An LSTM Model for Predicting Cross-Platform Bursts of Social Media Activity
Abstract
:1. Introduction
2. Related Work
3. Data
Data Preprocessing
4. Methodology
4.1. LSTM Model vs. Markov Chain
5. Results
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Yang, J.; Counts, S. Predicting the speed, scale, and range of information diffusion in twitter. In Proceedings of the AAAI Conference on Weblogs and Social Media, Washington, DC, USA, 23–26 May 2010. [Google Scholar]
- Friedkin, N. A test of structural features of Granovetter’s strength of weak ties theory. Soc. Netw. 1980, 2, 411–422. [Google Scholar] [CrossRef]
- Zhao, J.; Wu, J.; Xu, K. Weak ties: Subtle role of information diffusion in online social networks. Phys. Rev. E 2010, 82, 016105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mooney, P.; Winstanley, A.C.; Corcoran, P. Evaluating Twitter for use in environmental awareness campaigns. In Winstanley, Adam (Hg.): Proceedings of the China-Ireland Information and Communications Technologies Conference (CIICT 2009), Maynooth, Ireland, 19–21 August 2009; National University of Ireland: Galway, Ireland, 2009; pp. 83–86. [Google Scholar]
- Del Vicario, M.; Bessi, A.; Zollo, F.; Petroni, F.; Scala, A.; Caldarelli, G.; Stanley, H.E.; Quattrociocchi, W. The spreading of misinformation online. Proc. Natl. Acad. Sci. USA 2016, 113, 554–559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taylor, C.; Mantzaris, A.; Garibay, I. Exploring How Homophily and Accessibility Can Facilitate Polarization in Social Networks. Information 2018, 9, 325. [Google Scholar] [CrossRef] [Green Version]
- Friggeri, A.; Adamic, L.; Eckles, D.; Cheng, J. Rumor cascades. In Proceedings of the International AAAI Conference on Weblogs and Social Media, Ann Arbor, MI, USA, 1–4 June 2014. [Google Scholar]
- Starbird, K.; Palen, L. (How) Will the Revolution be Retweeted?: Information Diffusion and the 2011 Egyptian Uprising. In Proceedings of the ACM Conference on Computer Supported Cooperative Work, Seattle, WA, USA, 11–15 February 2012; pp. 7–16. [Google Scholar]
- Barabasi, A.L. The origin of bursts and heavy tails in human dynamics. Nature 2005, 435, 207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vasilescu, B.; Filkov, V.; Serebrenik, A. Stack Overflow and GitHub: Associations between Software Development and Crowdsourced Knowledge. In Proceedings of the IEEE International Conference on Social Computing, Beijing, China, 20–23 August 2013; pp. 188–195. [Google Scholar]
- Mantzaris, A.V. Uncovering nodes that spread information between communities in social networks. EPJ Data Sci. 2014, 3, 26. [Google Scholar] [CrossRef] [Green Version]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Yan, Z.; Hu, X.; Philip, S.Y.; Li, Z. Burst time prediction in cascades. In Proceedings of the AAAI Conference on Artificial Intelligence, Austin, TX, USA, 25–30 January 2015. [Google Scholar]
- Higham, D.; Mantzaris, A.V.; Grindrod, P.; Otley, A.; Laflin, P. Anticipating activity in social media spikes. In Proceedings of the International AAAI Conference on Web and Social Media, Oxford, UK, 26–29 May 2015. [Google Scholar]
- Alsaedi, N.; Burnap, P.; Rana, O. Automatic summarization of real world events using twitter. In Proceedings of the Tenth International AAAI Conference on Web and Social Media, Cologne, Germany, 17–20 May 2016. [Google Scholar]
- Wang, H.; Li, Q.; D’Agostino, G.; Havlin, S.; Stanley, H.E.; Van Mieghem, P. Effect of the interconnected network structure on the epidemic threshold. Phys. Rev. E 2013, 88, 022801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mucha, P.J.; Porter, M.A. Communities in multislice voting networks. Chaos 2010, 20, 041108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wasserman, S.; Faust, K. Social Network Analysis: Methods and Applications; Cambridge University Press: Cambridge, UK, 1994; Volume 8. [Google Scholar]
