Document Recommendations and Feedback Collection Analysis within the Slovenian Open-Access Infrastructure
Abstract
1. Introduction
2. Related Work
3. Overview of the Slovenian Open Access Infrastructure
4. Document Recommendations
4.1. Processing Documents in Slovenian
4.2. Document Ranking
4.3. Hybrid Approach to Recommendation
5. Feedback Collection Analysis
- A—January; the first week of the year (consequence of New Year),
- B—February; weeks 7 and 8, around February 8th (national holiday “Prešeren Day”),
- C—April and May; week 18 and 19, starting around April 27th (national holiday “Day of uprising against occupation”) and ending around May 1st (national holiday “International Workers’ Day”),
- D—June, July and August; weeks 26 to 36, summer holiday season,
- E—October, November; weeks 44 and 45, around October 31st (national holiday “Reformation Day”) and November 1st (national holiday “All Saint’s Day”),
- F—December; weeks 50 to 53, around December 25th (national holiday “Christmas”), 26th (national holiday “Independence and Unity Day”) and December 31st (national holiday “New Year’s Eve”).
- X—weeks 9 and 17 (from February to April),
- Y—weeks 20 to 25 (from May to June),
- Z—weeks 37 to 43 (from August to October).
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Elsafty, A.; Riedl, M.; Biemann, C. Document-based Recommender System for Job Postings using Dense Representations. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, New Orleans, LA, USA, 1–6 June 2018; Volume 3, pp. 216–224. [Google Scholar] [CrossRef]
- del Campo, J.V.; Pegueroles, J.; Hernández-Serrano, J.; Soriano, M. DocCloud: A document recommender system on cloud computing with plausible deniability. Inf. Sci. 2014, 258, 387–402. [Google Scholar] [CrossRef]
- Cantador, I.; Bellogín, A.; Castells, P. News@hand: A Semantic Web Approach to Recommending News. In International Conference on Adaptive Hypermedia and Adaptive Web-Based Systems, Proceedings of the AH 2008: Adaptive Hypermedia and Adaptive Web-Based Systems, Hannover, Germany, 29 July–1 August 2008; Nejdl, W., Kay, J., Pu, P., Herder, E., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 279–283. [Google Scholar]
- Karimi, M.; Jannach, D.; Jugovac, M. News recommender systems—Survey and roads ahead. Inf. Process. Manag. 2018, 54, 1203–1227. [Google Scholar] [CrossRef]
- Borges, H.L.; Lorena, A.C. A Survey on Recommender Systems for News Data. In Smart Information and Knowledge Management: Advances, Challenges, and Critical Issues; Szczerbicki, E., Nguyen, N.T., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 129–151. [Google Scholar] [CrossRef]
- Adnan, M.N.M.; Chowdury, M.R.; Taz, I.; Ahmed, T.; Rahman, R.M. Content based news recommendation system based on fuzzy logic. In Proceedings of the 2014 International Conference on Informatics, Electronics Vision (ICIEV), Dhaka, Bangladesh, 23–24 May 2014; pp. 1–6. [Google Scholar]
- Ardissono, L.; Petrone, G.; Vigliaturo, F. News Recommender Based on Rich Feedback. In International Conference on User Modeling, Adaptation, and Personalization, Proceedings of the UMAP 2015: User Modeling, Adaptation and Personalization, Dublin, Ireland, 29 June–3 July 2015; Ricci, F., Bontcheva, K., Conlan, O., Lawless, S., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 331–336. [Google Scholar]
- Bogers, T.; van den Bosch, A. Comparing and Evaluating Information Retrieval Algorithms for News Recommendation. In Proceedings of the 2007 ACM Conference on Recommender Systems (RecSys ’07), Minneapolis, MN, USA, 19–20 October 2007; pp. 141–144. [Google Scholar] [CrossRef]
- Capelle, M.; Hogenboom, F.; Hogenboom, A.; Frasincar, F. Semantic News Recommendation Using Wordnet and Bing Similarities. In Proceedings of the 28th Annual ACM Symposium on Applied Computing (SAC ’13), Coimbra, Portugal, 18–22 March 2013; Association for Computing Machinery: New York, NY, USA, 2013; pp. 296–302. [Google Scholar] [CrossRef]
- Capelle, M.; Moerland, M.; Hogenboom, F.; Frasincar, F.; Vandic, D. Bing-SF-IDF+: A Hybrid Semantics-Driven News Recommender. In Proceedings of the 30th Annual ACM Symposium on Applied Computing (SAC ’15), Salamanca, Spain, 13–17 April 2017; pp. 732–739. [Google Scholar] [CrossRef]
