Biogenicity and Syngeneity of Organic Matter in Ancient Sedimentary Rocks: Recent Advances in the Search for Evidence of Past Life
Abstract
:1. Introduction
- Confocal Laser Scanning Microscopy—for high resolution, three-dimensional (3D) imaging.
- Raman and Fluorescence Spectroscopy and Imagery—for two-dimensional (2D) and 3D chemical/structural information and thermal maturity.
- Secondary Ion Mass Spectrometry (SIMS)—for carbon and sulfur isotopic composition at micrometer-scale resolution.
- Nano-scale Secondary Ion Mass Spectrometry (NanoSIMS)—for elemental composition (and possible isotopic composition) at sub-micrometer-scale resolution.
- Analytical Transmission Electron Microscopy, utilizing Energy Dispersive X-Ray Spectroscopy (EDS) and Electron Energy-loss Spectroscopy (EELS)—for chemical composition, carbon bonding and crystallinity using electrons.
- Synchrotron-based Scanning-Transmission X-ray Microscopy and X-ray Absorption Near-Edge Structure Spectroscopy (XANES)—for macromolecular structure, crystallinity, chemical composition and bonding, and functional group identification using X-rays.
- Combined Sequential, Focused Ion Beam (FIB)-Scanning Electron Microscopy—for high resolution, 3D imagining of surfaces of carbonaceous residues.
- Two-Step Laser Mass Spectrometry (L2MS)—for organic molecular structure.
- 2D in situ techniques include transmission electron microscopy, scanning-transmission electron microscopy, EELS, synchrotron-based scanning-transmission X-ray microscopy, XANES, SIMS, NanoSIMS, and L2MS, as well as Raman and fluorescence spectroscopy (which additionally can be used for 3D analysis).
- 3D in situ techniques include confocal laser scanning microscopy, Raman and fluorescence spectroscopy, and sequential FIB-scanning electron microscopy. Optical microscopy, while not a new technique, is a critical part of the arsenal of 3D tools, as it provides the basis for almost all of the detailed in situ techniques that have been developed in the past decade.
2. New Techniques and Approaches
2.1. In Situ Organic Materials
2.1.1. Confocal Laser Scanning Microscopy
2.1.2. Raman and Fluorescence Spectroscopy and Imagery
2.1.3. Secondary Ion Mass Spectrometry (SIMS)
2.1.4. Nano-Scale Secondary Ion Mass Spectrometry (NanoSIMS)
2.1.5. Analytical Transmission Electron Microscopy
2.1.6. Synchrotron-Based Scanning-Transmission X-Ray Microscopy Coupled with X-Ray Absorption Near-Edge Structure Spectroscopy (XANES)
2.1.7. Combined Sequential, Focused Ion Beam (FIB)-Scanning Electron Microscopy
2.1.8. Two-Step Laser Mass Spectrometry (L2MS)
2.2. Isolates of Kerogen and Soluble Organic Materials
2.2.1. Kerogen
2.2.2. Soluble Organic Materials
- Thermal maturity: To be syngenetic, all constituents of the extracts must have compositions indicative of a level of maturity consistent with that of the host rock. In the Transvaal study, the extracts have compositions consistent with a wet-gas zone of thermal cracking, a conclusion consistent with the prehnite-pumpellyite to lower greenschist metamorphic grade of the host rocks.
- Absence of petrochemical signatures suggestive of man-made contaminants or Phanerozoic molecular signatures.
- Similarity of extracts from the two cores in bed-to-bed comparisons, which suggests depositional control on extract composition, rather than control by man-made contamination or that produced from migrating fluids in the subsurface.
- Similarity of extracts obtained before and after the samples were treated with hydrochloric and hydrofluoric acids to dissolve mineral matter. Since extracts obtained after acid treatment represent materials likely to have been trapped within minerals, these extracts are less likely to have been exposed to migrating fluids or laboratory/drilling contaminants than the extracts obtained before acid treatment. So, where extracts before and after acid treatment are similar, they are most probably derived from syndepositional organic matter.
