Road Traffic Prediction Model Using Extreme Learning Machine: The Case Study of Tangier, Morocco
Abstract
:1. Introduction
- What are the necessary features for road traffic prediction?
- How can we build a dataset based on fixed sensing data?
- How can we process our dataset using machine learning algorithms?
- How can we improve the predictability of our model?
2. Methodology and the Proposed Approach
2.1. Data Collection
2.2. Data Preprocessing
- Feature 1: Day of the week (Monday, Tuesday, Wednesday…)
- Feature 2: Type of holiday (national, religious or other)
- Feature 3: Part of the day (morning or evening)
- Feature 4: Schooling/vacation/public holiday
- Feature 5: Last hourly traffic (hour-1)
- Feature 6: Observation of the previous day the same hour (day-1)
- Feature 7: Last Week observation for same day and same hour (week-1)
- Feature 8: Last month observation for same day and same hour(month-1)
- Feature 9: Hour observation (traffic flow all type of vehicles)
- Feature 10 (*): Time slot (7 periods)
2.3. Methods
2.3.1. Extreme Learning Machine
2.3.2. Ensemble Based Systems in Decision Making
2.3.3. Autoregressive Integrated Moving Average (ARIMA)
2.3.4. Support Vector Regression
2.3.5. Multi-Layer Perceptron
3. Data Processing and Experimental Results
3.1. Evaluation Metrics
3.2. Proposed Framework and Prediction Evaluation of ELM Model
3.3. Model Evaluation and Comparison to Other Methods
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nagy, A.M.; Simon, V. Survey on traffic prediction in smart cities. Pervasive Mob. Comput. 2018, 50, 148–163. [Google Scholar] [CrossRef]
- Luo, D.; Chen, K. A Comparative Study of Statistical Ensemble Methods on Mismatch Conditions. In Proceedings of the 2002 International Joint Conference on Neural Networks, IJCNN’02 (Cat. No.02CH37290), Honolulu, HI, USA, 12–17 May 2002; Volume 1, pp. 59–64. [Google Scholar] [CrossRef]
- Jain, V.K.; Kumar, A.; Poonia, P. Short Term Traffic Flow Prediction Methodologies: A Review. Mody Univ. Int. J. Comput. Eng. Res. 2018, 2, 37–39. [Google Scholar]
- Tahifa, M.; Boumhidi, J.; Yahyaouy, A. Multi-agent reinforcement learning-based approach for controlling signals through adaptation. Int. J. Auton. Adapt. Commun. Syst. 2018, 11, 129. [Google Scholar] [CrossRef]
- D’Angelo, G.; Pilla, R.; Dean, J.B.; Rampone, S. Toward a soft computing-based correlation between oxygen toxicity seizures and hyperoxic hyperpnea. Soft Comput. 2018, 22, 2421–2427. [Google Scholar] [CrossRef]
- D’Angelo, G.; Pilla, R.; Tascini, C.; Rampone, S. A proposal for distinguishing between bacterial and viral meningitis using genetic programming and decision trees. Soft Comput. 2019, 23, 11775–11791. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Y. Comparison of parametric and nonparametric techniques for non-peak traffic forecasting. World Acad. Sci. Eng. Technol. 2009, 39, 242–248. [Google Scholar]
- Kumar, S.V.; Vanajakshi, L. Short-term traffic flow prediction using seasonal ARIMA model with limited input data. Eur. Transp. Res. Rev. 2015, 7, 21. [Google Scholar] [CrossRef] [Green Version]
- Williams, B.M.; Hoel, L.A. Modeling and Forecasting Vehicular Traffic Flow as a Seasonal ARIMA Process: Theoretical Basis and Empirical Results. J. Transp. Eng. 2003, 129, 664–672. [Google Scholar] [CrossRef] [Green Version]
- Moeeni, H.; Bonakdari, H. Impact of Normalization and Input on ARMAX-ANN Model Performance in Suspended Sediment Load Prediction. Water Resour. Manag. 2018, 32, 845–863. [Google Scholar] [CrossRef]
