Accuracy Assessment of Small Unmanned Aerial Vehicle for Traffic Accident Photogrammetry in the Extreme Operating Conditions of Kuwait
Abstract
:1. Introduction
2. Literature Review
3. Methodology
3.1. Data Acquisition Platforms and Techniques
3.2. Experiments and Methods
- Scenario 1: Accuracy assessment with variation of flight altitude;
- Scenario 2: Accuracy assessment with variation of frontal and lateral overlaps;
- Scenario 3: Accuracy assessment at extreme operating conditions.
4. Results and Analysis
4.1. Scenario 1: Variable Flight Altitude and GSDs
4.2. Scenario 2: Variation of Frontal and Lateral Overlaps
- Case 1: Front overlap = 90% Side overlap 85%;
- Case 2: Front overlap = 85% Side overlap 80%;
- Case 3: Front overlap = 80% Side overlap 75%;
- Case 4: Front overlap = 75% Side overlap 65%.
4.3. Scenario 3: Accuracy Assessment at Extreme Operating Conditions
5. Discussion
5.1. Applicability
5.2. Challenges, Limitations and Future Research Directions
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- World Health Organization. 2020 Road Safety. Available online: https://www.who.int/gho/road_safety/en (accessed on 10 June 2020).
- Death on the Roads. Available online: https://extranet.who.int/roadsafety/death-on-the-roads/ (accessed on 10 June 2020).
- Statistics and Reports CSB. 2020. Available online: https://www.csb.gov.kw/ (accessed on 10 July 2020).
- Rucoba, R.; Duran, A.; Carr, L.; Erdeljac, D. A Three-Dimensional Crush Measurement Methodology Using Two-Dimensional Photographs (No. 2008-01-0163); SAE Technical Paper: Warrendale, PA, USA, 2008. [Google Scholar]
- Du, X.; Jin, X.; Zhang, X.; Shen, J.; Hou, X. Geometry Features Measurement of Traffic Accident for Reconstruction Based on Close-Range Photogrammetry. Adv. Eng. Softw. 2009, 40, 497–505. [Google Scholar] [CrossRef]
- Tan, Y.; Li, Y. UAV Photogrammetry-Based 3D Road Distress Detection. ISPRS Int. J. Geo-Inf. 2019, 8, 409. [Google Scholar] [CrossRef] [Green Version]
- Pérez, J.A.; Gonçalves, G.R.; Rangel, J.M.G.; Ortega, P.F. Accuracy and Effectiveness of Orthophotos Obtained from Low Cost UASs Video Imagery for Traffic Accident Scenes Documentation. Adv. Eng. Softw. 2019, 132, 47–54. [Google Scholar] [CrossRef]
- Škorput, P.; Mandžuka, S.; Gregurić, M.; Vrančić, M.T. Applying Unmanned Aerial Vehicles (UAV) in Traffic Investigation. Process. Lect. Notes. Netw. Syst. 2020, 76, 401–405. [Google Scholar]
- Niederheiser, R.; Mokros, M.; Lange, J.; Petschko, H.; Prasicek, G.; Elberink, S.O. Deriving 3D point clouds from terrestrial photographs comparison of different sensors and software. In Proceedings of the 23rd Congress of the International Society of Photogrammetry and Remote Sensing: From Human History to the Future with Spatial Information, Prague, Czech Republic, 12–19 July 2016; pp. 685–692. [Google Scholar]
- Xue, Y.; Zhang, S.; Zhou, M.; Zhu, H. Novel SfM-DLT Method for Metro Tunnel 3D Reconstruction and Visualization. Available online: https://www.sciencedirect.com/science/article/pii/S2467967419300996 (accessed on 14 September 2020).