- Dissimilarity in composition and maturity between extracts from the Archean samples and the overlying Dwyka Formation (a Permo-Carboniferous diamictite). This dissimilarity provides evidence that the extracted organic compounds in the Archean section of the cores are depositional signals of Archean age and not younger contaminants.
3. Discussion
4. Future Directions
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Schopf, J.M. Modes of fossil preservation. Rev. Palaeobot. Palynol. 1975, 20, 27–53. [Google Scholar] [CrossRef]
- Schopf, J.W.; Walter, M.R. Archean microfossils: New evidence of ancient microbes. In Earth’s Earliest Biosphere: Its Origin and Evolution; Schopf, J.W., Ed.; Princeton University Press: Princeton, NJ, USA, 1983; pp. 214–239. [Google Scholar]
- Buick, R. Microfossil recognition in Archean rocks: An appraisal of spheroids and filaments from a 3500 M.Y. old chert-barite unit at North Pole, western Australia. Palaios 1990, 5, 441–459. [Google Scholar] [CrossRef]
- Summons, R.E.; Walter, M.R. Molecular fossils and microfossils of prokaryotes and protists from Proterozoic sediments. Amer. J. Sci. 1990, 290, 212–244. [Google Scholar]
- Cady, S.L. Astrobiology: A new frontier for 21st century paleontologists. Palaios 1998, 13, 95–97. [Google Scholar] [CrossRef]
- Schopf, J.W. Fossils and Pseudofossils: Lessons from the Hunt for Early Life on Earth. In Size Limits of Very Small Microorganisms: Proceedings of a Workshop; National Academy Press: Washington, DC, USA, 1999; pp. 88–93. [Google Scholar]
- Westall, F. The nature of fossil bacteria: A guide to the search for extraterrestrial life. J. Geophys. Res. 1999, 104, 16437–16451. [Google Scholar] [CrossRef]
- Cady, S.L. Paleobiology of the Archean. Advan. Appl. Microbiol. 2001, 50, 3–35. [Google Scholar] [CrossRef]
- Cady, S.L. Formation and preservation of bona fide microfossils. In Signs of Life: A Report Based on the April 2000 Workshop on Life Detection Techniques; The National Academies Press: Washington, DC, USA, 2002; pp. 149–155. [Google Scholar]
- Cady, S.L.; Farmer, J.D.; Grotzinger, J.P.; Schopf, J.W.; Steele, A. Morphological biosignatures and the search for life on Mars. Astrobiology 2003, 3, 351–368. [Google Scholar] [CrossRef]
- Schopf, J.W. Geochemical and submicron-scale morphologic analyses of individual Precambrian microorganisms. Geochemical Investigations in Earth and Space Science: A Tribute to Isaac R Kaplan The Geochemical Society Special Publications. 2004, 9, 365–375. [Google Scholar] [CrossRef]
- Schopf, J.W. Fossil evidence of archaean life. Phil. Trans. Roy. Soc. B-Biol. Sci. 2006, 361, 869–885. [Google Scholar] [CrossRef]
- Summons, R.E.; Albrecht, P.; McDonald, G.; Moldowan, J.M. Molecular biosignatures. Strateg. Life Detection—Space Sci. Ser. ISSI 2008, 25, 133–159. [Google Scholar] [CrossRef]
- Schopf, J.W.; Kudryavtsev, A.B.; Sugitani, K.; Walter, M.R. Precambrian microbe-like pseudofossils: A promising solution to the problem. Precambrian Res. 2010, 179, 191–205. [Google Scholar] [CrossRef]