- Salehi, M.; Sharma, R.; Marzolla, M.; Magnani, M.; Siyari, P.; Montesi, D. Spreading processes in multilayer networks. IEEE Trans. Netw. Sci. Eng. 2015, 2, 65–83. [Google Scholar] [CrossRef] [Green Version]
- Shi, C.; Li, Y.; Zhang, J.; Sun, Y.; Philip, S.Y. A survey of heterogeneous information network analysis. IEEE Trans. Knowl. Data Eng. 2017, 29, 17–37. [Google Scholar] [CrossRef]
- Myers, S.A.; Zhu, C.; Leskovec, J. Information diffusion and external influence in networks. In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Beijing, China, 12–16 August 2012; pp. 33–41. [Google Scholar]
- Krijestorac, H.; Garg, R.; Mahajan, V.; Ter Hofstede, F. Cross-Platform Spillover Effects in Consumption of Viral Content: A Quasi-Experimental Analysis Using Synthetic Controls. SSRN 2017. [Google Scholar] [CrossRef]
- Christodoulou, G.; Georgiou, C.; Pallis, G. The role of Twitter in Youtube videos diffusion. In Proceedings of the International Conference on Web Information Systems Engineering, Paphos, Cyprus, 28–30 November 2012; pp. 426–439. [Google Scholar]
- Wang, J.; Jiang, C.; Guan, S.; Xu, L.; Ren, Y. Big Data Driven Similarity Based U-Model for Online Social Networks. In Proceedings of the IEEE Global Communications Conference, Singapore, 4–8 December 2017; pp. 1–6. [Google Scholar]
- Tumasjan, A.; Sprenger, T.O.; Sandner, P.G.; Welpe, I.M. Predicting Elections with Twitter: What 140 characters Reveal About Political Sentiment. In Proceedings of the Fourth International AAAI Conference on Weblogs and Social Media, Washington, DC, USA, 23–26 May 2010. [Google Scholar]
- Asur, S.; Huberman, B.A. Predicting the future with social media. In Proceedings of the IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, IEEE Computer Society, Toronto, ON, Canada, 31 August–3 September 2010; pp. 492–499. [Google Scholar]
- Gruhl, D.; Guha, R.; Kumar, R.; Novak, J.; Tomkins, A. The predictive power of online chatter. In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery in Data Mining, Chicago, IL, USA, 21–24 August 2005; pp. 78–87. [Google Scholar]
- Bollen, J.; Mao, H.; Zeng, X. Twitter mood predicts the stock market. J. Comput. Sci. 2011, 2, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Kupavskii, A.; Ostroumova, L.; Umnov, A.; Usachev, S.; Serdyukov, P.; Gusev, G.; Kustarev, A. Prediction of retweet cascade size over time. In Proceedings of the ACM International Conference on Information and Knowledge Management, Maui, HI, USA, 29 October–2 November 2012; pp. 2335–2338. [Google Scholar]
- Pourebrahim, N.; Sultana, S.; Thill, J.C.; Mohanty, S. Enhancing Trip Distribution Prediction with Twitter Data: Comparison of Neural Network and Gravity Models. In Proceedings of the ACM SIGSPATIAL International Workshop on AI for Geographic Knowledge Discovery, Seattle, WA, USA, 6 November 2018; pp. 5–8. [Google Scholar]
- Hakim, M.A.N.; Khodra, M.L. Predicting information cascade on Twitter using support vector regression. In Proceedings of the IEEE International Conference on Data and Software Engineering (ICODSE), Bandung, Indonesia, 26–27 November 2014; pp. 1–6. [Google Scholar]
- Cheng-yu, T.L.; Poo, M.m.; Dan, Y. Burst spiking of a single cortical neuron modifies global brain state. Science 2009, 324, 643–646. [Google Scholar]
- Myers, S.A.; Leskovec, J. The bursty dynamics of the Twitter information network. In Proceedings of the International Conference on World Wide Web, Seoul, Korea, 7–11 April 2014; pp. 913–924. [Google Scholar]
- Ahmed, M.; Spagna, S.; Huici, F.; Niccolini, S. A peek into the future: Predicting the evolution of popularity in user generated content. In Proceedings of the ACM International Conference on Web Search and Data Mining, Rome, Italy, 4–8 February 2013; pp. 607–616. [Google Scholar]