- Jeong, G.Y.; Nguyen, T.N.; Tran, D.K.; Hoang, T.B.H. Applying Unmanned Aerial Vehicle Photogrammetry for Measuring Dimension of Structural Elements in Traditional Timber Building. Measurement 2020, 153, 107386. [Google Scholar] [CrossRef]
- Rizo-Maestre, C.; González-Avilés, Á.; Galiano-Garrigós, A.; Andújar-Montoya, M.D.; Puchol-García, J.A. UAV BIM: Incorporation of Photogrammetric Techniques in Architectural Projects with Building Information Modeling Versus Classical Work Processes. Remote Sens. 2020, 12, 2329. [Google Scholar] [CrossRef]
- Martínez-Carricondo, P.; Carvajal-Ramírez, F.; Yero-Paneque, L.; Agüera-Vega, F. Combination of Nadiral and Oblique UAV Photogrammetry and HBIM for the Virtual Reconstruction of Cultural Heritage. Case Study of Cortijo del Fraile in Níjar, Almería (Spain). Build. Res. Inf. 2020, 48, 140–159. [Google Scholar] [CrossRef]
- Boonpook, W.; Tan, Y.; Xu, B. Deep Learning-Based Multi-Feature Semantic Segmentation in Building Extraction from Images of UAV Photogrammetry. Available online: https://www.tandfonline.com/doi/full/10.1080/01431161.2020.1788742 (accessed on 14 September 2020).
- Erdenebat, D.; Waldmann, D. Application of the DAD Method for Damage Localisation on an Existing Bridge Structure Using Close-Range UAV Photogrammetry. Eng. Struct. 2020, 218, 110727. [Google Scholar] [CrossRef]
- Tucci, G.; Gebbia, A.; Conti, A.; Fiorini, L.; Lubello, C. Monitoring and Computation of the Volumes of Stockpiles of Bulk Material by Means of UAV Photogrammetric Surveying. Remote Sens. 2019, 11, 1471. [Google Scholar] [CrossRef] [Green Version]
- Miralbes, R.; Peña, H.; Peña, J.A. Methodology for the 3D Reconstruction of Industrials Facilities Using Photogrammetry. In Advances on Mechanics, Design Engineering and Manufacturing II; Springer: Cham, Switzerland, 2019; pp. 225–234. [Google Scholar]
- Marathe, S. Leveraging Drone Based Imaging Technology for Pipeline and RoU Monitoring Survey. In Proceedings of the SPE Symposium: Asia Pacific Health, Safety, Security, Environment and Social Responsibility, Kuala Lumpur, Malaysia, 23–24 April 2019; Society of Petroleum Engineers: Kuala Lumpur, Malaysia, 2019. [Google Scholar]
- Liu, X.; Guan, Z.; Fan, Q.; Chen, Q.; Gao, T. Remote Sensing and Scene Reconstruction of Traffic Accident Based on Unmanned Aerial Vehicle Platform. In Proceedings of the 19th COTA International Conference of Transportation Professionals, Nanjing, China, 6–8 July 2019; pp. 3331–3342. [Google Scholar]
- Pádua, L.; Sousa, J.; Vanko, J.; Hruška, J.; Adão, T.; Peres, E.; Sousa, J.J. Digital Reconstitution of Road Traffic Accidents: A Flexible Methodology Relying on UAV Surveying and Complementary Strategies to Support Multiple Scenarios. Int. J. Environ. Res. Public Health 2020, 17, 1868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamnik, R.; Perc, M.N.; Topolšek, D. Using the Scanners and Drone for Comparison of Point Cloud Accuracy at Traffic Accident Analysis. Accid. Anal. Prev. 2020, 135, 105391. [Google Scholar] [CrossRef] [PubMed]