- Summons, R.E.; Amend, J.P.; Bish, D; Buick, R.; Cody, G.D.; Des Marais, D.J.; Dromart, G.; Eigenbrode, J.L.; Knoll, A.H.; Sumner, D.Y. Preservation of martian organic and environmental records: Final report of the Mars biosignature working group. Astrobiology 2011, 11, 157–181. [Google Scholar] [CrossRef]
- Summons, R.E.; Hallmann, C. Organic geochemical signatures of early life on Earth. In Treatise on Geochemistry, 2nd ed.; Turekian, K.K., Holland, H.D., Eds.; Elsevier: Amsterdam, The Netherlands, 2014; Volume 12, Chapter 12.2; pp. 33–46. [Google Scholar]
- Van Zuilen, M.A.; Chaussidon, M.; Rolliion-Bard, C.; Marty, B. Carbonaceous cherts of the Barberton Greenstone Belt, South Africa: Isotopic, chemical and structural characteristics of individual microstructures. Geochimica. Cosmochimica. Acta 2007, 71, 655–669. [Google Scholar] [CrossRef]
- Oehler, D.Z.; Robert, F.; Walter, M.R.; Sugitani, K.; Allwood, A.; Meibom, A.; Mostefaoui, S.; Selo, M.; Thomen, A.; Gibson, E.K. NanoSIMS: Insights to biogenicity and syngeneity of Archaean carbonaceous structures. Precambrian Res. 2009, 173, 70–78. [Google Scholar] [CrossRef]
- Lepot, K.; Williford, K.H.; Ushikubo, T.; Sugitani, K.; Mimura, K.; Spicuzza, M.J.; Valley, J.W. Texture-specific isotopic compositions in 3.4 Gyr old organic matter support selective preservation in cell-like structures. Geochim. Cosmochim. Acta 2013, 112, 66–86. [Google Scholar] [CrossRef]
- Van Zuilen, M.A.; Lepland, A.; Teranes, J.; Finarelli, J.; Wahlen, M.; Arrhenius, G. Graphite and carbonates in the 3.8 Ga old Isua Supracrustal Belt, southern west Greenland. Precambrian Res. 2003, 126, 331–348. [Google Scholar] [CrossRef]
- Holm, N.G. Serpentinization of oceanic crust and Fischer-Tropsch type synthesis of organic compounds. Origins Life Evol. Biosphere 1996, 26, 205–206. [Google Scholar] [CrossRef]
- McCollom, T.M.; Ritter, G.; Simoneit, B.R.T. Lipid synthesis under hydrothermal conditions by Fischer-Tropsch type reactions. Origins Life Evol. Biosphere 1998, 29, 153–166. [Google Scholar] [CrossRef]
- Pizzarello, S.; Shock, E. The organic composition of carbonaceous meteorites: The evolutionary story ahead of biochemistry. Cold Spring Harbor Perspect. Biol. 2010, 2. [Google Scholar] [CrossRef]
- Eigenbrode, J.; Benning, L.G.; Maule, J.; Wainwright, N.; Steele, A.; Amundsen, H.E.; AMASE 2006 Team. A field-based cleaning protocol for sampling devices used in life-detection studies. Astrobiology 2009, 9, 455–465. [Google Scholar] [CrossRef]
- Waldbauer, J.R.; Sherman, L.S.; Sumner, D.Y.; Summons, R.E. Late Archean molecular fossils from the transvaal supergroup record the antiquity of microbial diversity and aerobiosis. Precambrian Res. 2009, 169, 28–47. [Google Scholar] [CrossRef]
- Derenne, S.; Robert, F.; Skrzypczak-Bonduelle, A.; Gourier, D.; Binet, L.; Rouzaud, J.-N. Molecular evidence for life in the 3.5 billion year old Warrawoona chert. Earth Planet. Sci. Lett. 2008, 272, 476–480. [Google Scholar] [CrossRef]
- Marshall, C.P.; Love, G.D.; Hill, A.C.; Allwood, A.C.; Walter, M.R.; van Kranendonk, M.J.; Sowden, S.A.; Sylva, S.P.; Summons, R.E. Structural characterization of kerogen in 3.4 Ga Archaean cherts from the Pilbara Craton, western Australia. Precambrian Res. 2007, 155, 1–23. [Google Scholar] [CrossRef]
