Reducing the Use of Antimicrobials as a Solution to the Challenge of Antimicrobial Resistance (AMR): Approaching an Ethical Dilemma through the Lens of Planetary Health
Abstract
:1. Introduction
“I would like to sound one note of warning. Penicillin is to all intents and purposes non-poisonous so there is no need to worry about giving an overdose and poisoning the patient. There may be a danger, though, in under dosage. It is not difficult to make microbes resistant to penicillin in the laboratory by exposing them to concentrations not sufficient to kill them, and the same thing has occasionally happened in the body. The time may come when penicillin can be bought by anyone in the shops. Then there is the danger that the ignorant man may easily under dose himself and by exposing his microbes to non-lethal quantities of the drug make them resistant. Here is a hypothetical illustration. Mr. X. has a sore throat. He buys some penicillin and gives himself, not enough to kill the streptococci but enough to educate them to resist penicillin. He then infects his wife. Mrs. X gets pneumonia and is treated with penicillin. As the streptococci are now resistant to penicillin the treatment fails. Mrs. X dies. Who is primarily responsible for Mrs. X’s death? Why Mr. X whose negligent use of penicillin changed the nature of the microbe. There is a moral here, and that is that if you use penicillin, use enough”(Fleming, 1945) [14].
2. The Right to Know [the Risks]
3. Distributive Justice: Beneficence and the Common Good
4. Intergenerational Responsibility
5. Extending Rights to the More-than-Human World
6. Conclusions: Too Late for the Precautionary Principle
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- O’Neill, J. The Review on Antimicrobial Resistance. Tackling Drug-Resistant Infections Globally: Final Report and Recommendations. 2016. Available online: https://amr-review.org/sites/default/files/160525_Final%20paper_with%20cover.pdf/ (accessed on 18 November 2020).
- Chandler, C.I. Current accounts of antimicrobial resistance: Stabilisation, individualisation and antibiotics as infrastructure. Palgrave Commun. 2019, 5, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Skandalis, N.; Maeusli, M.; Papafotis, D.; Miller, S.; Lee, B.; Theologidis, I.; Luna, B. Environmental spread of antibiotic resistance. Antibiotics 2021, 10, 640. [Google Scholar] [CrossRef]
- Littmann, J.; Simonsen, G.S. Antimicrobial resistance is a super wicked problem. Tidsskr. Den Nor. Legeforening 2019, 139, 10. [Google Scholar] [CrossRef] [Green Version]
- Whitmee, S.; Haines, A.; Beyrer, C.; Boltz, F.; Capon, A.; Dias, B.F.D.S.; Ezeh, A.; Frumkin, H.; Gong, P.; Head, P.; et al. Safeguarding human health in the Anthropocene epoch: Report of The Rockefeller Foundation–Lancet Commission on planetary health. Lancet 2015, 386, 1973–2028. [Google Scholar] [CrossRef]
- Foster, A.; Cole, J.; Farlow, A.; Petrikova, I. Planetary health ethics: Beyond first principles. Challenges 2019, 10, 14. [Google Scholar] [CrossRef] [Green Version]
- Prescott, S.L.; Logan, A.C.; Albrecht, G.; Campbell, D.E.; Crane, J.; Cunsolo, A.; Holloway, J.W.; Kozyrskyj, A.L.; Lowry, C.A.; Penders, J.; et al. The canmore declaration: Statement of principles for planetary health. Challenges 2018, 9, 31. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization; Canadian Public Health Association. Ottawa Charter for Health Promotion; Bulletin of the Pan American Health Organization (PAHO): Washington, DC, USA, 1987; Volume 21, pp. 200–204. [Google Scholar]