- Moeeni, H.; Bonakdari, H. Forecasting monthly inflow with extreme seasonal variation using the hybrid SARIMA-ANN model. Stoch. Environ. Res. Risk Assess. 2017, 31, 1997–2010. [Google Scholar] [CrossRef]
- Awad, M.; Khanna, R.; Awad, M.; Khanna, R. Support Vector Regression. In Efficient Learning Machines; Apress: Berkeley, CA, USA, 2015; pp. 67–80. [Google Scholar]
- Çetiner, B.G.; Sari, M.; Borat, O. A Neural Network Based Traffic-Flow Prediction Model. Math. Comput. Appl. 2010, 15, 269–278. [Google Scholar] [CrossRef]
- Yang, H.-F.; Dillon, T.; Chang, E.; Chen, Y.-P.P. Optimized Configuration of Exponential Smoothing and Extreme Learning Machine for Traffic Flow Forecasting. IEEE Trans. Ind. Inform. 2019, 15, 23–34. [Google Scholar] [CrossRef]
- Chiang, N.-V.; Tam, L.-M.; Lai, K.-H.; Wong, K.-I.; Tou, W.-M.S. Floating Car Data-Based Real-Time Road Traffic Prediction System and Its Application in Macau Grand Prix Event. In Intelligent Transport Systems for Everyone’s Mobility; Springer: Singapore, 2019; pp. 377–392. [Google Scholar]
- Xing, Y.; Ban, X.; Liu, X.; Shen, Q. Large-scale traffic congestion prediction based on the symmetric extreme learning machine cluster fast learning method. Symmetry 2019, 11, 730. [Google Scholar] [CrossRef] [Green Version]
- Ma, Z.; Luo, G.; Huang, D. Short Term Traffic Flow Prediction Based on on-Line Sequential Extreme Learning Machine. In Proceedings of the 2016 8th International Conference on Advanced Computational Intelligence (ICACI), Chiang Mai, Thailand, 14–16 February 2016; Volume 2, pp. 143–149. [Google Scholar] [CrossRef]
- Feng, W.; Chen, H.; Zhang, Z. Short-Term Traffic Flow Prediction Based on Wavelet Function and Extreme Learning Machine. In Proceedings of the IEEE International Conference on Software Engineering and Service Science (ICSESS), Beijing, China, 23–25 November 2018; pp. 531–535. [Google Scholar] [CrossRef]
- Li, R.; Lu, H. Combined Neural Network Approach for Short-Term Urban Freeway Traffic Flow Prediction. In International Symposium on Neural Networks; Springer: Berlin/Heidelberg, Germany, 2009; pp. 1017–1025. [Google Scholar]
- Zheng, W.; Lee, D.-H.; Shi, Q. Short-Term Freeway Traffic Flow Prediction: Bayesian Combined Neural Network Approach. J. Transp. Eng. 2006, 132, 114–121. [Google Scholar] [CrossRef] [Green Version]
- Polson, N.G.; Sokolov, V.O. Deep learning for short-term traffic flow prediction. Transp. Res. Part C Emerg. Technol. 2017, 79, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Jiber, M.; Lamouik, I.; Ali, Y.; Sabri, M.A. Traffic Flow Prediction Using Neural Network. In Proceedings of the 2018 International Conference on Intelligent Systems and Computer Vision (ISCV), Fez, Morocco, 2–4 April 2018; pp. 1–4. [Google Scholar]
- Zeynoddin, M.; Bonakdari, H.; Azari, A.; Ebtehaj, I.; Gharabaghi, B.; Madavar, H.R. Novel hybrid linear stochastic with non-linear extreme learning machine methods for forecasting monthly rainfall a tropical climate. J. Environ. Manag. 2018, 222, 190–206. [Google Scholar] [CrossRef] [PubMed]
- Huang, G.-B.; Zhu, Q.-Y.; Siew, C.-K. Extreme learning machine: Theory and applications. Neurocomputing 2006, 70, 489–501. [Google Scholar] [CrossRef]
- Poornima, S.; Pushpalatha, M. Predictive Analytics Using Extreme Learning Machine. 2018, pp. 1959–1966. Available online: http://www.jardcs.org/backissues/abstract.php?archiveid=5886 (accessed on 27 June 2020).
- Klein, L.A.; Mills, M.K.; Gibson, D.; Klein, L.A. Traffic Detector Handbook: Volume II, 3rd ed.; Federal Highway Administration: Washington, DC, USA, 2006. Available online: https://rosap.ntl.bts.gov/view/dot/936 (accessed on 27 June 2020).