- Casella, V.; Chiabrando, F.; Franzini, M.; Manzino, A.M. Accuracy Assessment of A UAV Block by Different Software Packages, Processing Schemes and Validation Strategies. ISPRS Int. J. Geo-Inf. 2020, 9, 164. [Google Scholar] [CrossRef] [Green Version]
- Mora, O.E.; Chen, J.; Stoiber, P.; Koppanyi, Z.; Pluta, D.; Josenhans, R.; Okubo, M. Accuracy of Stockpile Estimates Using Low-Cost sUAS Photogrammetry. Int. J. Remote Sens. 2020, 41, 4512–4529. [Google Scholar] [CrossRef]
- Perry, B.J.; Guo, Y.; Atadero, R.; van de Lindt, J.W. Streamlined Bridge Inspection System Utilizing Unmanned Aerial Vehicles (UAVs) and Machine Learning. Measurement 2020, 164, 108048. [Google Scholar] [CrossRef]
- Gaiani, M.; Remondino, F.; Apollonio, F.I.; Ballabeni, A. An Advanced Pre-Processing Pipeline to Improve Automated Photogrammetric Reconstructions of Architectural Scenes. Remote Sens. 2016, 8, 178. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Gutiérrez, Á.; Sanjosé-Blasco, D.; Juan, J.; Lozano-Parra, J.; Berenguer-Sempere, F. Matías-Bejarano, D. Does HDR Pre-Processing Improve the Accuracy of 3D Models Obtained by Means of Two Conventional SfM-MVS Software Packages? The Case of the Corral del Veleta Rock Glacier. Remote Sens. 2015, 7, 10269–10294. [Google Scholar] [CrossRef] [Green Version]
Experiment | Month | Time | Temperature Range | Wind Speed | Environmental Factors | Notes |
---|---|---|---|---|---|---|
A | July | 13:00 | 47 °C | 25 kph | Rising dust | High temperature Daylight high wind with dust gusts |
B | November | 19:00 | 8 °C | 15 kph | Scattered rain | low temperature, low light, medium wind |
Car A | Car B | Between Car A and Car B |
---|---|---|
Length of the back window (C11) Width of the back window (C12) Length of the front door (C13) Width of the front door (C14) Length of the front mirror (C15) Width of the front mirror (C16) Width of the bumper (C17) | Length of the back window (C21) Width of the back window (C22) Length of the front door (C23) Width of the front door (C24) Length of the front mirror (C25) Width of the front mirror (C26) Width of the bumper (C27) | Distance between the farthest front lights (A1) Distance from tire to tire (A2) Distance from bumper to bumper (A3) |
Flight Mission | Height (in m) | GSD (in cm/pixel) | Camera Angle (Degrees) | Total Flight Time (Minutes) |
---|---|---|---|---|
1 | 17 | 0.17 | 45° | 8:32 min |
2 | 25 | 0.72 | 45° | 7:52 min |
3 | 30 | 1.18 | 30° | 6:12 min |
4 | 40 | 1.52 | 20° | 4:09 min |
Segment | Manual Measurements | Altitude = 17 m | Altitude = 25 m | Altitude = 30 m | Altitude = 40 m | ||||
