planetary Health: A Genomics Perspective" Challenges 10, no. 1: 4. https://doi.org/10.3390/challe10010004
APA StyleRyan, J. T., Jones, S., Hayes, P. A., & Craig, J. M. (2019). Leadership Evolution for Planetary Health: A Genomics Perspective. Challenges, 10(1), 4. https://doi.org/10.3390/challe10010004