- Schopf, J.W.; Tripathi, A.B.; Kudryavtsev, A.B. Three-dimensional confocal optical imagery of Precambrian microscopic organisms. Astrobiology 2006, 6, 1–16. [Google Scholar] [CrossRef]
- Schopf, J.W.; Kudryavtsev, A.B. Confocal laser scanning microscopy and Raman imagery of ancient microscopic fossils. Precambrian Res. 2009, 173, 39–49. [Google Scholar] [CrossRef]
- Schopf, J.W.; Kudryavtsev, A.B. Three-dimensional Raman imagery of Precambrian microscopic organisms. Geobiology 2005, 3, 1–12. [Google Scholar] [CrossRef]
- Schopf, J.W.; Kudryavtsev, A.B. A renaissance in studies of ancient life. Geol. Today 2010, 26, 140–145. [Google Scholar] [CrossRef]
- Lepot, K.; Philippot, P.; Benzerara, K.; Wang, G-Y. Garnet-filled trails associated with carbonaceous matter mimicking microbial filaments in Archean Basalt. Geobiology 2009, 7, 393–402. [Google Scholar] [CrossRef]
- Schopf, J.W.; Kudryavtsev, A.B.; Czaja, A.D.; Tripathi, A.B. Evidence of Archean life: Stromatolites and microfossils. Precambrian Res. 2007, 158, 141–155. [Google Scholar] [CrossRef]
- Schopf, J.W.; Kudryavtsev, A.B.; Agresti, D.B.; Czaja, A.D.; Wdowiak, T.J. Raman Imagery: A new approach to assess the geochemical maturity and biogenicity of permineralized Precambrian fossils. Astrobiology 2005, 5, 333–371. [Google Scholar] [CrossRef]
- Beyssac, O.; Goffe, B.; Chopin, C.; Rouzaud, J.N. Raman spectra of carbonaceous material in metasediments: A new geothermometer: Raman spectroscopy of carbonaceous material. J. Metamorph. Geol. 2002, 20, 859–871. [Google Scholar] [CrossRef]
- Sforna, M.C.; van Zuilen, M.A.; Philippot, P. Structural characterization by Raman hyperspectral mapping of organic carbon in the 3.46 billion-year-old Apex chert, western Australia. Geochim. Cosmochim. Acta 2013, 124, 18–33. [Google Scholar]
- Schopf, J.W.; Kudryavtsev, A.B.; Agresti, D.G.; Wdowiak, T.J.; Czaja, A.D. Laser-Raman imagery of Earth’s earliest fossils. Nature 2002, 416, 73–76. [Google Scholar] [CrossRef]
- Cohen, P.A.; Schopf, J.W.; Butterfield, N.J.; Kudryavtsev, A.B.; Macdonald, F.A. Phosphate biomineralization in mid-Neoproterozoic protists. Geology 2011, 39, 539–542. [Google Scholar] [CrossRef]
- House, C.H.; Schopf, J.W.; McKeegan, K.D.; Coath, C.D.; Harrison, T.M.; Stetter, K.O. Carbon isotopic composition of individual Precambrian microfossils. Geology 2000, 28, 707–710. [Google Scholar] [CrossRef]
- Strauss, H.; Moore, T.B. Abundances and isotopic compositions of carbon and sulfur species in whole rock and kerogen samples. In The Proterozoic Biosphere; Schopf, J.W., Klein, C., Eds.; Cambridge University Press: New York, NY, USA, 1992; pp. 709–798. [Google Scholar]
- House, C.H.; Oehler, D.Z.; Sugitani, K.; Mimura, K. Carbon isotopic analyses of ca. 3.0 Ga microstructures imply planktonic autotrophs inhabited Earth’s early oceans. Geology 2013, 41, 651–654. [Google Scholar] [CrossRef]
- Oehler, D.Z.; Walsh, M.M.; Sugitani, K.; House, C.H. Spindle-Shaped Microstructures: Potential Models for Planktonic Life Forms on Other Worlds. In Proceedings of 45th Lunar and Planetary Science Conference, The Woodlands, TX, USA, 17–21 March 2014.
