Machine-Learning-Based User Position Prediction and Behavior Analysis for Location Services
Abstract
:1. Introduction
- We propose a two-layer XGBoost algorithm, stacking multi-class XGBoost algorithm, and two-class XGBoost algorithm that can produce more accurate predictions.
- We data mine real consumers’ transaction records, process and build feature engineering, and improve the prediction results.
- According to the model results, we propose some user behavior analysis methods based on location services.
2. Data Analysis and Processing
2.1. Data Description
2.2. Feature Extraction
2.3. Feature Screening
3. Methodology
3.1. XGBoost Model
3.2. Two-Layer XGBoost Algorithm
3.2.1. Multi-Class Problem for the First Layer
3.2.2. Two-Class Prediction for Second Layer
4. Experiments and Results
4.1. Comparison with the Statistical Rule Algorithm
4.2. Comparison with KNN Algorithm
5. Services and Behavior Analysis
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sarker, I.H.; Kayes, A. ABC-RuleMiner: User behavioral rule-based machine learning method for context-aware intelligent services. J. Netw. Comput. Appl. 2020, 168, 102762. [Google Scholar] [CrossRef]
- Sarker, I.H.; Colman, A.; Han, J.; Kayes, A.; Watters, P. CalBehav: A Machine Learning-Based Personalized Calendar Behavioral Model Using Time-Series Smartphone Data. Comput. J. 2020, 63, 1109–1123. [Google Scholar] [CrossRef] [Green Version]
- Purba, K.R.; Asirvatham, D.; Murugesan, R.K. Classification of instagram fake users using supervised machine learning algorithms. Int. J. Electr. Comput. Eng. 2020, 10, 2763. [Google Scholar] [CrossRef]
- Huang, H.; Liu, L. Analysis of the Location of Nanning Large-Scale Mall Based on BP Neural Network. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, 42, 975–979. [Google Scholar] [CrossRef] [Green Version]
- Arai, T.; Yoshizawa, T.; Aoki, T.; Zempo, K.; Okada, Y. Evaluation of indoor positioning system based on attachable infrared beacons in metal shelf environment. In Proceedings of the 2019 IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, NV, USA, 11–13 January 2019; pp. 1–4. [Google Scholar]
- Santo, H.; Maekawa, T.; Matsushita, Y. Device-free and privacy preserving indoor positioning using infrared retro-reflection imaging. In Proceedings of the 2017 IEEE International Conference on Pervasive Computing and Communications (PerCom), Kona, HI, USA, 13–17 March 2017; pp. 141–152. [Google Scholar]
- Martín-Gorostiza, E.; García-Garrido, M.A.; Pizarro, D.; Salido-Monzú, D.; Torres, P. An Indoor Positioning Approach Based on Fusion of Cameras and Infrared Sensors. Sensors 2019, 19, 2519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saab, S.S.; Nakad, Z.S. A standalone RFID indoor positioning system using passive tags. IEEE Trans. Ind. Electron. 2010, 58, 1961–1970. [Google Scholar] [CrossRef]
- Huang, C.H.; Lee, L.H.; Ho, C.C.; Wu, L.L.; Lai, Z.H. Real-time RFID indoor positioning system based on Kalman-filter drift removal and Heron-bilateration location estimation. IEEE Trans. Instrum. Meas. 2014, 64, 728–739. [Google Scholar] [CrossRef]
- Xu, H.; Ding, Y.; Li, P.; Wang, R.; Li, Y. An RFID indoor positioning algorithm based on Bayesian probability and K-nearest neighbor. Sensors 2017, 17, 1806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, C.; Wang, X.; Chen, M.; Kim, M.J. Differential received signal strength based RFID positioning for construction equipment tracking. Adv. Eng. Inform. 2019, 42, 100960. [Google Scholar] [CrossRef]
- De Angelis, A.; Moschitta, A.; Carbone, P.; Calderini, M.; Neri, S.; Borgna, R.; Peppucci, M. Design and characterization of a portable ultrasonic indoor 3-D positioning system. IEEE Trans. Instrum. Meas. 2015, 64, 2616–2625. [Google Scholar] [CrossRef]
- Yayan, U.; Yucel, H.; Yazıcı, A. A low cost ultrasonic based positioning system for the indoor navigation of mobile robots. J. Intell. Robot. Syst. 2015, 78, 541–552. [Google Scholar] [CrossRef]
- Lin, Q.; An, Z.; Yang, L. Rebooting ultrasonic positioning systems for ultrasound-incapable smart devices. In Proceedings of the 25th Annual International Conference on Mobile Computing and Networking, Los Cabos, Mexico, 21–25 October 2019; pp. 1–16. [Google Scholar]