- Bauckhage, C.; Kersting, K.; Hadiji, F. Mathematical models of fads explain the temporal dynamics of internet memes. In Proceedings of the International AAAI Conference on Weblogs and Social Media, Cambridge, MA, USA, 8–11 July 2013. [Google Scholar]
- Matsubara, Y.; Sakurai, Y.; Prakash, B.A.; Li, L.; Faloutsos, C. Rise and fall patterns of information diffusion: Model and implications. In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Beijing, China, 12–16 August 2012; pp. 6–14. [Google Scholar]
- Yang, J.; Leskovec, J. Modeling information diffusion in implicit networks. In Proceedings of the IEEE International Conference on Data Mining, Sydney, Australia, 13 December 2010; pp. 599–608. [Google Scholar]
- Cheng, J.; Adamic, L.A.; Kleinberg, J.M.; Leskovec, J. Do cascades recur? In Proceedings of the International Conference on World Wide Web, Montreal, QC, Canada, 11–15 April 2016; pp. 671–681. [Google Scholar]
- Kwon, S.; Cha, M.; Jung, K.; Chen, W.; Wang, Y. Prominent features of rumor propagation in online social media. In Proceedings of the IEEE International Conference on Data Mining, Dallas, TX, USA, 7–10 December 2013; pp. 1103–1108. [Google Scholar]
- Xu, J.; Livshits, B. The anatomy of a cryptocurrency pump-and-dump scheme. In Proceedings of the USENIX Security Symposium, Santa Clara, CA, USA, 14–16 August 2019; pp. 1609–1625. [Google Scholar]
- Kleinberg, J. Bursty and hierarchical structure in streams. Data Min. Knowl. Discov. 2003, 7, 373–397. [Google Scholar] [CrossRef]
- Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A Simple Way to Prevent Neural Networks from Overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958. [Google Scholar]
- Schiappa, M.; Chantry, G.; Garibay, I. Cyber Security in a Complex Community: A Social Media Analysis on Common Vulnerabilities and Exposures. In Proceedings of the 6th Int Conference on Social Network Analysis, Management and Security (SNAMS 2019), Granada, Spain, 22–25 October 2019. [Google Scholar]
GitHub | ||||||
---|---|---|---|---|---|---|
Actors | Events | Actors | Events | Actors | Events | |
Mean | 223.7 | 487.52 | 199.05 | 261.55 | 14.5 | 19 |
Median | 162.5 | 339 | 195 | 270 | 11 | 14.5 |
Std | 224.36 | 507.24 | 134.58 | 187.79 | 9.7 | 12.15 |
() | (2, 0.50) | (2, 0.75) | (3, 0.50) | (3, 0.75) | ||||
---|---|---|---|---|---|---|---|---|
Model | Mean | Std | Mean | Std | Mean | Std | Mean | Std |
a_LSTM | 0.09 | 0.20 | 0.11 | 0.22 | 0.08 | 0.20 | 0.09 | 0.21 |
MCM | 0.36 | 0.25 | 0.29 | 0.18 | 0.37 | 0.21 | 0.39 | 0.28 |
Model | Optimizer | Activation Function | |||
---|---|---|---|---|---|
Linear | Softmax | ||||
Mean | Std | Mean | Std | ||
a_LSTM | adam | 0.010 | 0.018 | 0.015 | 0.032 |
rmsprop | 0.021 | 0.41 | 0.010 | 0.016 | |
LSTM | adam | 0.022 | 0.28 | 0.025 | 0.041 |
rmsprop | 0.030 | 0.41 | 0.20 | 0.021 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hajiakhoond Bidoki, N.; Mantzaris, A.V.; Sukthankar, G. An LSTM Model for Predicting Cross-Platform Bursts of Social Media Activity. Information 2019, 10, 394. https://doi.org/10.3390/info10120394
Hajiakhoond Bidoki N, Mantzaris AV, Sukthankar G. An LSTM Model for Predicting Cross-Platform Bursts of Social Media Activity. Information. 2019; 10(12):394. https://doi.org/10.3390/info10120394
Chicago/Turabian StyleHajiakhoond Bidoki, Neda, Alexander V. Mantzaris, and Gita Sukthankar. 2019. "An LSTM Model for Predicting Cross-Platform Bursts of Social Media Activity" Information 10, no. 12: 394. https://doi.org/10.3390/info10120394
APA StyleHajiakhoond Bidoki, N., Mantzaris, A. V., & Sukthankar, G. (2019). An LSTM Model for Predicting Cross-Platform Bursts of Social Media Activity. Information, 10(12), 394. https://doi.org/10.3390/info10120394