---|---|---|---|---|---|---|---|---|---|
sUAV (cm) | Error % | sUAV (cm) | Error % | sUAV (cm) | Error % | sUAV (cm) | Error % | ||
C11 | 85.00 | 86.45 | 1.71 | 83.23 | 2.08 | 87.36 | 2.78 | 80.97 | 4.74 |
C12 | 48.00 | 48.95 | 1.98 | 46.18 | 3.79 | 45.39 | 5.44 | 51.34 | 6.96 |
C13 | 108.00 | 109.17 | 1.08 | 106.48 | 1.41 | 105.49 | 2.32 | 111.12 | 2.89 |
C14 | 79.00 | 79.65 | 0.82 | 77.16 | 2.33 | 75.12 | 4.91 | 82.49 | 4.42 |
C15 | 155.00 | 155.46 | 0.30 | 153.17 | 1.18 | 157.54 | 1.64 | 158.73 | 2.41 |
C16 | 75.00 | 75.55 | 0.73 | 73.48 | 2.03 | 72.08 | 3.89 | 70.64 | 5.81 |
C17 | 114.00 | 115.37 | 1.20 | 112.06 | 1.70 | 111.39 | 2.29 | 117.6 | 3.16 |
C21 | 60.00 | 61.35 | 2.25 | 58.44 | 2.60 | 57.03 | 4.95 | 63.78 | 6.30 |
C22 | 42.00 | 42.89 | 2.12 | 40.06 | 4.62 | 39.16 | 6.76 | 37.19 | 11.45 |
C23 | 105.00 | 106.06 | 1.01 | 103.43 | 1.50 | 101.25 | 3.57 | 107.87 | 2.73 |
C24 | 125.00 | 126.09 | 0.87 | 123.37 | 1.30 | 121.13 | 3.10 | 128.58 | 2.86 |
C25 | 121.00 | 122.02 | 0.84 | 119.04 | 1.62 | 117.88 | 2.58 | 123.96 | 2.45 |
C26 | 84.00 | 84.45 | 0.54 | 82.25 | 2.08 | 81.86 | 2.55 | 87.72 | 4.43 |
C27 | 152.00 | 153.04 | 0.68 | 150.4 | 1.05 | 155.96 | 2.61 | 147.94 | 2.67 |
A1 | 289.00 | 290.12 | 0.39 | 287.28 | 0.60 | 286.51 | 0.86 | 284.46 | 1.57 |
A2 | 133.00 | 133.53 | 0.40 | 131.32 | 1.26 | 130.4 | 1.95 | 135.73 | 2.05 |
A3 | 95.00 | 94.5 | 0.53 | 93.26 | 1.83 | 98.38 | 3.56 | 98.44 | 3.62 |
Criteria | Flight Altitude | |||
---|---|---|---|---|
17 m | 25 m | 30 m | 40 m | |
MSE | 0.95 | 3.01 | 9.17 | 13.68 |
RMSE | 0.97 | 1.73 | 3.03 | 3.70 |
CVRMSE | 1.72 | 3.06 | 5.30 | 6.61 |
Segment | Manual Measurements | Front 90% Side 90% | Front 85% Side 80% | Front 80% Side 75% | Front 75% Side 65% | ||||
---|---|---|---|---|---|---|---|---|---|
sUAV (cm) | Error % | sUAV (cm) | Error % | sUAV (cm) | Error% | sUAV (cm) | Error% | ||
C11 | 85.00 | 83.73 | 1.50 | 81.94 | 3.59 | 72.29 | 14.96 | 71.81 | 15.51 |
C12 | 48.00 | 49.20 | 2.50 | 50.95 | 6.15 | 43.20 | 9.99 | 32.66 | 31.95 |
C13 | 108.00 | 106.75 | 1.16 | 106.88 | 1.04 | 96.90 | 10.28 | 89.83 | 16.82 |
C14 | 79.00 | 78.20 | 1.01 | 77.53 | 1.86 | 72.18 | 8.63 | 71.11 | 9.99 |
C15 | 155.00 | 156.98 | 1.28 | 157.18 | 1.41 | 147.23 | 5.01 | 141.02 | 9.02 |
C16 | 75.00 | 76.88 | 2.51 | 74.89 | 0.15 | 66.16 | 11.78 | 63.35 | 15.53 |
C17 | 114.00 | 112.03 | 1.73 | 113.78 | 0.19 | 106.03 | 6.99 | 95.49 | 16.24 |
C21 | 60.00 | 59.10 | 1.50 | 57.99 | 3.36 | 56.66 | 5.56 | 54.93 | 8.45 |
C22 | 42.00 | 42.89 | 2.12 | 44.67 | 6.35 | 36.91 | 12.12 | 26.25 | 37.49 |
C23 | 105.00 | 104.83 | 0.16 | 106.66 | 1.58 | 96.78 | 7.83 | 88.16 | 16.03 |
C24 | 125.00 | 122.30 | 2.16 | 121.86 | 2.51 | 113.98 | 8.82 | 102.43 | 18.06 |
C25 | 121.00 | 119.57 | 1.18 | 119.19 | 1.49 | 109.37 | 9.61 | 101.05 | 16.49 |
