Electoral and Public Opinion Forecasts with Social Media Data: A Meta-Analysis
Abstract
:1. Introduction
2. Background: Measuring Public Opinion
2.1. Survey vs. Social Media Approaches
2.2. Measuring Public Opinion with Social Media Data
2.2.1. Diversity in Methods
2.2.2. Diversity in Data Sources
2.2.3. Diversity in Political Contexts
3. Methods
3.1. Literature Search
3.2. Coding
3.2.1. Predictors
3.2.2. Predicted Election and Traditional Poll Results
3.2.3. Data Source
3.2.4. Context Variables
4. Results
4.1. Comparing the Predictive Accuracy of Supervised vs. Unsupervised Sentiment Approaches
4.2. Comparing the Predictive Accuracy of Structure vs. Sentiment
4.3. Comparing the Predictive Accuracy of Social Media for Different Kinds of Outcomes
4.4. Comparing the Predictive Accuracy of Social Media from Various Sources
4.5. Comparing Predictive Power across Different Levels of Political Democracy
4.6. Comparing Predictive Power across Electoral Systems
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- King, G. Ensuring the data-rich future of the social sciences. Science 2011, 331, 719–721. [Google Scholar] [CrossRef] [PubMed]
- Lazer, D.; Pentland, A.S.; Adamic, L.; Aral, S.; Barabasi, A.L.; Brewer, D.; Gutmann, M. Life in the network: The coming age of computational social science. Science 2009, 323, 721–723. [Google Scholar] [CrossRef] [Green Version]
- boyd, D.; Crawford, K. Critical questions for big data: Provocations for a cultural, technological, and scholarly phenomenon. Inf. Commun. Soc. 2012, 15, 662–679. [Google Scholar] [CrossRef]
- Salganik, M.J. Bit by Bit: Social Research in the Digital Age; Princeton University Press: Princeton, NJ, USA, 2018. [Google Scholar]
- Choi, H.; Varian, H. Predicting the present with Google Trends. Econ. Rec. 2012, 88, 2–9. [Google Scholar] [CrossRef]
- Manovich, L. Trending: The promises and the challenges of big social data. In Debates in the Digital Humanities; Gold, M.K., Ed.; The University of Minnesota Press: Minneapolis, MN, USA, 2011; pp. 460–475. [Google Scholar]
- González-Bailón, S.; Wang, N.; Rivero, A.; Borge-Holthoefer, J.; Moreno, Y. Assessing the bias in samples of large online networks. Soc. Netw. 2014, 38, 16–27. [Google Scholar] [CrossRef]
- Jungherr, A.; Jürgens, P.; Schoen, H. Why the Pirate party won the German election of 2009 or the trouble with predictions: A response to Tumasjan, A., Sprenger, T.O., Sander, P.G., & Welpe, I.M. “Predicting elections with Twitter: What 140 characters reveal about political sentiment.”. Soc. Sci. Comput. Rev. 2012, 30, 229–234. [Google Scholar] [CrossRef]
- Bucher, T.; Helmond, A. The Affordances of Social Media Platforms. In The SAGE Handbook of Social Media; Burgess, J., Marwick, A., Poell, T., Eds.; Sage Publications: New York, NY, USA, 2018; pp. 233–253. [Google Scholar]
- Ratkiewicz, J.; Conover, M.; Meiss, M.R.; Gonçalves, B.; Flammini, A.; Menczer, F. Detecting and Tracking Political Abuse in Social Media. In Proceedings of the 20th international conference companion on World Wide Web, Hyderabad, India, 28 March–1 April 2011. [Google Scholar]
- Gayo-Avello, D. A meta-analysis of state-of-the-art electoral prediction from Twitter data. Soc. Sci. Comput. Rev. 2013, 31, 649–679. [Google Scholar] [CrossRef] [Green Version]
- Bourdieu, P. Public opinion does not exist. In Communication and Class Strugzle; Mattelart, A., Siegelaub., S., Eds.; International General/IMMRC: New York, NY, USA, 1979; pp. 124–310. [Google Scholar]