- Foster, A.; Cole, J.; Farlow, A.; Petrikova, I.; Frumkin, H. Planetary Health: Protecting Nature to Protect Ourselves; Myers, S., Frumkin, H., Eds.; Island Press: Washington, DC, USA, 2020. [Google Scholar]
- Cole, J. Antimicrobial resistance—A ‘rising tide’ of national (and international) risk. J. Hosp. Infect. 2016, 92, 3–4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allen, S. Future-Mindedness; Greater Good Science Center (GGSC) at UC Berkeley: Berkeley, CA, USA, 2019. [Google Scholar]
- Ligon, B.L. Penicillin: Its discovery and early development. In Seminars in Pediatric Infectious Diseases; WB Saunders: Philadelphia, PA, USA, 2004; Volume 15, pp. 52–57. [Google Scholar]
- Abraham, E.P.; Chain, E. An enzyme from bacteria able to destroy penicillin. Nature 1940, 146, 837. [Google Scholar] [CrossRef]
- Fleming, A. Nobel lecture—Penicillin. In Nobel Lectures, Physiology or Medicine 1942–1962; Elsevier Publishing Company: Amsterdam, The Netherlands, 1964; pp. 83–93. [Google Scholar]
- Spellberg, B.; Srinivasan, A.; Chambers, H.F. New Societal Approaches to Empowering Antibiotic Stewardship. JAMA 2016, 315, 1229–1230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, D.; Jeannot, K.; Xiao, Y.; Knapp, C.W. Editorial: Horizontal gene transfer mediated bacterial antibiotic resistance. Front. Microbiol. 2019, 10, 1933. [Google Scholar] [CrossRef] [Green Version]
- Gallagher, J. Analysis: Antibiotic Apocalypse. BBC News Online. Available online: http://www.bbc.co.uk/news/health-21702647 (accessed on 30 November 2020).
- World Health Organization. Antimicrobial Resistance: Draft Global Action Plan on Antimicrobial Resistance (Report by the Secretariat); World Health Organization: Geneva, Switzerland, 2014; Available online: https://apps.who.int/gb/ebwha/pdf_files/EB136/B136_20-en.pdf/ (accessed on 18 November 2020).
- Phares, C.A.; Danquah, A.; Atiah, K.; Agyei, F.K.; Michael, O.-T. Antibiotics utilization and farmers’ knowledge of its effects on soil ecosystem in the coastal drylands of Ghana. PLoS ONE 2020, 15, e0228777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Afakye, K.; Kiambi, S.; Koka, E.; Kabali, E.; Dorado-Garcia, A.; Amoah, A.; Kimani, T.; Adjei, B.; Caudell, M.A. The impacts of animal health service providers on antimicrobial use attitudes and practices: An examination of poultry layer farmers in ghana and kenya. Antibiotics 2020, 9, 554. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, A.; Ebata, A.; MacGregor, H. Interventions to reduce antibiotic prescribing in LMICs: A scoping review of evidence from human and animal health systems. Antibiotics 2018, 8, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haenssgen, M.J.; Charoenboon, N.; Zanello, G.; Mayxay, M.; Reed-Tsochas, F.; Lubell, Y.; Wertheim, H.; Lienert, J.; Xayavong, T.; Zaw, Y.K.; et al. Antibiotic knowledge, attitudes and practices: New insights from cross-sectional rural health behaviour surveys in low-income and middle-income South-East Asia. BMJ Open 2019, 9, e028224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lambert, H.; Chen, M.; Cabral, C. Antimicrobial resistance, inflammatory responses: A comparative analysis of pathogenicities, knowledge hybrids and the semantics of antibiotic use. Palgrave Commun. 2019, 5, 85. [Google Scholar] [CrossRef]
- Charani, E.; Smith, I.; Skodvin, B.; Perozziello, A.; Lucet, J.-C.; Lescure, F.-X.; Birgand, G.; Poda, A.; Ahmad, R.; Singh, S.; et al. Investigating the cultural and contextual determinants of antimicrobial stewardship programmes across low-, middle- and high-income countries—A qualitative study. PLoS ONE 2019, 14, e0209847. [Google Scholar] [CrossRef]
