Requirements for Robotic Interpretation of Social Signals “in the Wild”: Insights from Diagnostic Criteria of Autism Spectrum Disorder
Abstract
:1. Introduction
1.1. Recognising Human Internal States from Observable Kinematics in Social Robotics
1.2. Diagnosing Autism Spectrum Disorder
2. Observable Behavioural Cues
3. Automatic Quantification of Behaviour
3.1. Gaze Behaviour
3.1.1. Intention Recognition in Social Robotics
3.1.2. Requirements for ASD Diagnosis
3.2. Speech Behaviour
3.2.1. Intention Recognition in Social Robotics
3.2.2. Requirements for ASD Diagnosis
3.3. Posture and Gesture Behaviour
3.3.1. Intention Recognition in Social Robotics
3.3.2. Requirements for ASD Diagnosis
3.4. Object and Sound Detection
3.5. Facial Expressions
3.5.1. Intention Recognition in Social Robotics
3.5.2. Requirements for ASD Diagnosis
4. Discussion and Conclusions
4.1. Limitations of Current Technology
4.2. Classes of Behavioural Modalities in ASD Diagnosis
4.3. Future Work
4.3.1. Diagnosis of ASD
4.3.2. Social Robotics
4.4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Carruthers, P.; Smith, P.K. Theories of Theories of Mind; Cambridge University Press: Cambridge, UK, 1996. [Google Scholar]
- Svensson, H.; Thill, S. Beyond bodily anticipation: internal simulations in social interaction. Cognit. Syst. Res. 2016, 40, 161–171. [Google Scholar] [CrossRef]
- Demiris, Y.; Khadhouri, B. Hierarchical attentive multiple models for execution and recognition of actions. Robot. Auton. Syst. 2006, 54, 361–369. [Google Scholar] [CrossRef] [Green Version]
- Demiris, Y. Prediction of intent in robotics and multi-agent systems. Cognit. Process. 2007, 8, 151–158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haruno, M.; Wolpert, D.M.; Kawato, M. MOSAIC Model for Sensorimotor Learning and Control. Neural Comput. 2001, 13, 2201–2220. [Google Scholar] [CrossRef]
- Metta, G.; Sandini, G.; Natale, L.; Craighero, L.; Fadiga, L. Understanding mirror neurons: A bio-robotic approach. Interact. Stud. 2006, 7, 197–232. [Google Scholar] [CrossRef] [Green Version]
- Bartlett, M.E.; Edmunds, C.E.R.; Belpaeme, T.; Thill, S.; Lemaignan, S. What Can You See? Identifying Cues on Internal States From the Movements of Natural Social Interactions. Front. Robot. AI 2019, 6, 49. [Google Scholar] [CrossRef] [Green Version]
- Bradwell, H.L.; Edwards, K.J.; Winnington, R.; Thill, S.; Jones, R.B. Companion robots for older people: importance of user-centred design demonstrated through observations and focus groups comparing preferences of older people and roboticists in South West England. BMJ Open 2019. [Google Scholar] [CrossRef] [Green Version]
- Vollmer, A.L.; Read, R.; Trippas, D.; Belpaeme, T. Children conform, adults resist: A robot group induced peer pressure on normative social conformity. Sci. Robot. 2018. [Google Scholar] [CrossRef] [Green Version]
- Belpaeme, T.; Kennedy, J.; Ramachandran, A.; Scassellati, B.; Tanaka, F. Social robots for education: A review. Sci. Robot. 2018. [Google Scholar] [CrossRef] [Green Version]
- Cao, H.; Esteban, P.G.; Bartlett, M.; Baxter, P.; Belpaeme, T.; Billing, E.; Cai, H.; Coeckelbergh, M.; Costescu, C.; David, D.; et al. Robot-Enhanced Therapy: Development and Validation of Supervised Autonomous Robotic System for Autism Spectrum Disorders Therapy. IEEE Robot. Autom. Mag. 2019, 26, 49–58. [Google Scholar] [CrossRef]
- Dautenhahn, K.; Werry, I. Towards interactive robots in autism therapy: Background, motivation and challenges. Pragmat. Cognit. 2004, 12, 1–35. [Google Scholar] [CrossRef]
- Scassellati, B.; Admoni, H.; Matarić, M. Robots for Use in Autism Research. Annu. Rev. Biomed. Eng. 2012, 14, 275–294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders (DSM-5®); American Psychiatric Publishing: Washington, DC, USA, 2013. [Google Scholar]
- Kanner, L. Autistic disturbances of affective contact. Nerv. Child 1943, 2, 217–250. [Google Scholar]
- Kanner, L. Follow-up study of eleven autistic children originally reported in 1943. J. Autism Child. Schizophr. 1971, 1, 119–145. [Google Scholar] [CrossRef]
- Grzadzinski, R.; Huerta, M.; Lord, C. DSM-5 and autism spectrum disorders (ASDs): an opportunity for identifying ASD subtypes. Mol. Autism 2013, 4, 12. [Google Scholar] [CrossRef] [Green Version]