- Beel, J.; Gipp, B.; Langer, S.; Breitinger, C. Research-paper recommender systems: A literature survey. Int. J. Digit. Libr. 2016, 17, 305–338. [Google Scholar] [CrossRef]
- Jomsri, P.; Sanguansintukul, S.; Choochaiwattana, W. A Framework for Tag-Based Research Paper Recommender System: An IR Approach. In Proceedings of the 2010 IEEE 24th International Conference on Advanced Information Networking and Applications Workshops, Perth, WA, Australia, 20–23 April 2010; pp. 103–108. [Google Scholar]
- Choochaiwattana, W. Usage of tagging for research paper recommendation. In Proceedings of the 2010 3rd International Conference on Advanced Computer Theory and Engineering (ICACTE), Chengdu, China, 20–22 August 2010; Volume 2, pp. V2-439–V2-442. [Google Scholar]
- Winoto, P.; Tang, T.; McCalla, G. Contexts in a Paper Recommendation System with Collaborative Filtering. Int. Rev. Res. Open Distance Learn. 2012, 13, 56–75. [Google Scholar] [CrossRef][Green Version]
- Beel, J.; Langer, S. A Comparison of Offline Evaluations, Online Evaluations, and User Studies in the Context of Research-Paper Recommender Systems. In International Conference on Theory and Practice of Digital Libraries, Proceedings of the TPDL 2015: Research and Advanced Technology for Digital Libraries, Poznan, Poland, 14–18 September 2015; Kapidakis, S., Mazurek, C., Werla, M., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 153–168. [Google Scholar]
- Ferrara, F.; Pudota, N.; Tasso, C. A Keyphrase-Based Paper Recommender System. In Digital Libraries and Archives; Agosti, M., Esposito, F., Meghini, C., Orio, N., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 14–25. [Google Scholar]
- Bogers, T.; van den Bosch, A. Recommending Scientific Articles Using Citeulike. In Proceedings of the 2008 ACM Conference on Recommender Systems (RecSys ’08), Lausanne, Switzerland, 23–25 October 2008; pp. 287–290. [Google Scholar] [CrossRef]
- Porcel, C.; Moreno, J.; Herrera-Viedma, E. A multi-disciplinar recommender system to advice research resources in University Digital Libraries. Expert Syst. Appl. 2009, 36, 12520–12528. [Google Scholar] [CrossRef]
- Beel, J.; Aizawa, A.; Breitinger, C.; Gipp, B. Mr. DLib: Recommendations-as-a-Service (RaaS) for Academia. In Proceedings of the 2017 ACM/IEEE Joint Conference on Digital Libraries (JCDL), Toronto, ON, Canada, 19–23 June 2017; pp. 1–2. [Google Scholar] [CrossRef]
- Feyer, S.; Siebert, S.; Gipp, B.; Aizawa, A.; Beel, J. Integration of the Scientific Recommender System Mr. DLib into the Reference Manager JabRef. In European Conference on Information Retrieval, Proceedings of the ECIR 2017: Advances in Information Retrieval, Aberdeen, UK, 8–13 April 2017; Springer: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- Knoth, P.; Anastasiou, L.; Charalampous, A.; Cancellieri, M.; Pearce, S.; Pontika, N.; Bayer, V. Towards effective research recommender systems for repositories. arXiv 2017, arXiv:1705.00578. [Google Scholar]
- Vargas, S.; Hristakeva, M.; Jack, K. Mendeley: Recommendations for Researchers. In Proceedings of the 10th ACM Conference on Recommender Systems (RecSys ’16), Boston, MA, USA, 15–19 September 2016; p. 365. [Google Scholar]
- Beel, J.; Dinesh, S. Real-World Recommender Systems for Academia: The Pain and Gain in Building, Operating, and Researching them [Long Version]. arXiv 2017, arXiv:1704.00156. [Google Scholar]
- Ojsteršek, M.; Brezovnik, J.; Kotar, M.; Ferme, M.; Hrovat, G.; Bregant, A.; Borovič, M. Establishing of a Slovenian open access infrastructure: A technical point of view. Program 2014, 48, 394–412. [Google Scholar] [CrossRef]
- OpenScience Slovenia Dataset. Available online: http://www.openscience.si/OpenData.aspx (accessed on 23 October 2020).
- Erjavec, T.; Fišer, D.; Ljubešić, N.; Arhar Holdt, Š.; Bren, U.; Robnik Šikonja, M.; Udovič, B. Terminology Identification Dataset KAS-Term 1.0. Available online: https://www.clarin.si/repository/xmlui/handle/11356/1198 (accessed on 23 October 2020).
- Erjavec, T.; Fišer, D.; Ljubešić, N.; Bitenc, M. Bilingual Terminology Extraction Dataset KAS-Biterm 1.0. Available online: https://www.clarin.si/repository/xmlui/handle/11356/1199 (accessed on 23 October 2020).