- Lazarsfeld, P.F. Public opinion and the classical tradition. Public Opin. Q. 1957, 21, 39–53. [Google Scholar] [CrossRef]
- Katz, E. The two-step flow of communication: An up-to-date report on an hypothesis. Public Opin. Q. 1957, 21, 61–78. [Google Scholar] [CrossRef]
- Katz, E.; Lazarsfeld, P.F. Personal Influence: The Part Played by People in the Flow of Mass Communications; Free Press: New York, NY, USA, 1955. [Google Scholar]
- Ceron, A.; Curini, L.; Iacus, S.M.; Porro, G. Every tweet counts? How sentiment analysis of social media can improve our knowledge of citizens’ political preferences with an application to Italy and France. New Media Soc. 2014, 16, 340–358. [Google Scholar] [CrossRef]
- Espeland, W.N.; Sauder, M. Rankings and reactivity: How public measures recreate social worlds. Am. J. Sociol. 2007, 113, 1–40. [Google Scholar] [CrossRef] [Green Version]
- Berinsky, A.J. The two faces of public opinion. Am. J. Political Sci. 1999, 43, 1209–1230. [Google Scholar] [CrossRef]
- Blumer, H. Public opinion and public opinion polling. Am. Sociol. Rev. 1948, 13, 542–549. [Google Scholar] [CrossRef]
- Anstead, N.; O’Loughlin, B. Social media analysis and public opinion: The 2010 UK general election. J. Comput. Mediat. Commun. 2015, 37, 204–220. [Google Scholar] [CrossRef] [Green Version]
- Bryce, J. The American Commonwealth; Macmillan: London, UK, 1888. [Google Scholar]
- Herbst, S. Public opinion infrastructures: Meanings, measures, media. Political Commun. 2001, 18, 451–464. [Google Scholar] [CrossRef]
- Kwon, K.H.; Moon, S.I.; Stefanone, M.A. Unspeaking on Facebook? Testing network exposure effects on self-censorship of political expressions in social network sites. Qual. Quant. 2015, 49, 1417–1435. [Google Scholar] [CrossRef]
- Jaidka, K.; Ahmed, S.; Skoric, M.M.; Hilbert, M. Predicting elections from social media: A three-country, three-method comparative study. Asian J. Commun. 2019, 29, 252–273. [Google Scholar] [CrossRef] [Green Version]
- Webster, J.G. The duality of media: A structurational theory of public attention. Commun. Theory 2011, 21, 43–66. [Google Scholar] [CrossRef]
- Anand, N.; Peterson, R.A. When market information constitutes fields: Sensemaking of markets in the commercial music industry. Organ. Sci. 2000, 11, 270–284. [Google Scholar] [CrossRef]
- Allport, F.H. Toward a science of Public opinion. Public Opin. Q. 1937, 1, 7–23. [Google Scholar] [CrossRef]
- Fox, S. Four in Ten Seniors Go Online. Available online: http://www.pewinternet.org/2010/01/13/four-in-ten-seniors-go-online (accessed on 5 February 2020).
- Wei, L.; Hindman, D.B. Does the digital divide matter more? Comparing the effects of new media and old media use on the education-based knowledge gap. Mass Commun. Soc. 2011, 14, 216–235. [Google Scholar] [CrossRef]
- Tumasjan, A.; Sprenger, T.O.; Sandner, P.G.; Welpe, I.M. Predicting elections with Twitter: What 140 characters reveal about political sentiment. In Proceedings of the Fourth International AAAI Conference on Weblogs and Social Media, Washington, DC, USA, 23–26 May 2010. [Google Scholar]
- Zaller, J. The Nature and Origins of Mass Opinion. Cambridge University Press: Cambridge, UK, 1992. [Google Scholar]
- González-Bailón, S.; Banchs, R.E.; Kaltenbrunner, A. Emotions, public opinion, and US presidential approval rates: A 5-year analysis of online political discussions. Hum. Commun. Res. 2012, 38, 121–143. [Google Scholar] [CrossRef]