- Huerta, M.; Lord, C. Diagnostic Evaluation of Autism Spectrum Disorders. Pediatr. Clin. N. Am. 2012, 59, 103–111. [Google Scholar] [CrossRef] [Green Version]
- Yates, K.; Le Couteur, A. Diagnosing autism. Paediatr. Child Health 2013, 23, 5–10. [Google Scholar] [CrossRef]
- Rogers, C.L.; Goddard, L.; Hill, E.L.; Henry, L.A.; Crane, L. Experiences of diagnosing autism spectrum disorder: A survey of professionals in the United Kingdom. Autism 2016, 20, 820–831. [Google Scholar] [CrossRef]
- Le Couteur, A.; Lord, C.; Rutter, M. The Autism Diagnostic Interview-Revised (ADI-R); Western Psychological Services: Los Angeles, CA, USA, 2003. [Google Scholar]
- Schopler, E.; Reichler, R.J.; DeVellis, R.F.; Daly, K. Toward objective classification of childhood autism: Childhood Autism Rating Scale (CARS). J. Autism Dev. Disord. 1980, 10, 91–103. [Google Scholar] [CrossRef]
- Lord, C.; Risi, S.; Lambrecht, L.; Edwin, H.; Cook, J.; Leventhal, B.L.; DiLavore, P.C.; Pickles, A.; Rutter, M. The Autism Diagnostic Observation Schedule–Generic: A Standard Measure of Social and Communication Deficits Associated with the Spectrum of Autism. J. Autism Dev. Disord. 2000, 30, 205–223. [Google Scholar] [CrossRef]
- Zwaigenbaum, L.; Bryson, S.; Garon, N. Early identification of autism spectrum disorders. Behav. Brain Res. 2013, 251, 133–146. [Google Scholar] [CrossRef] [PubMed]
- Falkmer, T.; Anderson, K.; Falkmer, M.; Horlin, C. Diagnostic procedures in autism spectrum disorders: a systematic literature review. Eur. Child Adolesc. Psychiatry 2013, 22, 329–340. [Google Scholar] [CrossRef] [PubMed]
- Crane, L.; Chester, J.W.; Goddard, L.; Henry, L.A.; Hill, E. Experiences of autism diagnosis: A survey of over 1000 parents in the United Kingdom. Autism 2015, 20, 153–162. [Google Scholar] [CrossRef]
- Doi, K. Computer-aided diagnosis in medical imaging: Historical review, current status and future potential. Comput. Med Imaging Graph. 2007, 31, 198–211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, Y.; Zeng, J.; Niu, L.; Zeng, Q.; Wu, T.; Wang, C.; Zheng, R.; Zheng, H. Computer-Aided Diagnosis Based on Quantitative Elastographic Features with Supersonic Shear Wave Imaging. Ultrasound Med. Biol. 2014, 40, 275–286. [Google Scholar] [CrossRef]
- Hallgren, K.A. Computing Inter-Rater Reliability for Observational Data: An Overview and Tutorial. Tutor. Quant. Methods Psychol. 2012, 8, 23–34. [Google Scholar] [CrossRef] [Green Version]
- Zander, E.; Willfors, C.; Berggren, S.; Coco, C.; Holm, A.; Jifält, I.; Kosieradzki, R.; Linder, J.; Nordin, V.; Olafsdottir, K.; et al. The Interrater Reliability of the Autism Diagnostic Interview-Revised (ADI-R) in Clinical Settings. Psychopathol. 2017, 50, 219–227. [Google Scholar] [CrossRef]
- Zander, E.; Willfors, C.; Berggren, S.; Choque-Olsson, N.; Coco, C.; Elmund, A.; Moretti, Å.H.; Holm, A.; Jifält, I.; Kosieradzki, R.; et al. The objectivity of the Autism Diagnostic Observation Schedule (ADOS) in naturalistic clinical settings. Eur. Child Adolesc. Psychiatry 2015, 25, 769–780. [Google Scholar] [CrossRef]
- O’Brien, J.; Spencer, J.; Girges, C.; Johnston, A.; Hill, H. Impaired Perception of Facial Motion in Autism Spectrum Disorder. PLoS ONE 2014, 9, e102173. [Google Scholar] [CrossRef]
- Adolphs, R.; Sears, L.; Piven, J. Abnormal Processing of Social Information from Faces in Autism. J. Cognit. Neurosci. 2001, 13, 232–240. [Google Scholar] [CrossRef] [Green Version]
- Sacrey, L.A.R.; Armstrong, V.L.; Bryson, S.E.; Zwaigenbaum, L. Impairments to visual disengagement in autism spectrum disorder: A review of experimental studies from infancy to adulthood. Neurosci. Biobehav. Rev. 2014, 47, 559–577. [Google Scholar] [CrossRef] [PubMed]
- Scassellati, B.; Boccanfuso, L.; Huang, C.M.; Mademtzi, M.; Qin, M.; Salomons, N.; Ventola, P.; Shic, F. Improving social skills in children with ASD using a long-term, in-home social robot. Sci. Robot. 2018, 3, eaat7544. [Google Scholar] [CrossRef] [Green Version]
- Washington, P.; Wall, D.; Voss, C.; Kline, A.; Haber, N.; Daniels, J.; Fazel, A.; De, T.; Feinstein, C.; Winograd, T. SuperpowerGlass: A Wearable Aid for the At-Home Therapy of Children with Autism. Available online: https://dl.acm.org/doi/pdf/10.1145/3130977 (accessed on 31 January 2020).