- OpenScience Slovenia. Available online: https://www.openscience.si/ (accessed on 23 October 2020).
- Digital Library of University of Maribor-DLUM. Available online: https://dk.um.si/info/index.php/eng (accessed on 23 October 2020).
- Repository of the University of Ljubljana-RUL. Available online: https://repozitorij.uni-lj.si/info/index.php/eng (accessed on 23 October 2020).
- Repository of the University of Primorska-RUP. Available online: https://repozitorij.upr/info/index.php/eng (accessed on 23 October 2020).
- Repository of the University of Nova Gorica-RUNG. Available online: https://repozitorij.ung.si/info/index.php/eng (accessed on 23 October 2020).
- Digital repository of Slovenian Research Organizations. Available online: https://dirros.openscience.si/info/index.php/eng (accessed on 23 October 2020).
- Repository of Colleges and Higher Education Institutions-ReVIS. Available online: https://revis.openscience.si/info/index.php/eng (accessed on 23 October 2020).
- Videolectures.net. Available online: https://videolectures.net (accessed on 23 October 2020).
- Social Science Data Archives. Available online: https://www.adp.fdv.uni-lj.si/eng/ (accessed on 23 October 2020).
- Digital Library of Slovenia. Available online: http://dlib.si/?=&language=eng (accessed on 23 October 2020).
- NUK Web Archive. Available online: http://arhiv.nuk.uni-lj.si (accessed on 23 October 2020).
- Ministry of Defence Library and Information System. Available online: https://dk.mors.si/info/index.php/en (accessed on 23 October 2020).
- Jakubíček, M.; Fiser, D.; Suchomel, V. Terminology Extraction for Academic Slovene Using Sketch Engine. In Proceedings of the Tenth Workshop on Recent Advances in Slavonic Natural Language Processing, Karlova Studanka, Czech Republic, 2–4 December 2016; Volume 10. [Google Scholar]
- Ljubešić, N.; Fiser, D.; Erjavec, T. KAS-term: Extracting Slovene Terms from Doctoral Theses via Supervised Machine Learning. In International Conference on Text, Speech, and Dialogue, Proceedings of the TSD 2019: Text, Speech, and Dialogue, Ljubljana, Slovenia, 11–13 September 2019; Springer: Cham, Switzerland, 2019; pp. 115–126. [Google Scholar] [CrossRef]
- Adomavicius, G.; Tuzhilin, A. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Trans. Knowl. Data Eng. 2005, 17, 734–749. [Google Scholar] [CrossRef]
- Bobadilla, J.; Ortega, F.; Hernando, A.; Gutiérrez, A. Recommender systems survey. Knowl.-Based Syst. 2013, 46, 109–132. [Google Scholar] [CrossRef]
- Burke, R. Hybrid Recommender Systems: Survey and Experiments. User Model. User-Adapt. Interact. 2002, 12, 331–370. [Google Scholar] [CrossRef]
- Burke, R. Hybrid Web Recommender Systems. In The Adaptive Web: Methods and Strategies of Web Personalization; Brusilovsky, P., Kobsa, A., Nejdl, W., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 377–408. [Google Scholar] [CrossRef]
- Robertson, S.; Zaragoza, H. The Probabilistic Relevance Framework: BM25 and beyond. Found. Trends Inf. Retr. 2009, 3, 333–389. [Google Scholar] [CrossRef]
- Jones, K.; Walker, S.; Robertson, S. A probabilistic model of information retrieval: Development and comparative experiments: Part 2. Inf. Process. Manag. 2000, 36, 809–840. [Google Scholar] [CrossRef]
- Géry, M.; Largeron, C. BM25t: A BM25 extension for focused information retrieval. Knowl. Inf. Syst. 2012, 32, 217–241. [Google Scholar] [CrossRef]
- Trotman, A.; Puurula, A.; Burgess, B. Improvements to BM25 and Language Models Examined. In Proceedings of the 2014 Australasian Document Computing Symposium (ADCS ’14), Melbourne, VIC, Australia, 27–28 November 2014; ACM: New York, NY, USA, 2014; pp. 58–65. [Google Scholar] [CrossRef]
- Manning, C.D.; Raghavan, P.; Schütze, H. Introduction to Information Retrieval; Cambridge University Press: New York, NY, USA, 2008. [Google Scholar]
- Bollegala, D.; Noman, N.; Iba, H. RankDE: Learning a Ranking Function for Information Retrieval Using Differential Evolution. In Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation (GECCO ’11), Dublin, Ireland, 12–16 July 2011; pp. 1771–1778. [Google Scholar] [CrossRef]
- Nguyen, K.; Shin, B.-J.; Yoo, S.J. Hot topic detection and technology trend tracking for patents utilizing term frequency and proportional document frequency and semantic information. In Proceedings of the 2016 International Conference on Big Data and Smart Computing (BigComp), Hong Kong, China, 18–20 January 2016; pp. 223–230. [Google Scholar]
- Beel, J.; Langer, S.; Gipp, B. TF-IDuF: A Novel Term-Weighting Scheme for User Modeling based on Users’ Personal Document Collections. In Proceedings of the iConference 2017, Wuhan, China, 22–25 March 2017. [Google Scholar] [CrossRef]
- COBISS/IZUM, Typology of Documents/Works for Bibliography Management in COBISS. 2016. Available online: https://home.izum.si/COBISS/bibliografije/Tipologija_eng.pdf (accessed on 23 October 2020).