- Wei, Y.; Huang, H.; Chen, B.; Zheng, B.; Wang, Y. Application of Extreme Learning Machine for Predicting Chlorophyll-a Concentration Inartificial Upwelling Processes. Math. Probl. Eng. 2019, 2019, 8719387. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Q.-Y.; Qin, A.; Suganthan, P.; Huang, G.-B. Evolutionary extreme learning machine. Pattern Recognit. 2005, 38, 1759–1763. [Google Scholar] [CrossRef]
- Polikar, R. Ensemble based systems in decision making. IEEE Circuits Syst. Mag. 2006, 6, 21–45. [Google Scholar] [CrossRef]
- Hsu, C.-W.; Lin, C.-J. A comparison of methods for multiclass support vector machines. IEEE Trans. Neural Netw. 2002, 13, 415–425. [Google Scholar] [CrossRef] [Green Version]
- Cao, J.; Lin, Z. Extreme Learning Machines on High Dimensional and Large Data Applications: A Survey. Math. Probl. Eng. 2015, 2015, 103796. [Google Scholar] [CrossRef]
- Zeynoddin, M.; Bonakdari, H.; Gharabaghi, B.; Esmaeilbeiki, F.; Gharabaghi, B.; Zarehaghi, D. A reliable linear stochastic daily soil temperature forecast model. Soil Tillage Res. 2019, 189, 73–87. [Google Scholar] [CrossRef]
- Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control. 1974, 19, 716–723. [Google Scholar] [CrossRef]
Date | Hour | Lane 1 | Class 1 | Class 2 | Class 3 | Class 4 | Lane 2 | Class 1 | Class 2 | Class 3 | Class 4 |
---|---|---|---|---|---|---|---|---|---|---|---|
01/01/16 | 22:00 | 181 | 85 | 45 | 34 | 17 | 202 | 46 | 63 | 52 | 41 |
01/01/16 | 23:00 | 389 | 182 | 152 | 42 | 13 | 136 | 46 | 41 | 25 | 24 |
02/01/16 | 00:00 | 418 | 156 | 124 | 87 | 51 | 118 | 42 | 45 | 19 | 12 |
02/01/16 | 01:00 | 438 | 205 | 140 | 52 | 41 | 134 | 52 | 43 | 24 | 15 |
Class | 1 | 2 | 3 | 4 |
---|---|---|---|---|
Length (m) | L < 5.2 | 5.2 < L < 6.5 | 6.5 < L < 10.5 | 10.5 < L |
Models | Time Execution | AIC | RMSE | MAE | MAPE (%) |
---|---|---|---|---|---|
ELM | 00:01.8203 | −171,407.88 | 0.028779 | 0.019666 | 0.143785 |
EBDM | 01:27.9093 | −172066.57 | 0.027479 | 0.018949 | 0.137309 |
ARIMA | 01:00.9850 | −151,855.69 | 0.034037 | 0.024927 | 0.205192 |
SVR | 00:02.1546 | −154,447.35 | 0.189162 | 0.152838 | 1.886379 |
ANN | 00:06.1078 | −163,396.78 | 0.184928 | 0.149072 | 1.842000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiber, M.; Mbarek, A.; Yahyaouy, A.; Sabri, M.A.; Boumhidi, J. Road Traffic Prediction Model Using Extreme Learning Machine: The Case Study of Tangier, Morocco. Information 2020, 11, 542. https://doi.org/10.3390/info11120542
Jiber M, Mbarek A, Yahyaouy A, Sabri MA, Boumhidi J. Road Traffic Prediction Model Using Extreme Learning Machine: The Case Study of Tangier, Morocco. Information. 2020; 11(12):542. https://doi.org/10.3390/info11120542
Chicago/Turabian StyleJiber, Mouna, Abdelilah Mbarek, Ali Yahyaouy, My Abdelouahed Sabri, and Jaouad Boumhidi. 2020. "Road Traffic Prediction Model Using Extreme Learning Machine: The Case Study of Tangier, Morocco" Information 11, no. 12: 542. https://doi.org/10.3390/info11120542
APA StyleJiber, M., Mbarek, A., Yahyaouy, A., Sabri, M. A., & Boumhidi, J. (2020). Road Traffic Prediction Model Using Extreme Learning Machine: The Case Study of Tangier, Morocco. Information, 11(12), 542. https://doi.org/10.3390/info11120542