- Sugitani, K.; Grey, K.; Allwood, A.; Nagaoka, T.; Mimura, K.; Minami, M.; Marshall, C.P.; van Kranendonk, M.J.; Walter, M.R. Diverse microstructures from Archaean chert from the Mount Goldsworthy—Mount Grant area, Pilbara Craton, western Australia: Microfossils, dubiofossils, or pseudofossils? Precambrian Res. 2007, 158, 228–262. [Google Scholar] [CrossRef]
- Oehler, D.Z.; Robert, F.; Walter, M.R.; Sugitani, K.; Meibom, A.; Mostefaoui, S.; Gibson, E.K. Diversity in the Archean biosphere: New insights from NanoSIMS. Astrobiology 2010, 10, 413–424. [Google Scholar] [CrossRef]
- Walsh, M.W. Microfossils and possible microfossils from the early Archean Onverwacht Group, Barberton Mountain Land, South Africa. Precambrian Res. 1992, 54, 271–293. [Google Scholar] [CrossRef]
- Sugitani, K.; Lepot, K.; Nagaoka, T.; Mimura, K.; Kranendonk, M.V.; Oehler, D.Z.; Walter, M.R. Biogenicity of morphologically diverse carbonaceous microstructures from the ca. 3400 Ma Strelley Pool Formation, in the Pilbara Craton, western Australia. Astrobiology 2010, 10, 899–920. [Google Scholar] [CrossRef]
- Sugitani, K.; Mimura, K.; Nagaoka, T.; Lepot, K.; Takeuchi, M. Microfossil assemblage from the 3400 Ma Strelley Pool Formation in the Pilbara Craton, western Australia: Results form a new locality. Precambrian Res. 2013, 226, 59–74. [Google Scholar] [CrossRef]
- Williford, K.H.; Ushikubo, T.; Schopf, J.W.; Lepot, K.; Kitajima, K.; Valley, J.W. Preservation and detection of microstructural and taxonomic correlations in the carbon isotopic compositions of individual Precambrian microfossils. Geochim. Cosmochim. Acta 2013, 104, 165–182. [Google Scholar] [CrossRef]
- Horita, J. Some perspectives on isotope biosignatures for early life. Chem. Geol. 2005, 218, 171–186. [Google Scholar] [CrossRef]
- Lollar, B.S.; Westgate, T.D.; Ward, J.A.; Slater, G.F.; Lacrampe-Couloume, G. Abiogenic formation of alkanes in the Earth’s crust as a minor source for global hydrocarbon reservoirs. Nature 2002, 416, 522–524. [Google Scholar] [CrossRef]
- Bontognali, T.R.R.; Sessions, A.L.; Allwood, A.C.; Fischer, W.W.; Grotzinger, J.P.; Summons, R.E.; Eiler, J.M. Sulfur isotopes of organic matter preserved in 3.45-billion-year-old stromatolites reveal microbial metabolism. Proc. Nat. Acad. Sci. USA 2012, 109, 15146–15151. [Google Scholar] [CrossRef]
- Robert, F.; Selo, M.; Skrzypczak, A. NanoSIMS Images of Precambrian Fossil Cells. In Proceedings of 36th Lunar and Planetary Science Conference, League City, TX, USA, 14–18 March 2005.
- Oehler, D.Z.; Robert, F.; Mostefaoui, S.; Meibom, A.; Selo, M; McKay, D.S. Chemical mapping of Proterozoic organic matter at sub-micron spatial resolution. Astrobiology 2006, 6, 838–850. [Google Scholar] [CrossRef]
- Kilburn, M.R.; Wacey, D. NanoSIMS analysis of Archean fossils and biomarkers. Appl. Surf. Sci. 2008, 255, 1465–1467. [Google Scholar] [CrossRef]
- Fletcher, I.R.; Kilburn, M.R.; Rasmussen, B. NanoSIMS m-scale in situ measurement of 13C/12C in early Precambrian organic matter, with permil precision. Int. J. Mass Spectrom. 2008, 278, 59–68. [Google Scholar] [CrossRef]
- Wacey, D. Stromatolites in the ~3400 Ma Strelley Pool Formation, western Australia: Examining biogenicity from the macro- to the nano-scale. Astrobiology 2010, 10, 381–395. [Google Scholar] [CrossRef]
- Wacey, D.; Gleeson, D.; Kilburn, M.R. Microbialite taphonomy and biogenicity: New insights from NanoSIMS. Geobiology 2010, 8, 403–416. [Google Scholar] [CrossRef]
- Wacey, D.; Kilburn, M.R.; Saunders, M.; Cliff, J.; Brasier, M.D. Microfossils of sulphur-metabolizing cells in 3.4-billion-year-old rocks of western Australia. Nat. Geosci. 2011, 4, 698–702. [Google Scholar] [CrossRef]
- Oehler, D.Z.; Robert, F.; Chaussidon, M.; Gibson, E.K. Bona Fide Biosignatures: Insights from Combined NanoSIMS-SIMS. In Proceedings of Goldschmidt Conference, Vancouver, British Columbia, Canada, 13–18 July 2008.