- Horton, R.; Beaglehole, R.; Bonita, R.; Raeburn, J.; McKee, M.; Wall, S. From public to planetary health: A manifesto. Lancet 2014, 383, 847. [Google Scholar] [CrossRef]
- Cole, J.; Dodds, K. Unhealthy geopolitics: Can the response to COVID-19 reform climate change policy? Bull. World Health Organ. 2020, 99, 148–154. [Google Scholar] [CrossRef]
- Viens, A.M.; Littmann, J. Is antimicrobial resistance a slowly emerging disaster? Public Health Ethics 2015, 8, 255–265. [Google Scholar] [CrossRef] [Green Version]
- Maillard, J.-Y.; Bloomfield, S.F.; Courvalin, P.; Essack, S.Y.; Gandra, S.; Gerba, C.P.; Rubino, J.R.; Scott, E.A. Reducing antibiotic prescribing and addressing the global problem of antibiotic resistance by targeted hygiene in the home and everyday life settings: A position paper. Am. J. Infect. Control. 2020, 48, 1090–1099. [Google Scholar] [CrossRef]
- Llor, C.; Bjerrum, L. Antimicrobial resistance: Risk associated with antibiotic overuse and initiatives to reduce the problem. Ther. Adv. Drug Saf. 2014, 5, 229–241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Annunziato, G. Strategies to overcome antimicrobial resistance (AMR) making use of non-essential target inhibitors: A review. Int. J. Mol. Sci. 2019, 20, 5844. [Google Scholar] [CrossRef] [Green Version]
- González-Bello, C. Antibiotic adjuvants—A strategy to unlock bacterial resistance to antibiotics. Bioorg. Med. Chem. Lett. 2017, 27, 4221–4228. [Google Scholar] [CrossRef] [PubMed]
- Jonas, O.B.; Irwin, A.; Berthe, F.; Cesar, J.; Le Gall, F.G.; Marquez, P.V. Drug-Resistant Infections: A Threat to Our Economic Future (Vol. 2): Final Report; HNP/Agriculture Global Antimicrobial Resistance Initiative; World Bank Group: Washington, DC, USA, 2017. [Google Scholar]
- Sulis, G.; Gandra, S. Access to antibiotics: Not a problem in some LMICs. Lancet Glob. Health 2021, 9, e561–e562. [Google Scholar] [CrossRef]
- Parsonage, B. Control of Antimicrobial Resistance Requires an Ethical Approach. Front. Microbiol. 2017, 8, 21–24. [Google Scholar] [CrossRef] [Green Version]
- Fox, R. The post-antibiotic era beckons. J. R. Soc. Med. 1996, 89, 602. [Google Scholar] [CrossRef] [Green Version]
- Daulaire, N.; Bang, A.; Tomson, G.; Kalyango, J.N.; Cars, O. Universal access to effective antibiotics is essential for tackling antibiotic resistance. J. Law Med. Ethic 2015, 43, 17–21. [Google Scholar] [CrossRef] [PubMed]
- Hinchliffe, S.; Bingham, N.; Allen, J.; Carter, S. Pathological Lives: Disease, Space and Biopolitics; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Bloom, D.E.; Black, S.; Salisbury, D.; Rappuoli, R. Antimicrobial resistance and the role of vaccines. Proc. Natl. Acad. Sci. USA 2018, 115, 12868–12871. [Google Scholar] [CrossRef] [Green Version]
- Cole, J.; Desphande, J. Poultry farming, climate change, and drivers of antimicrobial resistance in India. Lancet Planet. Health 2019, 3, e494–e495. [Google Scholar] [CrossRef]
- Garau, J. Impact of antibiotic restrictions: The ethical perspective. Clin. Microbiol. Infect. 2006, 12, 16–24. [Google Scholar] [CrossRef] [Green Version]
- Pirofski, L.-A. Why antibodies disobey the Hippocratic Oath and end up doing harm: A new clue. J. Clin. Investig. 2010, 120, 3099–3102. [Google Scholar] [CrossRef] [PubMed]