- Gentry, T.; Kriner, R.; Sima, A.; McDonough, J.; Wehman, P. Reducing the Need for Personal Supports Among Workers with Autism Using an iPod Touch as an Assistive Technology: Delayed Randomized Control Trial. J. Autism Dev. Disord. 2014, 45, 669–684. [Google Scholar] [CrossRef] [PubMed]
- Tang, Z.; Guo, J.; Miao, S.; Acharya, S.; Feng, J.H. Ambient Intelligence Based Context-Aware Assistive System to Improve Independence for People with Autism Spectrum Disorder. In Proceedings of the 2016 49th Hawaii International Conference on System Sciences (HICSS), Koloa, HI, USA, 5–8 January 2016. [Google Scholar] [CrossRef]
- Nakano, Y.; Ishii, R. Estimating user’s engagement from eye-gaze behaviors in human-agent conversations. In Proceedings of the 15th international conference on Intelligent user interfaces, Hong Kong, China, 7–10 February 2010; pp. 139–148. [Google Scholar]
- Morency, L.P.; Christoudias, C.M.; Darrell, T. Recognizing gaze aversion gestures in embodied conversational discourse. In Proceedings of the 8th international conference on Multimodal interfaces, Banff, AB, Canada, 2–4 November 2006; pp. 287–294. [Google Scholar]
- Zhu, X.; Ramanan, D. Face detection, pose estimation, and landmark localization in the wild. In Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16–21 June 2012. [Google Scholar] [CrossRef]
- Jones, W.; Carr, K.; Klin, A. Absence of Preferential Looking to the Eyes of Approaching Adults Predicts Level of Social Disability in 2-Year-Old Toddlers With Autism Spectrum Disorder. Arch. Gen. Psychiatry 2008, 65, 946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klin, A.; Lin, D.J.; Gorrindo, P.; Ramsay, G.; Jones, W. Two-year-olds with autism orient to non-social contingencies rather than biological motion. Nature 2009, 459, 257–261. [Google Scholar] [CrossRef] [Green Version]
- Swanson, M.R.; Siller, M. Patterns of gaze behavior during an eye-tracking measure of joint attention in typically developing children and children with autism spectrum disorder. Res. Autism Spectr. Disord. 2013, 7, 1087–1096. [Google Scholar] [CrossRef]
- Magrelli, S.; Jermann, P.; Noris, B.; Ansermet, F.; Hentsch, F.; Nadel, J.; Billard, A. Social orienting of children with autism to facial expressions and speech: a study with a wearable eye-tracker in naturalistic settings. Front. Psychol. 2013, 4. [Google Scholar] [CrossRef] [Green Version]
- Frazier, T.W.; Klingemier, E.W.; Beukemann, M.; Speer, L.; Markowitz, L.; Parikh, S.; Wexberg, S.; Giuliano, K.; Schulte, E.; Delahunty, C.; et al. Development of an Objective Autism Risk Index Using Remote Eye Tracking. J. Am. Acad. Child Adolesc. Psychiatry 2016, 55, 301–309. [Google Scholar] [CrossRef] [Green Version]
- Noris, B.; Nadel, J.; Barker, M.; Hadjikhani, N.; Billard, A. Investigating Gaze of Children with ASD in Naturalistic Settings. PLoS ONE 2012, 7, e44144. [Google Scholar] [CrossRef] [Green Version]
- Petrushin, V.A. Emotion recognition in speech signal: experimental study, development, and application. In Proceedings of the Sixth International Conference on Spoken Language Processing, Beijing, China, 16–20 October 2000. [Google Scholar]
- Dai, K.; Fell, H.J.; MacAuslan, J. Recognizing emotion in speech using neural networks. Telehealth Assist. Technol. 2008, 31, 38. [Google Scholar]
- Li, Y.; Zhao, Y. Recognizing emotions in speech using short-term and long-term features. In Proceedings of the Fifth International Conference on Spoken Language Processing, Sydney, Australia, 30 November–4 December 1998. [Google Scholar]