- Moreau, J.W.; Sharp, T.G. A transmission electron microscopy study of silica and kerogen biosignatures in ~1.9 Ga Gunflint microfossils. Astrobiology 2004, 4, 196–210. [Google Scholar] [CrossRef]
- Wacey, D.; Menon, S.; Green, L.; Gerstmann, D.; Kong, C.; Mcloughlin, N.; Saunders, M.; Brasier, M. Taphonomy of very ancient microfossils from the ~3400 Strelley Pool Formation and ~1900 Ma Gunflint formation: New insights using a focused ion beam. Precambrian Res. 2012, 220–221, 234–250. [Google Scholar] [CrossRef]
- De Gregorio, B.T.; Sharp, T.G. The structure and distribution of carbon in 3.5 Ga Apex chert: Implications for the biogenicity of Earth’s oldest putative microfossils. Amer. Mineral. 2006, 91, 784–789. [Google Scholar]
- De Gregorio, B.T.; Sharp, T.G.; Flynn, G.J.; Wirick, S.; Hervig, R.L. Biogenic origin for Earth’s oldest putative microfossils. Geology 2009, 37, 631–634. [Google Scholar] [CrossRef]
- De Gregorio, B.T.; Sharp, T.G.; Rushdi, A.I.; Simoneit, B.R.T. Bugs or gunk? Nanoscale methods for assessing the biogenicity of ancient microfossils and organic matter. In Earliest Life on Earth: Habitats, Environments and Methods of Detection; Golding, S.D., Glickson, M., Eds.; Springer Science, B.V.: Dordrecht, The Netherlands, 2011; pp. 239–288. [Google Scholar]
- Hugo, R.C.; Cady, S.L. Preparation of geological and biological TEM specimens by embedding in sulfur. Microsc. Today 2004, 12, 28–30. [Google Scholar]
- Schopf, J.W. Microfossils of the early Archean Apex chert: New evidence of the antiquity of life. Science 1993, 260, 640–646. [Google Scholar]
- Bernard, S.; Benzerara, K.; Beyssac, O.; Brown, G.E., Jr.; Grauvogel-Stamm, L.; Duringer, P. Ultrastructural and chemical study of modern and fossil sporoderms by Scanning Transmission X-ray Microscopy (STXM). Rev. Palaeobot. Palynol. 2009, 156, 248–261. [Google Scholar] [CrossRef]
- Recanati, A.; Bernard, S.; Germain, D.; Charbonnier, S.; Robert, R. STXM Characterization of Fossil Organic Matter from the Montceau-les-Mines Lagerstätte (France). In Proceedings of Goldschmidt Conference, Florence, Italy, 25–30 August 2013; p. 2034.