- Sharp, I.; Yu, K. Indoor WiFi Positioning. In Wireless Positioning: Principles and Practice; Springer: Berlin/Heidelberg, Germany, 2019; pp. 219–240. [Google Scholar]
- Bisio, I.; Lavagetto, F.; Marchese, M.; Sciarrone, A. Smart probabilistic fingerprinting for WiFi-based indoor positioning with mobile devices. Pervasive Mob. Comput. 2016, 31, 107–123. [Google Scholar] [CrossRef]
- Zou, H.; Jin, M.; Jiang, H.; Xie, L.; Spanos, C.J. WinIPS: WiFi-based non-intrusive indoor positioning system with online radio map construction and adaptation. IEEE Trans. Wirel. Commun. 2017, 16, 8118–8130. [Google Scholar] [CrossRef]
- Yang, C.; Shao, H.R. WiFi-based indoor positioning. IEEE Commun. Mag. 2015, 53, 150–157. [Google Scholar] [CrossRef]
- Subedi, S.; Pyun, J.Y. Lightweight Workload Fingerprinting Localization Using Affinity Propagation Clustering and Gaussian Process Regression. Sensors 2018, 18, 4267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spachos, P.; Plataniotis, K.N. BLE beacons for indoor positioning at an interactive IoT-based smart museum. IEEE Syst. J. 2020, 14, 3483–3493. [Google Scholar] [CrossRef] [Green Version]
- Galván-Tejada, C.E.; Zanella-Calzada, L.A.; García-Domínguez, A.; Magallanes-Quintanar, R.; Luna-García, H.; Celaya-Padilla, J.M.; Galván-Tejada, J.I.; Vélez-Rodríguez, A.; Gamboa-Rosales, H. Estimation of Indoor Location Through Magnetic Field Data: An Approach Based on Convolutional Neural Networks. ISPRS Int. J. Geo-Inf. 2020, 9, 226. [Google Scholar] [CrossRef] [Green Version]
- Fujiwara, R.; Mizugaki, K.; Nakagawa, T.; Maeda, D.; Miyazaki, M. TOA/TDOA hybrid relative positioning system based on UWB-IR technology. IEICE Trans. Commun. 2011, 94, 1016–1024. [Google Scholar] [CrossRef]
- Hong, C.Y.; Wu, Y.C.; Liu, Y.; Chow, C.W.; Chen, Y.Y. Angle-of-Arrival (AOA) Visible Light Positioning (VLP) System Using Solar Cells with Third-Order Regression and Ridge Regression Algorithms. IEEE Photonics J. 2020, 12. [Google Scholar] [CrossRef]
- Gansemer, S.; Großmann, U.; Hakobyan, S. Rssi-based euclidean distance algorithm for indoor positioning adapted for the use in dynamically changing wlan environments and multi-level buildings. In Proceedings of the 2010 International Conference on Indoor Positioning and Indoor Navigation, Zurich, Switzerland, 15–17 September 2010; pp. 1–6. [Google Scholar]
- Keller, J.M.; Gray, M.R.; Givens, J.A. A fuzzy k-nearest neighbor algorithm. IEEE Trans. Syst. Man Cybern. 1985, 1, 580–585. [Google Scholar] [CrossRef]
- Arbib, M.A. (Ed.) The Handbook of Brain Theory and Neural Networks; MIT Press: Cambridge, MA, USA, 2003. [Google Scholar]
- Krawczyk, B.; Minku, L.L.; Gama, J.; Stefanowski, J.; Woźniak, M. Ensemble learning for data stream analysis: A survey. Inf. Fusion 2017, 37, 132–156. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Kim, J. Apparatus, Method, and Medium for Detecting Face in Image Using Boost Algorithm. U.S. Patent 7,835,541, 16 November 2010. [Google Scholar]
- Hastie, T.; Rosset, S.; Zhu, J.; Zou, H. Multi-class adaboost. Stat. Its Interface 2009, 2, 349–360. [Google Scholar] [CrossRef] [Green Version]
- Izonin, I.; Tkachenko, R.; Vitynskyi, P.; Zub, K.; Dronyuk, I. Stacking-based GRNN-SGTM Ensemble Model for Prediction Tasks. In Proceedings of the 2020 International Conference on Decision Aid Sciences and Application (DASA), Sakheer, Bahrain, 8–9 November 2020. [Google Scholar]
- Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Zeng, J.; Chen, Y.; Zhu, H.; Tian, F.; Miao, K.; Liu, Y.; Zheng, Q. User Sequential Behavior Classification for Click-Through Rate Prediction. In Proceedings of the International Conference on Database Systems for Advanced Applications, Jeju, Korea, 24–27 September 2020; Springer: Cham, Switzerland, 2020; pp. 267–280. [Google Scholar]
- Sarker, I.H.; Colman, A.; Han, J.; Khan, A.I.; Abushark, Y.B.; Salah, K. Behavdt: A behavioral decision tree learning to build user-centric context-aware predictive model. Mob. Netw. Appl. 2020, 25, 1151–1161. [Google Scholar] [CrossRef] [Green Version]
- Alibaba. Dataset. 2019. Available online: https://tianchi.aliyun.com/competition/entrance/231620/information (accessed on 22 April 2021).