- Litman, D.; Forbes, K. Recognizing emotions from student speech in tutoring dialogues. In Proceedings of the 2003 IEEE Workshop on Automatic Speech Recognition and Understanding, St Thomas, VI, USA, 30 November–4 December 2003; pp. 25–30. [Google Scholar]
- Hsiao, J.C.y.; Jih, W.r.; Hsu, J.Y.j. Recognizing continuous social engagement level in dyadic conversation by using turn-taking and speech emotion patterns. In Proceedings of the Workshops at the Twenty-Sixth AAAI Conference on Artificial Intelligence, Toronto, ON, Canada, 22–26 July 2012. [Google Scholar]
- Oller, D.K.; Niyogi, P.; Gray, S.; Richards, J.A.; Gilkerson, J.; Xu, D.; Yapanel, U.; Warren, S.F. Automated vocal analysis of naturalistic recordings from children with autism, language delay, and typical development. Proc. Natl. Acad. Sci. USA 2010, 107, 13354–13359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benzeghiba, M.; Mori, R.D.; Deroo, O.; Dupont, S.; Erbes, T.; Jouvet, D.; Fissore, L.; Laface, P.; Mertins, A.; Ris, C.; et al. Automatic speech recognition and speech variability: A review. Speech Commun. 2007, 49, 763–786. [Google Scholar] [CrossRef] [Green Version]
- Gerosa, M.; Giuliani, D.; Brugnara, F. Acoustic Variability and Automatic Recognition of Children’s Speech. Speech Commun. 2007, 49, 847–860. [Google Scholar] [CrossRef] [Green Version]
- Kennedy, J.; Lemaignan, S.; Montassier, C.; Lavalade, P.; Irfan, B.; Papadopoulos, F.; Senft, E.; Belpaeme, T. Child Speech Recognition in Human-Robot Interaction. In Proceedings of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, Vienna, Austria, 6–9 March 2017. [Google Scholar] [CrossRef]
- Rabiner, L.R.; Schafer, R.W. Introduction to Digital Speech Processing. Found. Trends Signal Process. 2007, 1, 1–194. [Google Scholar] [CrossRef]
- Ramirez, J.; Górriz, J.M.; Segura, J.C. Voice Activity Detection. Fundamentals and Speech Recognition System Robustness. In Robust Speech Recognition and Understanding; I-Tech: Vienna, Austria, 2007; Volume 6, pp. 1–22. [Google Scholar] [CrossRef] [Green Version]
- Hinton, G.; Deng, L.; Yu, D.; Dahl, G.; Rahman Mohamed, A.; Jaitly, N.; Senior, A.; Vanhoucke, V.; Nguyen, P.; Sainath, T.; et al. Deep Neural Networks for Acoustic Modeling in Speech Recognition: The Shared Views of Four Research Groups. IEEE Signal Process. Mag. 2012, 29, 82–97. [Google Scholar] [CrossRef]
- Moore, R.K. Spoken language processing: Piecing together the puzzle. Speech Commun. 2007, 49, 418–435. [Google Scholar] [CrossRef] [Green Version]
- Athanasopoulos, G.; Verhelst, W.; Sahli, H. Robust speaker localization for real-world robots. Comput. Speech Lang. 2015, 34, 129–153. [Google Scholar] [CrossRef]
- Shriberg, L.D.; Paul, R.; McSweeny, J.L.; Klin, A.; Cohen, D.J.; Volkmar, F.R. Speech and Prosody Characteristics of Adolescents and Adults With High-Functioning Autism and Asperger Syndrome. J. Speech Lang. Hear. Res. 2001, 44, 1097–1115. [Google Scholar] [CrossRef]
- Rapin, I.; Dunn, M. Language disorders in children with autism. Semin. Pediatr. Neurol. 1997, 4, 86–92. [Google Scholar] [CrossRef]
- Sheinkopf, S.J.; Mundy, P.; Oller, D.K.; Steffens, M. Vocal Atypicalities of Preverbal Autistic Children. J. Autism Dev. Disord. 2000, 30, 345–354. [Google Scholar] [CrossRef]
- Paul, R.; Augustyn, A.; Klin, A.; Volkmar, F.R. Perception and Production of Prosody by Speakers with Autism Spectrum Disorders. J. Autism Dev. Disord. 2005, 35, 205–220. [Google Scholar] [CrossRef] [PubMed]
- Centres for Disease Control and Prevention. Autism Spectrum Disorder (ASD): Data and Statistics. Available online: https://www.cdc.gov/ncbddd/autism/data.html (accessed on 31 January 2020).