- Ibrahim, M.; Abdillah, O.; Wicaksono, A.F.; Adriani, M. Buzzer Detection and Sentiment Analysis for Predicting Presidential Election Results in a Twitter Nation. In Proceedings of the 2015 IEEE International Conference on Data Mining Workshop (ICDMW), Atlantic City, NJ, USA, 14–17 November 2015. [Google Scholar] [CrossRef]
- Li, H.L.; Ng, V.T.; Shiu, S.C. Predicting short interval tracking polls with online social media. In Proceedings of the 17th International Conference on Computer Supported Cooperative Work in Design (CSCWD), Whistler, UK, 27–29 June 2013. [Google Scholar] [CrossRef]
- Contractor, D.; Faruquie, T.A. Understanding election candidate approval ratings using social media data. In Proceedings of the 22nd International Conference on World Wide Web companion, Rio de Janeiro, Brazil, 18–22 May 2013. [Google Scholar] [CrossRef]
- O’Connor, B.; Balasubramanyan, R.; Routledge, B.R.; Smith, N.A. From tweets to polls: Linking text sentiment to public opinion time series. In Proceedings of the Fourth International AAAI Conference on Weblogs and Social Media, Washington, DC, USA, 23–26 May 2010. [Google Scholar]
- Wilson, T.; Wiebe, J.; Hoffmann, P. Recognizing contextual polarity in phrase-level sentiment analysis. In Proceedings of the Conference on Human Language Technology and Empirical Methods in Natural Language Processing, Vancouver, BC, Canada, 6–8 October 2005. [Google Scholar]
- Chung, J.E.; Mustafaraj, E. Can collective sentiment expressed on twitter predict political elections? In Proceedings of the 25th AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 25–30 January 2011. [Google Scholar]
- Esuli, A.; Sebastiani, F. SentiWordNet: A High-Coverage Lexical Resource for Opinion Mining. Available online: http://nmis.isti.cnr.it/sebastiani/Publications/2007TR02.pdf (accessed on 5 February 2020).
- Gayo-Avello, D. Don’t turn social media into another ‘Literary Digest’ poll. Commun. ACM 2011, 54, 121–128. [Google Scholar] [CrossRef] [Green Version]
- Beauchamp, N. Predicting and interpolating state-level polls using Twitter textual data. Am. J. Political Sci. 2017, 61, 490–503. [Google Scholar] [CrossRef]
- Dwi Prasetyo, N.; Hauff, C. Twitter-based election prediction in the developing world. In Proceedings of the 26th ACM Conference on Hypertext & Social Media, Guzelyurt, TRNC, Cyprus, 2–4 September 2015. [Google Scholar] [CrossRef]
- Kalampokis, E.; Karamanou, A.; Tambouris, E.; Tarabanis, K.A. On predicting election results using Twitter and Linked Open data: The case of the UK 2010 election. J. Univers. Comput. Sci. 2015, 23, 280–303. [Google Scholar]
- Monti, C.; Zignani, M.; Rozza, A.; Arvidsson, A.; Zappella, G.; Colleoni, E. Modelling political disaffection from twitter data. In Proceedings of the 2nd International Workshop on Issues of Sentiment Discovery and Opinion Mining, Chicago, IL, USA, 11 August 2013. [Google Scholar]
- Sharma, P.; Moh, T.S. Prediction of Indian election using sentiment analysis on Hindi Twitter. In Proceedings of the 2016 IEEE International Conference on Big Data, Washington, DC, USA, 5–8 December 2016. [Google Scholar] [CrossRef]
- Huberty, M.E. Multi-cycle forecasting of congressional elections with social media. In Proceedings of the 2nd workshop on Politics, Elections and Data, San Francisco, CA, USA, 28 October 2013. [Google Scholar] [CrossRef]
- Xie, Z.; Liu, G.; Wu, J.; Wang, L.; Liu, C. Wisdom of fusion: Prediction of 2016 Taiwan election with heterogeneous big data. In Proceedings of the 13th International Conference on Service Systems and Service Management (ICSSSM), Kunming, China, 24–26 June 2016. [Google Scholar] [CrossRef]