- D’Atri, F.; Arthur, J.; Blix, H.S.; Hicks, L.A.; Plachouras, D.; Monnet, D.L. The European Survey on Transatlantic Task Force on Antimicrobial Resistance (TATFAR) action 1.2 group Targets for the reduction of antibiotic use in humans in the Transatlantic Taskforce on Antimicrobial Resistance (TATFAR) partner countries. Eurosurveillance 2019, 24, 1800339. [Google Scholar] [CrossRef]
- Gaba, J.M. Environmental ethics and our moral relationship to future generations: Future rights and present virtue. Colum. J. Envtl. L 1999, 24, 249. [Google Scholar]
- Gardiner, S.M. A perfect moral storm: Climate change, intergenerational ethics and the problem of moral corruption. Environ. Values 2006, 15, 397–413. [Google Scholar] [CrossRef] [Green Version]
- Peltzman, S. By Prescription Only... or Occasionally. Regulation 1987, 11, 23. [Google Scholar]
- Leibovici, L.; Paul, M.; Ezra, O. Ethical dilemmas in antibiotic treatment. J. Antimicrob. Chemother. 2011, 67, 12–16. [Google Scholar] [CrossRef] [PubMed]
- Luepke, K.H.; Mohr III, J.F. The antibiotic pipeline: Reviving research and development and speeding drugs to market. Expert Rev. Anti-Infect. Ther. 2017, 15, 425–433. [Google Scholar] [CrossRef] [PubMed]
- Hinchliffe, S. Postcolonial global health, post-colony microbes and antimicrobial resistance. Theory Cult. Soc. 2021, 1990, 95–96. [Google Scholar] [CrossRef]
- Palma, E.; Tilocca, B.; Roncada, P. Antimicrobial resistance in veterinary medicine: An overview. Int. J. Mol. Sci. 2020, 21, 1914. [Google Scholar] [CrossRef] [Green Version]
- Finley, R.L.; Collignon, P.; Larsson, D.J.; McEwen, S.A.; Li, X.-Z.; Gaze, W.H.; Reid-Smith, R.; Timinouni, M.; Graham, D.W.; Topp, E. The scourge of antibiotic resistance: The important role of the environment. Clin. Infect. Dis. 2013, 57, 704–710. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.-X.; Zhang, T.; Fang, H.H.P. Antibiotic resistance genes in water environment. Appl. Microbiol. Biotechnol. 2009, 82, 397–414. [Google Scholar] [CrossRef]
- Esiobu, N.; Armenta, L.; Ike, J. Antibiotic resistance in soil and water environments. Int. J. Environ. Health Res. 2002, 12, 133–144. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Park, K.S.; Jeon, J.H.; Lee, S.H. Antibiotic resistance in soil. Lancet Infect. Dis. 2018, 18, 1306–1307. [Google Scholar] [CrossRef] [Green Version]
- Martinez, J.L. Environmental pollution by antibiotics and by antibiotic resistance determinants. Environ. Pollut. 2009, 157, 2893–2902. [Google Scholar] [CrossRef] [PubMed]
- Yan, Z.-Z.; Chen, Q.-L.; Zhang, Y.J.; He, J.-Z.; Hu, H.-W. Antibiotic resistance in urban green spaces mirrors the pattern of industrial distribution. Environ. Int. 2019, 132, 105106. [Google Scholar] [CrossRef]
- Schmidt, C.W. Antibiotic resistance in livestock: More at stake than steak. Environ. Health Perspect. 2002, 110, A396–A402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, D.; Giles, M.; Daniell, T.; Neilson, R.; Yang, X.R. Does reduced usage of antibiotics in livestock production mitigate the spread of antibiotic resistance in soil, earthworm guts, and the phyllosphere? Environ. Int. 2020, 136, 105359. [Google Scholar] [CrossRef]
- Sivaraman, G.; Muneeb, K.; Sudha, S.; Shome, B.; Cole, J.; Holmes, M. Prevalence of virulent and biofilm forming ST88-IV-t2526 methicillin-resistant Staphylococcus aureus clones circulating in local retail fish markets in Assam, India. Food Control 2021, 127, 108098. [Google Scholar] [CrossRef]
- Tiseo, K.; Huber, L.; Gilbert, M.; Robinson, T.P.; Van Boeckel, T.P. Global trends in antimicrobial use in food animals from 2017 to 2030. Antibiotics 2020, 9, 918. [Google Scholar] [CrossRef]