- Warren, S.F.; Gilkerson, J.; Richards, J.A.; Oller, D.K.; Xu, D.; Yapanel, U.; Gray, S. What Automated Vocal Analysis Reveals About the Vocal Production and Language Learning Environment of Young Children with Autism. J. Autism Dev. Disord. 2009, 40, 555–569. [Google Scholar] [CrossRef] [PubMed]
- Moeslund, T.B.; Hilton, A.; Krüger, V. A survey of advances in vision-based human motion capture and analysis. Comput. Vis. Image Underst. 2006, 104, 90–126. [Google Scholar] [CrossRef]
- Han, J.; Shao, L.; Xu, D.; Shotton, J. Enhanced Computer Vision With Microsoft Kinect Sensor: A Review. IEEE Trans. Cybern. 2013, 43, 1318–1334. [Google Scholar] [CrossRef] [PubMed]
- Suarez, J.; Murphy, R.R. Hand gesture recognition with depth images: A review. In Proceedings of the 21st IEEE International Symposium on Robot and Human Interactive Communication, Paris, France, 9–13 September 2012. [Google Scholar] [CrossRef]
- Mitra, S.; Acharya, T. Gesture Recognition: A Survey. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 2007, 37, 311–324. [Google Scholar] [CrossRef]
- Castellano, G.; Villalba, S.D.; Camurri, A. Recognising human emotions from body movement and gesture dynamics. In Proceedings of the International Conference on Affective Computing and Intelligent Interaction, Lisbon, Portugal, 12–14 September 2007. [Google Scholar]
- Saha, S.; Datta, S.; Konar, A.; Janarthanan, R. A study on emotion recognition from body gestures using Kinect sensor. In Proceedings of the 2014 International Conference on Communication and Signal Processing, Bangkok, Thailan, 10–12 October 2014; pp. 56–60. [Google Scholar]
- Elfaramawy, N.; Barros, P.; Parisi, G.I.; Wermter, S. Emotion recognition from body expressions with a neural network architecture. In Proceedings of the 5th International Conference on Human Agent Interaction, Bielefeld, Germany, 17–20 October 2017; pp. 143–149. [Google Scholar]
- Sanghvi, J.; Castellano, G.; Leite, I.; Pereira, A.; McOwan, P.W.; Paiva, A. Automatic analysis of affective postures and body motion to detect engagement with a game companion. In Proceedings of the 6th International Conference on Human-Robot Interaction, Lausanne, Switzerland, 6–9 March 2011; pp. 305–312. [Google Scholar]
- Guerrero Rázuri, J.F.; Larsson, A.; Sundgren, D.; Bonet, I.; Moran, A. Recognition of emotions by the emotional feedback through behavioral human poses. Int. J. Comput. Sci. Issues 2015, 12, 7–17. [Google Scholar]
- Okada, S.; Aran, O.; Gatica-Perez, D. Personality trait classification via co-occurrent multiparty multimodal event discovery. In Proceedings of the 2015 ACM on International Conference on Multimodal Interaction, Seattle, WA, USA, 9–13 November 2015; pp. 15–22. [Google Scholar]
- Ramey, A.; González-Pacheco, V.; Salichs, M.A. Integration of a low-cost RGB-D sensor in a social robot for gesture recognition. In Proceedings of the 6th ACM/IEEE International Conference on Human-Robot Interaction (HRI), Lausanne, Switzerland, 6–9 March 2011; pp. 229–230. [Google Scholar]
- Bedford, R.; Pickles, A.; Lord, C. Early gross motor skills predict the subsequent development of language in children with autism spectrum disorder. Autism Res. 2015, 9, 993–1001. [Google Scholar] [CrossRef] [Green Version]
- Leonard, H.C.; Bedford, R.; Pickles, A.; Hill, E.L. Predicting the rate of language development from early motor skills in at-risk infants who develop autism spectrum disorder. Res. Autism Spectr. Disord. 2015, 13–14, 15–24. [Google Scholar] [CrossRef]
- MacDonald, M.; Lord, C.; Ulrich, D. The relationship of motor skills and adaptive behavior skills in young children with autism spectrum disorders. Res. Autism Spectr. Disord. 2013, 7, 1383–1390. [Google Scholar] [CrossRef]
- Bradshaw, J.; Klaiman, C.; Gillespie, S.; Brane, N.; Lewis, M.; Saulnier, C. Walking Ability is Associated with Social Communication Skills in Infants at High Risk for Autism Spectrum Disorder. Infancy 2018, 23, 674–691. [Google Scholar] [CrossRef]