- Bernard, S.; Horsfield, B.; Schulz, H.-M.; Wirth, R.; Schreiber, A.; Sherwood, N. Geochemical evolution of organic-rich shales with increasing maturity: A STXM and TEM study of the Posidonia Shale (Lower Toarcian, northern Germany). Mar. Petrol. Geol. 2012, 31, 70–89. [Google Scholar] [CrossRef]
- Lepot, K.; Benzerara, K.; Rividi, N.; Cotte, M.; Brown, G.E., Jr.; Philipot, P. Organic matter heterogeneities in 2.72 Ga stromatolites: Alteration vs. preservation by sulfur incorporation. Geochim. Cosmochim. Acta 2009, 73, 6579–6599. [Google Scholar] [CrossRef]
- Papineau, D.; de Gregorio, B.T.; Cody, G.D.; Fries, M.D.; Mojzsis, S.J.; Steele, A.; Stroud, R.M; Fogel, M.L. Ancient graphite in the Eoarchean quartz-pyroxene rock from Akilia island in southern west Greenland I: Petrographic and spectroscopic characterization. Geochim. Cosmochim. Acta 2010, 74, 5862–5883. [Google Scholar] [CrossRef]
- McKeegan, K.D.; Kudryavtsev, A.B.; Schopf, J.W. Raman and ion microscopic imagery of graphitic inclusions in apatite from older than 3830 Ma Akilia supracrustal rocks, west Greenland. Geology 2007, 35, 591–594. [Google Scholar] [CrossRef]
- Marshall, A.O.; Jehlicka, J.; Rouzaud, J.-N.; Marshall, C.P. Multiple generations of carbonaceous material deposited in Apex chert by basin-scale pervasive hydrothermal fluid flow. Gondwana Res. 2014, 25, 284–289. [Google Scholar] [CrossRef]
- Schiffbauer, J.D.; Xiao, S. Novel application of focused ion beam electron microscopy (FIB-EM) in preparation and analysis of microfossil ultrastructures: A new view of complexity in early eukaryotic organisms. Palaios 2009, 24, 616–626. [Google Scholar] [CrossRef]
- Wacey, D. Personal Communication, 2014.
- Clemett, S.J.; Thomas-Keprta, K.L.; Nakamura-Messenger, K. The Spatial Distribution of Organic Matter and Mineralogical Relationships in Carbonaceous Chondrites. In Proceedings of 43rd Lunar and Planetary Science Conference, The Woodlands, TX, USA, 19–23 March 2012.
- Nakamura-Messenger, K.; Messenger, S.; Keller, L.P.; Clemett, S.J.; Nguyen, A.N.; Gibson, E.K. Coordinated in situ Analyses of Organic Nanoglobules in the Sutter’s Mill Meteorite. In Proceedings of 44th Lunar and Planetary Science Conference, The Woodlands, TX, USA, 18–22 March 2013.
- Clemett, S.J.; Messenger, S.; Nakamura-Messenger, K.; Thomas-Keprta, K.L.; McKay, D.S. Coordinated Chemical and Isotopic Imaging of Bells (CM2) Meteorite Matrix. In Proceedings of 45th Lunar and Planetary Science Conference, The Woodlands, TX, USA, 17–21 March 2014.
- Mahajan, T.B.; Plows, F.L.; Gillette, J.S.; Zare, R.N.; Logan, G.A. Comparison of microprobe two-step laser desorption/laser ionization mass spectrometry and gas chromatography/mass spectrometry studies of polycyclic aromatic hydrocarbons in ancient terrestrial rocks. J. Amer. Soc. Mass Spectrom. 2001, 12, 989–1001. [Google Scholar] [CrossRef]
- Oehler, J.H. Irreversible contamination of Precambrian kerogen by 14C-labelled organic compounds. Precambrian Res. 1977, 4, 221–227. [Google Scholar] [CrossRef]
- Brocks, J.J.; Love, G.D.; Snape, C.E.; Logan, G.A.; Summons, R.E.; Buick, R. Release of bound aromatic hydrocarbons from late Archean and Mesoproterozoic kerogens via hydropyrolysis. Geochim. Cosmochim. Acta 2003, 67, 1521–1530. [Google Scholar] [CrossRef]
- French, K.L.; Hallmann, C.; Hope, J.M.; Buick, R.; Brocks, J.J.; Summons, R.E. Archean Hydrocarbon Biomarkers: Archean or Not? In Proceedings of Goldschmidt Conference, Florence, Italy, 25–30 August 2013; p. 1110.