- Ramasubramanian, K.; Singh, A. Machine Learning Using R; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Nielsen, D. Tree Boosting with XGBoost; NTNU Norwegian University of Science and Technology: Trondheim, Norway, 2016. [Google Scholar]
- Loh, W.Y. Classification and regression trees. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2011, 1, 14–23. [Google Scholar] [CrossRef]
- CSDN. Comparison Results. 2018. Available online: https://blog.csdn.net/gentle_guan/article/details/78593865 (accessed on 22 April 2021).
- CSDN. Comparison Methods. 2018. Available online: https://blog.csdn.net/gemnwing/article/details/81781971 (accessed on 22 April 2021).
Shop_id | Category_id | Longitude | Latitude | Price | Mall_id | |
---|---|---|---|---|---|---|
0 | s_26 | c_4 | 122.346736 | 31.833507 | 57 | m_690 |
1 | s_133 | c_6 | 121.134362 | 31.197511 | 58 | m_6587 |
2 | s_251 | c_38 | 121.000505 | 30.907667 | 34 | m_5892 |
3 | s_372 | c_30 | 119.864982 | 26.659876 | 44 | m_625 |
4 | s_456 | c_26 | 122.594243 | 31.581499 | 44 | m_3839 |
User_id | Shop_id | Time_Stamp | Longitude | Latitude | Wifi_infos | |
---|---|---|---|---|---|---|
0 | u_376 | s_2871718 | 2017-08-06 21:20 | 122.308219 | 32.088040 | b_6398480|-67... |
1 | u_376 | s_2871718 | 2017-08-06 21:20 | 122.308162 | 32.087970 | b_6396480|-67... |
2 | u_1041 | s_181637 | 2017-08-02 13:10 | 117.365255 | 40.638214 | b_8006367|-78... |
3 | u_1158 | s_609470 | 2017-08-13 12:20 | 121.134451 | 31.197416 | b_26250579|-73... |
4 | u_1654 | s_3816766 | 2017-08-25 10:50 | 122.255867 | 31.351320 | b_39004150|-66... |
Method | Precision (%) | Recall (%) | F1 Score (%) | Accuracy (%) |
---|---|---|---|---|
Statistical rule algorithm | 68.80 | 72.40 | 70.72 | 69.03 |
KNN algorithm | 73.41 | 78.60 | 75.82 | 76.59 |
First layer of our algorithm | 88.52 | 91.30 | 89.82 | 90.20 |
Two-layer XGBoost algorithm | 91.43 | 94.35 | 91.89 | 92.40 |
Step | Description |
---|---|
Input | training dataset, test dataset |
1 | all_wifi = [all WiFi_id in training dataset] |
2 | wifi_to_shop = WiFi_id: the number of times this WiFi appears in each shop |
3 | For each transaction record in the test set, find the WiFi with the strongest signal strength |
4 | Query the shop result_shop with the most occurrences of this WiFi in the dictionary wifi_to_shop |
5 | Return result_shop |
Step | Description |
---|---|
Input | training dataset, test dataset |
1 | Calculate the Euclidean distance between each testing datum and each training datum |
2 | Sort by the increasing Euclidean distance |
3 | Select the K points with the smallest Euclidean distance |
4 | Determine the frequency of occurrence of the category of the top K points |
5 | Return the category with the highest frequency among the top K points as the prediction classification of the testing data. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, H.; He, M.; Xi, Y.; Zeng, J. Machine-Learning-Based User Position Prediction and Behavior Analysis for Location Services. Information 2021, 12, 180. https://doi.org/10.3390/info12050180
Jiang H, He M, Xi Y, Zeng J. Machine-Learning-Based User Position Prediction and Behavior Analysis for Location Services. Information. 2021; 12(5):180. https://doi.org/10.3390/info12050180
Chicago/Turabian StyleJiang, Haiyang, Mingshu He, Yuanyuan Xi, and Jianqiu Zeng. 2021. "Machine-Learning-Based User Position Prediction and Behavior Analysis for Location Services" Information 12, no. 5: 180. https://doi.org/10.3390/info12050180
APA StyleJiang, H., He, M., Xi, Y., & Zeng, J. (2021). Machine-Learning-Based User Position Prediction and Behavior Analysis for Location Services. Information, 12(5), 180. https://doi.org/10.3390/info12050180