- Ming, X.; Brimacombe, M.; Wagner, G.C. Prevalence of motor impairment in autism spectrum disorders. Brain Dev. 2007, 29, 565–570. [Google Scholar] [CrossRef] [PubMed]
- Hilton, C.L.; Cumpata, K.; Klohr, C.; Gaetke, S.; Artner, A.; Johnson, H.; Dobbs, S. Effects of Exergaming on Executive Function and Motor Skills in Children With Autism Spectrum Disorder: A Pilot Study. Am. J. Occup. Ther. 2013, 68, 57–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fournier, K.A.; Hass, C.J.; Naik, S.K.; Lodha, N.; Cauraugh, J.H. Motor Coordination in Autism Spectrum Disorders: A Synthesis and Meta-Analysis. J. Autism Dev. Disord. 2010, 40, 1227–1240. [Google Scholar] [CrossRef] [PubMed]
- Pierce, K.; Courchesne, E. Evidence for a cerebellar role in reduced exploration and stereotyped behavior in autism. Biol. Psychiatry 2001, 49, 655–664. [Google Scholar] [CrossRef]
- Minshew, N.J.; Sung, K.; Jones, B.L.; Furman, J.M. Underdevelopment of the postural control system in autism. Neurology 2004, 63, 2056–2061. [Google Scholar] [CrossRef]
- Rinehart, N.J.; Bradshaw, J.L.; Brereton, A.V.; Tonge, B.J. Movement Preparation in High-Functioning Autism and Asperger Disorder: A Serial Choice Reaction Time Task Involving Motor Reprogramming. J. Autism Dev. Disord. 2001, 31, 79–88. [Google Scholar] [CrossRef]
- Cook, J.L.; Blakemore, S.J.; Press, C. Atypical basic movement kinematics in autism spectrum conditions. Brain 2013, 136, 2816–2824. [Google Scholar] [CrossRef] [Green Version]
- Anzulewicz, A.; Sobota, K.; Delafield-Butt, J.T. Toward the Autism Motor Signature: Gesture patterns during smart tablet gameplay identify children with autism. Sci. Rep. 2016, 6, 31107. [Google Scholar] [CrossRef] [Green Version]
- Elison, J.T.; Wolff, J.J.; Reznick, J.S.; Botteron, K.N.; Estes, A.M.; Gu, H.; Hazlett, H.C.; Meadows, A.J.; Paterson, S.J.; Zwaigenbaum, L.; et al. Repetitive Behavior in 12-Month-Olds Later Classified With Autism Spectrum Disorder. J. Am. Acad. Child Adolesc. Psychiatry 2014, 53, 1216–1224. [Google Scholar] [CrossRef] [Green Version]
- Petric, F.; Hrvatinic, K.; Babic, A.; Malovan, L.; Miklic, D.; Kovacic, Z.; Cepanec, M.; Stosic, J.; Simlesa, S. Four tasks of a robot-assisted autism spectrum disorder diagnostic protocol: First clinical tests. In Proceedings of the IEEE Global Humanitarian Technology Conference (GHTC 2014), San Francisco, CA, USA, 10–13 October 2014. [Google Scholar] [CrossRef]
- Jia, Y.; Shelhamer, E.; Donahue, J.; Karayev, S.; Long, J.; Girshick, R.; Guadarrama, S.; Darrell, T. Caffe: Convolutional Architecture for Fast Feature Embedding. In Proceedings of the ACM International Conference on Multimedia, Glasgow, UK, 1–4 April 2014. [Google Scholar] [CrossRef]
- Michel, P.; El Kaliouby, R. Real time facial expression recognition in video using support vector machines. In Proceedings of the 5th international conference on Multimodal interfaces, Vancouver, BC, Canada, 5–7 November 2003; pp. 258–264. [Google Scholar]
- Bartlett, M.S.; Littlewort, G.; Frank, M.; Lainscsek, C.; Fasel, I.; Movellan, J. Recognizing facial expression: machine learning and application to spontaneous behavior. In Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA, 20–25 June 2005; Volume 2, pp. 568–573. [Google Scholar]
- Bargal, S.A.; Barsoum, E.; Ferrer, C.C.; Zhang, C. Emotion recognition in the wild from videos using images. In Proceedings of the 18th ACM International Conference on Multimodal Interaction, Tokyo, Japan, 12–16 November 2016; pp. 433–436. [Google Scholar]
- Littlewort, G.; Bartlett, M.S.; Fasel, I.R.; Chenu, J.; Kanda, T.; Ishiguro, H.; Movellan, J.R. Towards social robots: Automatic evaluation of human-robot interaction by facial expression classification. Adv. Neural Inf. Process. Syst. 2004, 1563–1570. [Google Scholar]
- Zhang, L.; Jiang, M.; Farid, D.; Hossain, M.A. Intelligent facial emotion recognition and semantic-based topic detection for a humanoid robot. Expert Syst. Appl. 2013, 40, 5160–5168. [Google Scholar] [CrossRef]