- Jaro, M.A. Advances in Record-Linkage Methodology as Applied to Matching the 1985 Census of Tampa, Florida. J. Am. Stat. Assoc. 1989, 84, 414–420. [Google Scholar] [CrossRef]
- Winkler, W. String Comparator Metrics and Enhanced Decision Rules in the Fellegi-Sunter Model of Record Linkage. Available online: https://files.eric.ed.gov/fulltext/ED325505.pdf (accessed on 23 October 2020).
- Hernández del Olmo, F.; Gaudioso, E. Evaluation of recommender systems: A new approach. Expert Syst. Appl. 2008, 35, 790–804. [Google Scholar] [CrossRef]
- Silveira, T.; Zhang, M.; Lin, X.; Liu, Y.; Ma, S. How good your recommender system is? A survey on evaluations in recommendation. Int. J. Mach. Learn. Cybern. 2019, 10, 813–831. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, L.; Li, Y.; He, D.; Liu, T.Y. A Theoretical Analysis of NDCG Type Ranking Measures. In Conference on Learning Theory; PMLR: Princeton, NJ, USA, 2013; Volume 30, pp. 25–54. [Google Scholar]
- Moffat, A.; Zobel, J. Rank-Biased Precision for Measurement of Retrieval Effectiveness. ACM Trans. Inf. Syst. 2008, 27. [Google Scholar] [CrossRef]
- Chapelle, O.; Metlzer, D.; Zhang, Y.; Grinspan, P. Expected Reciprocal Rank for Graded Relevance. In Proceedings of the 18th ACM Conference on Information and Knowledge Management (CIKM ’09), Hong Kong, China, 2–6 November 2009; Association for Computing Machinery: New York, NY, USA, 2009; pp. 621–630. [Google Scholar] [CrossRef]
- Gunawardana, A.; Shani, G. A Survey of Accuracy Evaluation Metrics of Recommendation Tasks. J. Mach. Learn. Res. 2009, 10, 2935–2962. [Google Scholar]
- Shani, G.; Gunawardana, A. Evaluating Recommendation Systems. In Recommender Systems Handbook; Springer: Boston, MA, USA, 2011; pp. 257–297. [Google Scholar] [CrossRef]
Document Typology (Notation) | Document Typology (Meaning) |
---|---|
1.01 | Original scientific article |
1.02 | Review article |
1.03 | Short scientific article |
1.04 | Professional article |
2.08 | Doctoral dissertation |
2.09 | Master’s thesis |
2.11 | Undergraduate thesis |
2.23 | Patent application |
2.24 | Patent |
2.25 | Other monographs and completed works |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borovič, M.; Ferme, M.; Brezovnik, J.; Majninger, S.; Kac, K.; Ojsteršek, M. Document Recommendations and Feedback Collection Analysis within the Slovenian Open-Access Infrastructure. Information 2020, 11, 497. https://doi.org/10.3390/info11110497
Borovič M, Ferme M, Brezovnik J, Majninger S, Kac K, Ojsteršek M. Document Recommendations and Feedback Collection Analysis within the Slovenian Open-Access Infrastructure. Information. 2020; 11(11):497. https://doi.org/10.3390/info11110497
Chicago/Turabian StyleBorovič, Mladen, Marko Ferme, Janez Brezovnik, Sandi Majninger, Klemen Kac, and Milan Ojsteršek. 2020. "Document Recommendations and Feedback Collection Analysis within the Slovenian Open-Access Infrastructure" Information 11, no. 11: 497. https://doi.org/10.3390/info11110497
APA StyleBorovič, M., Ferme, M., Brezovnik, J., Majninger, S., Kac, K., & Ojsteršek, M. (2020). Document Recommendations and Feedback Collection Analysis within the Slovenian Open-Access Infrastructure. Information, 11(11), 497. https://doi.org/10.3390/info11110497