- Mejova, Y.; Srinivasan, P.; Boynton, B. GOP primary season on twitter: Popular political sentiment in social media. In Proceedings of the Sixth ACM International Conference on Web Search and Data Mining, Rome, Italy, 4–8 February 2013. [Google Scholar] [CrossRef]
- Livne, A.; Simmons, M.P.; Adar, E.; Adamic, L.A. The party is over here: Structure and content in the 2010 election. In Proceedings of the Fifth International AAAI Conference on Weblogs and Social Media, Barcelona, Spain, 17–21 July 2011. [Google Scholar]
- Vepsäläinen, T.; Li, H.; Suomi, R. Facebook likes and public opinion: Predicting the 2015 Finnish parliamentary elections. Gov. Inf. Q. 2017, 34, 524–532. [Google Scholar] [CrossRef]
- Metaxas, P.T.; Mustafaraj, E.; Gayo-Avello, D. How (not) to predict elections. In Proceedings of the 2011 IEEE Third International Conference on Social Computing (SocialCom), Boston, MA, USA, 9–11 October 2011. [Google Scholar] [CrossRef] [Green Version]
- MacWilliams, M.C. Forecasting congressional elections using facebook data. PS Political Sci. Politics 2015, 48, 579–583. [Google Scholar] [CrossRef]
- Pimenta, F.; Obradovic, D.; Dengel, A. A comparative study of social media prediction potential in the 2012 US republican presidential preelections. In Proceedings of the 3rd International Conference on Cloud and Green Computing, Dublin, Ireland, 27–29 June 2013. [Google Scholar] [CrossRef]
- Gayo-Avello, D.; Metaxas, P.T.; Mustafaraj, E.; Strohmaier, M.; Schoen, H.; Gloor, P.; Tarabanis, K. Understanding the predictive power of social media. Internet Res. 2013, 23, 544–559. [Google Scholar] [CrossRef]
- Barclay, F.P.; Pichandy, C.; Venkat, A.; Sudhakaran, S. India 2014: Facebook ‘like’as a predictor of election outcomes. Asian J. Political Sci. 2015, 23, 134–160. [Google Scholar] [CrossRef]
- Williams, C.; Gulati, G. What is a social network worth? Facebook and vote share in the 2008 presidential primaries. In Proceedings of the 2008 Annual Meeting of the American Political Science Association, Boston, MA, USA, 6–27 June 2008. [Google Scholar]
- Freeman, L.C. Centrality in social networks conceptual clarification. Soc. Netw. 1979, 1, 215–239. [Google Scholar] [CrossRef] [Green Version]
- Page, L.; Brin, S.; Motwani, R.; Winograd, T. The PageRank Citation Ranking: Bringing Order to the Web. Available online: http://homepages.dcc.ufmg.br/~nivio/cursos/ri11/sources/pagerank.pdf (accessed on 5 February 2020).
- Cameron, M.P.; Barrett, P.; Stewardson, B. Can social media predict election results? Evidence from new zealand. J. Political Mark. 2016, 15, 416–432. [Google Scholar] [CrossRef]
- Skoric, M.M.; Poor, N.D.; Achananuparp, P.; Lim, E.P.; Jiang, J. Tweets and votes: A study of the 2011 Singapore General Election. In Proceedings of the 45th Hawaii International Conference on System Sciences, Maui, HI, USA, 4–7 January 2012. [Google Scholar] [CrossRef]
- DiGrazia, J.; McKelvey, K.; Bollen, J.; Rojas, F. More tweets, more votes: Social media as a quantitative indicator of political behavior. PLoS ONE 2013, 8, e79449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campbell, J.E. Issues in presidential election forecasting: Election margins, incumbency, and model credibility. PS: Political Sci. Politics 2014, 47, 301–303. [Google Scholar] [CrossRef] [Green Version]
- Krasno, J.S. Challengers, Competition, and Reelection: Comparing House and Senate Elections; Yale University Press: New Haven, CT, USA, 1994. [Google Scholar]