- Corneanu, C.A.; Simon, M.O.; Cohn, J.F.; Guerrero, S.E. Survey on RGB, 3D, Thermal, and Multimodal Approaches for Facial Expression Recognition: History, Trends, and Affect-Related Applications. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 38, 1548–1568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nezami, O.M.; Dras, M.; Hamey, L.; Richards, D.; Wan, S.; Paris, C. Automatic Recognition of Student Engagement using Deep Learning and Facial Expression. arXiv 2018, arXiv:1808.02324. [Google Scholar]
- Liu, T.; Kappas, A. Predicting Engagement Breakdown in HRI Using Thin-slices of Facial Expressions. In Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018. [Google Scholar]
- Eisenbarth, H.; Alpers, G.W. Happy mouth and sad eyes: Scanning emotional facial expressions. Emotion 2011, 11, 860–865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Åsberg Johnels, J.; Hovey, D.; Zürcher, N.; Hippolyte, L.; Lemonnier, E.; Gillberg, C.; Hadjikhani, N. Autism and emotional face-viewing. Autism Res. 2017, 10, 901–910. [Google Scholar] [CrossRef]
- Ekman, P.; Friesen, W.V. Constants across cultures in the face and emotion. J. Personal. Soc. Psychol. 1971, 17, 124–129. [Google Scholar] [CrossRef] [Green Version]
- Pantie, M.; Rothkrantz, L. Automatic analysis of facial expressions: the state of the art. IEEE Trans. Pattern Anal. Mach. Intell. 2000, 22, 1424–1445. [Google Scholar] [CrossRef] [Green Version]
- Zeng, Z.; Pantic, M.; Roisman, G.; Huang, T. A Survey of Affect Recognition Methods: Audio, Visual, and Spontaneous Expressions. IEEE Trans. Pattern Anal. Mach. Intell. 2009, 31, 39–58. [Google Scholar] [CrossRef]
- Grynszpan, O.; Weiss, P.L.T.; Perez-Diaz, F.; Gal, E. Innovative technology-based interventions for autism spectrum disorders: A meta-analysis. Autism 2013, 18, 346–361. [Google Scholar] [CrossRef]
- Robe, A.; Dobrean, A.; Cristea, I.A.; Păsărelu, C.R.; Predescu, E. Attention-deficit/hyperactivity disorder and task-related heart rate variability: A systematic review and meta-analysis. Neurosci. Biobehav. Rev. 2019, 99, 11–22. [Google Scholar] [CrossRef]
- Baxter, P.; Lemaignan, S.; Trafton, J.G. Cognitive Architectures for Social Human-Robot Interaction. In Proceedings of the Eleventh ACM/IEEE International Conference on Human Robot Interaction, Christchurch, New Zealand, 7–10 March 2016; pp. 579–580. [Google Scholar]
Required Modalities | Class. | ||||||||||
Behavioural cue | Gaze tracking | Speech detection | Speech analysis | Posture tracking | Gesture tracking | Facial expressions | Object tracking | Sound detection | Specific events | Covert behaviour | Interaction-centred |
Category A Persistent deficits in social communication and social interaction across contexts | |||||||||||
A1 Deficits in social-emotional reciprocity | |||||||||||
1. One-sided conversations | √ | √ | |||||||||
2. Failure to offer comfort to others or to ask for it when needed | √ | √ | √ | √ | √ | ||||||
3. Does not initiate conversation with peers | √ | √ | √ | √ | √ | ||||||
4. Lack of showing, bringing, or pointing out objects of interest to other people | √ | √ | √ | √ | √ | ||||||
5. Use of others as tools | √ | √ | √ | ||||||||
6. Failure to engage in simple social games | √ | √ | √ | √ | |||||||
A2 Deficits in nonverbal communicative behaviours used for social interaction | |||||||||||
1. Impairments in social use of eye contact | √ | √ | |||||||||
2. Limited communication of own affect | √ | √ | √ | √ | √ | ||||||
3. Abnormalities in the use and understanding of emotion | √ | √ | √ | √ | √ | ||||||
4. Impairment in the use of gestures | √ | ||||||||||
5. Abnormal volume, pitch, intonation, rate, rhythm, stress, prosody or volume in speech | √ | ||||||||||
6. Lack of coordinated verbal and nonverbal communication | √ | √ | √ | √ | √ | ||||||
A3 Deficits in nonverbal communicative behaviours used for social interaction | |||||||||||
1. Lacks understanding of the conventions of social interaction | √ | √ | √ | √ | |||||||