C26 | 84.00 | 85.26 | 1.50 | 86.11 | 2.51 | 83.27 | 0.87 | 68.28 | 18.72 |
C27 | 152.00 | 150.92 | 0.71 | 150.67 | 0.87 | 140.75 | 7.40 | 132.00 | 13.16 |
A1 | 289.00 | 294.00 | 1.73 | 295.93 | 2.40 | 287.81 | 0.41 | 273.73 | 5.28 |
A2 | 133.00 | 131.36 | 1.23 | 132.47 | 0.40 | 123.80 | 6.92 | 109.44 | 17.72 |
A3 | 95.00 | 95.80 | 0.84 | 93.80 | 1.26 | 84.78 | 10.75 | 84.21 | 11.36 |
Criteria | Frontal and Lateral Percent Overlap | |||
---|---|---|---|---|
Front 90% Side 85% | Front 85% Side 80% | Front 80% Side 75% | Front 75% Side 65% | |
MSE | 3.45 | 6.43 | 72.66 | 264.23 |
RMSE | 1.86 | 2.54 | 8.52 | 16.26 |
CVRMSE | 3.23 | 4.38 | 14.91 | 29.39 |
MAPE | 1.20% | 6.10% | 8.22% | 16.08% |
Segment | Manual Measurements | Experiment A | Experiment B | ||
---|---|---|---|---|---|
sUAV (cm) | Error % | sUAV (cm) | Error % | ||
C11 | 85.00 | 92.61 | 8.96 | 82.93 | 2.43 |
C12 | 48.00 | 44.59 | 7.11 | 45.97 | 4.22 |
C13 | 108.00 | 112.20 | 3.89 | 116.74 | 8.09 |
C14 | 79.00 | 75.13 | 4.90 | 82.94 | 4.99 |
C15 | 155.00 | 144.78 | 6.59 | 150.94 | 2.62 |
C16 | 75.00 | 70.51 | 5.99 | 69.52 | 7.30 |
C17 | 114.00 | 111.00 | 2.63 | 115.32 | 1.16 |
C21 | 60.00 | 56.50 | 5.83 | 53.93 | 10.11 |
C22 | 42.00 | 39.41 | 6.16 | 43.04 | 2.48 |
C23 | 105.00 | 108.96 | 3.78 | 97.19 | 7.43 |
C24 | 125.00 | 128.76 | 3.01 | 121.75 | 2.60 |
C25 | 121.00 | 113.37 | 6.31 | 124.22 | 2.66 |
C26 | 84.00 | 79.28 | 5.62 | 82.16 | 2.19 |
C27 | 152.00 | 151.07 | 0.61 | 156.02 | 2.65 |
A1 | 289.00 | 273.86 | 5.24 | 280.54 | 2.93 |
A2 | 133.00 | 138.24 | 3.94 | 131.13 | 1.41 |
A3 | 95.00 | 88.37 | 6.98 | 92.59 | 2.54 |
Criteria | Experiments | |
---|---|---|
A | B | |
MSE | 21.70 | 39.22 |
RMSE | 4.66 | 6.26 |
CVRMSE | 8.35 | 11.50 |
MAPE | 5.15% | 20.20% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almeshal, A.M.; Alenezi, M.R.; Alshatti, A.K. Accuracy Assessment of Small Unmanned Aerial Vehicle for Traffic Accident Photogrammetry in the Extreme Operating Conditions of Kuwait. Information 2020, 11, 442. https://doi.org/10.3390/info11090442
Almeshal AM, Alenezi MR, Alshatti AK. Accuracy Assessment of Small Unmanned Aerial Vehicle for Traffic Accident Photogrammetry in the Extreme Operating Conditions of Kuwait. Information. 2020; 11(9):442. https://doi.org/10.3390/info11090442
Chicago/Turabian StyleAlmeshal, Abdullah M., Mohammad R. Alenezi, and Abdullah K. Alshatti. 2020. "Accuracy Assessment of Small Unmanned Aerial Vehicle for Traffic Accident Photogrammetry in the Extreme Operating Conditions of Kuwait" Information 11, no. 9: 442. https://doi.org/10.3390/info11090442
APA StyleAlmeshal, A. M., Alenezi, M. R., & Alshatti, A. K. (2020). Accuracy Assessment of Small Unmanned Aerial Vehicle for Traffic Accident Photogrammetry in the Extreme Operating Conditions of Kuwait. Information, 11(9), 442. https://doi.org/10.3390/info11090442