- Chand, A. Economic implications of antimicrobial use policies. Nat. Food 2020, 1, 591. [Google Scholar] [CrossRef]
- Dai, D.; Qiu, K.; Zhang, H.-J.; Wu, S.-G.; Han, Y.-M.; Wu, Y.-Y.; Qi, G.-H.; Wang, J. Organic acids as alternatives for antibiotic growth promoters alter the intestinal structure and microbiota and improve the growth performance in broilers. Front. Microbiol. 2021, 11, 618144. [Google Scholar] [CrossRef]
- Bajagai, Y.S.; Alsemgeest, J.; Moore, R.J.; Van, T.T.H.; Stanley, D. Phytogenic products, used as alternatives to antibiotic growth promoters, modify the intestinal microbiota derived from a range of production systems: An in vitro model. Appl. Microbiol. Biotechnol. 2020, 104, 10631–10640. [Google Scholar] [CrossRef]
- Wang, C.-H.; Hsieh, Y.-H.; Powers, Z.M.; Kao, C.-Y. Defeating antibiotic-resistant bacteria: Exploring alternative therapies for a post-antibiotic era. Int. J. Mol. Sci. 2020, 21, 1061. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.J.; Cowling, B.J. Reducing antibiotic use in livestock, China. Bull. World Health Organ. 2020, 98, 360. [Google Scholar] [CrossRef]
- Ramay, B.M.; Caudell, M.A.; Cordón-Rosales, C.; Archila, L.D.; Palmer, G.H.; Jarquin, C.; Moreno, P.; McCracken, J.P.; Rosenkrantz, L.; Amram, O.; et al. Antibiotic use and hygiene interact to influence the distribution of antimicrobial-resistant bacteria in low-income communities in Guatemala. Sci. Rep. 2020, 10, 1–10. [Google Scholar] [CrossRef]
- Howard, S.J.; Catchpole, M.; Watson, J.; Davies, S.C. Antibiotic resistance: Global response needed. Lancet Infect. Dis. 2013, 13, 1001–1003. [Google Scholar] [CrossRef]
- Aguirre, E. An international model for antibiotics regulation. Food Drug Law J. 2017, 72, 295–313. [Google Scholar]
- Edwards, S.E.; Morel, C.M.; Busse, R.; Harbarth, S. Combatting antibiotic resistance together: How can we enlist the help of industry? Antibiotics 2018, 7, 111. [Google Scholar] [CrossRef] [Green Version]
- Storehagen, L.; Aftab, F.; Årdal, C.; Savic, M.; Røttingen, J.-A. Should antibiotics be controlled medicines? Lessons from the controlled drug regimen. J. Law Med. Ethic 2018, 46, 81–94. [Google Scholar] [CrossRef]
- Cole, J.; Bickersteth, S. What’s planetary about health? An analysis of topics covered in The Lancet Planetary Health ‘s first year. Lancet Planet. Health 2018, 2, e283–e284. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abimbola, S.O.; Otieno, M.A.; Cole, J. Reducing the Use of Antimicrobials as a Solution to the Challenge of Antimicrobial Resistance (AMR): Approaching an Ethical Dilemma through the Lens of Planetary Health. Challenges 2021, 12, 23. https://doi.org/10.3390/challe12020023
Abimbola SO, Otieno MA, Cole J. Reducing the Use of Antimicrobials as a Solution to the Challenge of Antimicrobial Resistance (AMR): Approaching an Ethical Dilemma through the Lens of Planetary Health. Challenges. 2021; 12(2):23. https://doi.org/10.3390/challe12020023
Chicago/Turabian StyleAbimbola, Samuel O., Melvine Anyango Otieno, and Jennifer Cole. 2021. "Reducing the Use of Antimicrobials as a Solution to the Challenge of Antimicrobial Resistance (AMR): Approaching an Ethical Dilemma through the Lens of Planetary Health" Challenges 12, no. 2: 23. https://doi.org/10.3390/challe12020023
APA StyleAbimbola, S. O., Otieno, M. A., & Cole, J. (2021). Reducing the Use of Antimicrobials as a Solution to the Challenge of Antimicrobial Resistance (AMR): Approaching an Ethical Dilemma through the Lens of Planetary Health. Challenges, 12(2), 23. https://doi.org/10.3390/challe12020023