2. Limited interaction with others in discussions and play | √ | √ | √ | √ | √ | ||||||
3. Limited interests in talking with others | √ | √ | |||||||||
4. Prefers solitary activities | √ | √ | √ | √ | |||||||
5. Limited recognition of social emotions | √ | √ | √ | √ |
Required Modalities | Class. | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Behavioural cue | Gaze tracking | Speech detection | Speech analysis | Posture tracking | Gesture tracking | Facial expressions | Object tracking | Sound detection | Specific events | Covert behaviour | Interaction-centred |
Category B Restricted, repetitive patterns of behaviour, interests, or activities as manifested | |||||||||||
B1 Stereotyped or repetitive speech, motor movements, or use of objects | |||||||||||
1. Repetitive hand movements | √ | ||||||||||
2. Stereotyped or complex whole body movements | √ | ||||||||||
3. Repetitive vocalisations such as repetitive guttural sounds, intonational noise making, unusual squealing repetitive humming | √ | ||||||||||
4. Perseverative or repetitive action/play/ behaviour | √ | √ | √ | ||||||||
5. Pedantic speech or unusually formal language | √ | √ | |||||||||
B2 Excessive adherence to routines, ritualised patterns of verbal or nonverbal behaviour, or excessive resistance to change | |||||||||||
1. Overreactions to changes | √ | √ | √ | √ | √ | ||||||
2. Unusual routines | √ | √ | √ | ||||||||
3. Repetitive questioning about a particular topic | √ | √ | |||||||||
4. Compulsions | √ | √ | √ | ||||||||
B3 Highly restricted, fixated interests that are abnormal in intensity or focus | |||||||||||
1. Focused on the same few objects, topics or activities | √ | √ | √ | √ | √ | √ | |||||
2. Verbal rituals | √ | √ | √ | ||||||||
3. Excessive focus on irrelevant or non- functional parts of objects | √ | √ | √ | √ | √ | ||||||
B4 Hyper- or hypo-reactivity to sensory input or unusual interest in sensory aspects of environment | |||||||||||
1. Abnormal responses to sensory input | √ | √ | √ | √ | |||||||
2. Repetitively putting hands over ears | √ | √ | |||||||||
3. Extreme interest or fascination with watching movement of other things | √ | √ | √ | √ | |||||||
4. Close visual inspection of objects | √ | √ | √ |
Modality | Total Number | Interpretability of Behaviour | Locus of Interaction | A Cues | B Cues | ||
---|---|---|---|---|---|---|---|
Overt | Covert | Child- Centred | Interaction- Centred | ||||
1. Gaze tracking | 6 | 1 | 5 | 3 | 3 | 4 | 2 |
2. Speech detection | 10 | 4 | 6 | 6 | 4 | 7 | 3 |
3. Speech Analysis | 11 | 0 | 11 | 7 | 4 | 6 | 5 |
4. Posture tracking | 15 | 5 | 10 | 8 | 7 | 7 | 8 |
5. Gesture tracking | 19 | 14 | 5 | 11 | 8 | 10 | 9 |
6. Facial expressions | 5 | 1 | 4 | 2 | 3 | 3 | 2 |
7. Object tracking | 7 | 2 | 5 | 6 | 1 | 1 | 6 |
8. Sound detection | 1 | 1 | 0 | 1 | 0 | 0 | 1 |
9. Specific events | 2 | 0 | 2 | 1 | 1 | 1 | 1 |
Total | 28 | 48 | 45 | 31 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bartlett, M.E.; Costescu, C.; Baxter, P.; Thill, S. Requirements for Robotic Interpretation of Social Signals “in the Wild”: Insights from Diagnostic Criteria of Autism Spectrum Disorder. Information 2020, 11, 81. https://doi.org/10.3390/info11020081
Bartlett ME, Costescu C, Baxter P, Thill S. Requirements for Robotic Interpretation of Social Signals “in the Wild”: Insights from Diagnostic Criteria of Autism Spectrum Disorder. Information. 2020; 11(2):81. https://doi.org/10.3390/info11020081
Chicago/Turabian StyleBartlett, Madeleine E., Cristina Costescu, Paul Baxter, and Serge Thill. 2020. "Requirements for Robotic Interpretation of Social Signals “in the Wild”: Insights from Diagnostic Criteria of Autism Spectrum Disorder" Information 11, no. 2: 81. https://doi.org/10.3390/info11020081
APA StyleBartlett, M. E., Costescu, C., Baxter, P., & Thill, S. (2020). Requirements for Robotic Interpretation of Social Signals “in the Wild”: Insights from Diagnostic Criteria of Autism Spectrum Disorder. Information, 11(2), 81. https://doi.org/10.3390/info11020081