- Metaxas, P.T.; Mustafaraj, E. Social media and the elections. Science 2012, 338, 472–473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franch, F. Wisdom of the Crowds: 2010 UK election prediction with social media. J. Inf. Technol. Politics 2013, 10, 57–71. [Google Scholar] [CrossRef]
- Gayo-Avello, D.; Metaxas, P.T.; Mustafaraj, E. Limits of electoral predictions using twitter. In Proceedings of the ICWSM, Barcelona, Spain, 17–21 July 2011. [Google Scholar]
- Gaurav, M.; Srivastava, A.; Kumar, A.; Miller, S. Leveraging candidate popularity on Twitter to predict election outcome. In Proceedings of the 7th Workshop on Social Network Mining and Analysis, Chicago, IL, USA, 21–23 November 2013. [Google Scholar] [CrossRef]
- Kuhn, T.S. The Structure of Scientific Revolutions; University of Chicago Press: Chicago, IL, USA, 1962. [Google Scholar]
Predictors | MAE (%) | R2 | ||||
---|---|---|---|---|---|---|
Mean | SD | N | Mean | SD | N | |
Lexicon Sentiment | 6.427 a | 0.758 | 30 | 0.690 b | 0.083 | 14 |
Machine Learning Sentiment | 3.644 a | 0.466 | 74 | 0.406 b | 0.053 | 51 |
Structure | 5.038 a | 0.396 | 103 | 0.615 b | 0.030 | 114 |
ML-Sentiment and Structure | 2.141 a | 0.944 | 20 | 0.818 b | 0.162 | 4 |
Lexi-Sentiment and Structure | 4.828 a | 1.793 | 5 | 0.607 b | 0.087 | 22 |
Predictors | MAE (%) | R2 | ||||
---|---|---|---|---|---|---|
Mean | SD | N | Mean | SD | N | |
Structure | 5.027 a | 0.404 | 103 | 0.605 b | 0.031 | 114 |
Sentiment | 4.397 a | 0.401 | 104 | 0.492 b | 0.044 | 65 |
Sentiment and Structure | 2.929 a | 0.842 | 25 | 0.621 b | 0.063 | 26 |
Type of Outcome | MAE (%) | R2 | ||||
---|---|---|---|---|---|---|
Mean | SD | N | Mean | SD | N | |
Vote share | 4.796 a | 0.339 | 157 | 0.595 b | 0.027 | 141 |
Seat share | 3.943 a | 1.670 | 6 | 0.716 b | 0.127 | 7 |
Winner | 0.102 b | 0.224 | 2 | |||
Public support (in polls) | 3.937 a | 0.539 | 69 | 0.510 b | 0.043 | 55 |
Data Source | MAE (%) | R2 | ||||
---|---|---|---|---|---|---|
Mean | SD | N | Mean | SD | N | |
4.355 a | 0.274 | 210 | 0.548 b | 0.027 | 108 | |
7.149 a | 1.205 | 11 | 0.707 b | 0.050 | 33 | |
Forum | 6.510 a | 2.320 | 3 | 0.774 b | 0.121 | 5 |
Blog | 1.366 a | 2.325 | 3 | 0.981 b | 0.067 | 18 |
YouTube | 9.939 a | 2.325 | 3 | 0.261 b | 0.067 | 18 |
Multiple platforms | 0.802 a | 2.822 | 2 | 0.365 b | 0.096 | 23 |
Political Democracy | MAE (%) | R2 | ||||
---|---|---|---|---|---|---|
Mean | SD | N | Mean | SD | N | |
Authoritarian Regime | 0.597 b | 0.069 | 30 | |||
Hybrid Regime | 4.644 a | 0.790 | 29 | 0.825 b | 0.101 | 11 |
Flawed Democracy | 4.069 a | 0.438 | 91 | 0.599 b | 0.055 | 40 |
Full Democracy | 4.852 a | 0.408 | 112 | 0.533 b | 0.029 | 124 |
Electoral Systems | MAE (%) | R2 | ||||
---|---|---|---|---|---|---|
Mean | SD | N | Mean | SD | N | |
Non-proportional Representation | 4.268 a | 0.375 | 119 | 0.581 b | 0.025 | 164 |
Proportional Representation | 4.783 a | 0.385 | 113 | 0.533 b | 0.052 | 41 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skoric, M.M.; Liu, J.; Jaidka, K. Electoral and Public Opinion Forecasts with Social Media Data: A Meta-Analysis. Information 2020, 11, 187. https://doi.org/10.3390/info11040187
Skoric MM, Liu J, Jaidka K. Electoral and Public Opinion Forecasts with Social Media Data: A Meta-Analysis. Information. 2020; 11(4):187. https://doi.org/10.3390/info11040187
Chicago/Turabian StyleSkoric, Marko M., Jing Liu, and Kokil Jaidka. 2020. "Electoral and Public Opinion Forecasts with Social Media Data: A Meta-Analysis" Information 11, no. 4: 187. https://doi.org/10.3390/info11040187