- Lanier, W.P. Approximate growth rates of Early Proterozoic microstromatolites as deduced by biomass productivity. Palaios 1986, 1, 525–542. [Google Scholar] [CrossRef]
- Knoll, A.H.; Barghoorn, E.S. Archean microfossils showing cell division from the Swaziland system of South Africa. Science 1977, 198, 396–398. [Google Scholar]
- Oehler, D.Z. Transmission electron microscopy of organic microfossils from the late Precambrian Bitter Springs formation of Australia; Techniques and survey of preserved ultrastructure. J. Paleontol. 1976, 50, 90–106. [Google Scholar]
- Brocks, J.J.; Logan, G.A.; Buick, R.; Summons, R.E. Archean molecular fossils and the early rise of eukaryotes. Science 1999, 285, 1033–1036. [Google Scholar] [CrossRef]
- Brocks, J.J. Millimeter-scale concentration gradients of hydrocarbons in Archean shales: Live-oil escape or fingerprint of contamination? Geochim. Cosmochim. Acta 2011, 75, 3196–3213. [Google Scholar] [CrossRef]
- Rasmussen, B.; Fletcher, I.R.; Brocks, J.J.; Kilburn, M.R. Reassessing the first appearance of eukaryotes and cyanobacteria. Nature 2008, 455, 1101–1104. [Google Scholar] [CrossRef]
- Javaux, E.J.; Marshall, C.P.; Bekker, A. Organic-walled microfossils in 3.2-billion-year-old shallow-marine siliciclastic deposits. Nature 2010, 463, 934–938. [Google Scholar] [CrossRef]
- Schopf, J.W.; Farmer, J.D.; Foster, I.S.; Kudryavtsev, A.B.; Gallardo, V.A.; Espinoza, C. Gypsum-permineralized microfossils and their relevance to the search for life on Mars. Astrobiology 2012, 12, 619–633. [Google Scholar] [CrossRef]
- Howard, K.T.; Bailey, M.J.; Berhanu, D.; Bland, P.A.; Cressey, G.; Howard, L.E.; Heynes, C.; Matthewman, R.; Martins, Z.; Sephton, M.A.; Stolojan, V.; Verchovsky, S. Biomass preservation in impact melt ejecta. Nat. Geosci. 2013, 6, 1018–1022. [Google Scholar] [CrossRef]
- Schultz, P.H.; Harris, R.S.; Clemett, S.J.; Thomas-Keprta, K.L.; Zarate, M. Preserved flora and organics in impact melt breccias. Geology 2014. [Google Scholar] [CrossRef]
- Cavalazzi, B.; Westall, F.; Cady, S.L.; Barbieri, R.; Foucher, F. Potential fossil endoliths in vesicular pillow basalt, Coral Patch Seamount, eastern north Atlantic Ocean. Astrobiology 2011, 11, 619–632. [Google Scholar] [CrossRef]
- Bernard, S.; Benzerara, K.; Beyssac, O.; Menguy, N.; Guyot, F.; Brown, G.E., Jr.; Goffe, B. Exceptional preservation of fossil plant spores in high-pressure metamorphic rocks. Earth Planet. Sci. Lett. 2007, 262, 257–272. [Google Scholar] [CrossRef]
- Allen, M.; Sherwood Lollar, B.; Runnegar, B.; Oehler, D.Z.; Lyons, J.R.; Manning, C.E.; Summers, M.E. Is Mars alive? Eos, Trans. Amer. Geophys. Union 2006, 87, 433–435. [Google Scholar]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Oehler, D.Z.; Cady, S.L. Biogenicity and Syngeneity of Organic Matter in Ancient Sedimentary Rocks: Recent Advances in the Search for Evidence of Past Life. Challenges 2014, 5, 260-283. https://doi.org/10.3390/challe5020260
Oehler DZ, Cady SL. Biogenicity and Syngeneity of Organic Matter in Ancient Sedimentary Rocks: Recent Advances in the Search for Evidence of Past Life. Challenges. 2014; 5(2):260-283. https://doi.org/10.3390/challe5020260
Chicago/Turabian StyleOehler, Dorothy Z., and Sherry L. Cady. 2014. "Biogenicity and Syngeneity of Organic Matter in Ancient Sedimentary Rocks: Recent Advances in the Search for Evidence of Past Life" Challenges 5, no. 2: 260-283. https://doi.org/10.3390/challe5020260
APA StyleOehler, D. Z., & Cady, S. L. (2014). Biogenicity and Syngeneity of Organic Matter in Ancient Sedimentary Rocks: Recent Advances in the Search for Evidence of Past Life. Challenges, 5(2), 260-283. https://doi.org/10.3390/challe5020260