Fast Training Set Size Reduction Using Simple Space Partitioning Algorithms
Abstract
:1. Introduction
- RSP3 variations that replace the costly tasks of retrieving the pair of the furthest instances by applying simpler and faster tasks based on which each subset is divided.
- A mechanism for noise removal. This mechanism considers each subset containing only one instance as noise and does not generate prototypes for that subset. As a result, it improves the reduction rates and the classification accuracy when it is applied on noisy training sets. The proposed mechanism can be incorporated in any of the RSP3 variations (conventional RSP3 included).
2. Related Work
3. The Original Rsp3 Algorithm
Algorithm 1 RSP3 |
Input: {Training Set} Output: {Condensing Set}
|
Algorithm 2 The Grid algorithm |
Input C {A subset containing instances through } Output
|
4. The Proposed Rsp3 Variations
4.1. The Rsp3 with Editing (Rsp3e) Algorithm
4.2. The Rsp3-Rnd and Rsp3e-Rnd Algorithms
4.3. The Rsp3-M and Rsp3e-M Algorithms
4.4. The Rsp3-M2 and Rsp3e-M2 Algorithms
5. Experimental Study
5.1. Experimental Setup
5.2. Experimental Results
5.3. Statistical Comparisons
5.3.1. Wilcoxon Signed Rank Test Results
5.3.2. Friedman Test Results
- RSP3E is the most accurate approach. RSP3E-RND, RSP3, RSP3-RND and RSP3E-M2 are the runners-up.
- RSP3E-M and RSP3E-M2 achieve the highest RR measurements. RSP3-M and RSP3E are the runners-up.
- RSP3E-M and RSP3-M are the fastest approaches. RSP3-M2 and RSP3E-M2 are the runners-up.
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
DRT | Data Reduction Technique |
PG | Prototype Generation |
PS | Prototype Selection |
RSP3 | Reduction by Space Partitioning 3 |
RSP3E | Reduction by Space Partitioning 3 with Editing |
RSP3-RND | Reduction by Space Partitioning 3 with Random pairs |
RSP3E-RND | Reduction by Space Partitioning 3 with Editing and Random pairs |
RSP3-M | Reduction by Space Partitioning 3 using Means |
RSP3E-M | Reduction by Space Partitioning 3 with Editing using Means |
References
- García, S.; Luengo, J.; Herrera, F. Data Preprocessing in Data Mining; Intelligent Systems Reference Library; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar] [CrossRef]
- Cover, T.; Hart, P. Nearest Neighbor Pattern Classification. IEEE Trans. Inf. Theor. 1967, 13, 21–27. [Google Scholar] [CrossRef] [Green Version]
- Garcia, S.; Derrac, J.; Cano, J.; Herrera, F. Prototype Selection for Nearest Neighbor Classification: Taxonomy and Empirical Study. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34, 417–435. [Google Scholar] [CrossRef] [PubMed]
- Triguero, I.; Derrac, J.; Garcia, S.; Herrera, F. A Taxonomy and Experimental Study on Prototype Generation for Nearest Neighbor Classification. Trans. Syst. Man Cyber Part C 2012, 42, 86–100. [Google Scholar] [CrossRef]
- Sánchez, J.S. High training set size reduction by space partitioning and prototype abstraction. Pattern Recognit. 2004, 37, 1561–1564. [Google Scholar] [CrossRef]
- Ougiaroglou, S.; Evangelidis, G. Dealing with Noisy Data in the Context of k-NN Classification. In Proceedings of the 7th Balkan Conference on Informatics Conference, Craiova, Romania, 2–4 September 2015; ACM: New York, NY, USA, 2015; pp. 28:1–28:4. [Google Scholar] [CrossRef]
- Giorginis, T.; Ougiaroglou, S.; Evangelidis, G.; Dervos, D.A. Fast data reduction by space partitioning via convex hull and MBR computation. Pattern Recognit. 2022, 126, 108553. [Google Scholar] [CrossRef]
- Jin, X.; Han, J. K-Means Clustering. In Encyclopedia of Machine Learning; Sammut, C., Webb, G.I., Eds.; Springer: Boston, MA, USA, 2010; pp. 563–564. [Google Scholar] [CrossRef]
- Wu, J. Advances in K-means Clustering: A Data Mining Thinking; Springer Publishing Company, Incorporated: New York, NY, USA, 2012. [Google Scholar]
- Ougiaroglou, S.; Evangelidis, G. RHC: Non-Parametric Cluster-Based Data Reduction for Efficient k-NN Classification. Pattern Anal. Appl. 2016, 19, 93–109. [Google Scholar] [CrossRef]
- Castellanos, F.J.; Valero-Mas, J.J.; Calvo-Zaragoza, J. Prototype generation in the string space via approximate median for data reduction in nearest neighbor classification. Soft Comput. 2021, 25, 15403–15415. [Google Scholar] [CrossRef]
- Valero-Mas, J.J.; Castellanos, F.J. Data Reduction in the String Space for Efficient kNN Classification Through Space Partitioning. Appl. Sci. 2020, 10, 3356. [Google Scholar] [CrossRef]
- Ougiaroglou, S.; Evangelidis, G. Efficient editing and data abstraction by finding homogeneous clusters. Ann. Math. Artif. Intell. 2015, 76, 327–349. [Google Scholar] [CrossRef]
- Gallego, A.J.; Calvo-Zaragoza, J.; Valero-Mas, J.J.; Rico-Juan, J.R. Clustering-Based k-Nearest Neighbor Classification for Large-Scale Data with Neural Codes Representation. Pattern Recogn. 2018, 74, 531–543. [Google Scholar] [CrossRef] [Green Version]
- Ougiaroglou, S.; Evangelidis, G. Efficient k-NN classification based on homogeneous clusters. Artif. Intell. Rev. 2013, 42, 491–513. [Google Scholar] [CrossRef]
- Ougiaroglou, S.; Evangelidis, G.; Dervos, D.A. FHC: An adaptive fast hybrid method for k-NN classification. Log. J. IGPL 2015, 23, 431–450. [Google Scholar] [CrossRef]
- Gallego, A.J.; Rico-Juan, J.R.; Valero-Mas, J.J. Efficient k-nearest neighbor search based on clustering and adaptive k values. Pattern Recognit. 2022, 122, 108356. [Google Scholar] [CrossRef]
- Impedovo, S.; Mangini, F.; Barbuzzi, D. A Novel Prototype Generation Technique for Handwriting Digit Recognition. Pattern Recogn. 2014, 47, 1002–1010. [Google Scholar] [CrossRef]
- Carpenter, G.A.; Grossberg, S. Adaptive Resonance Theory (ART). In The Handbook of Brain Theory and Neural Networks; MIT Press: Cambridge, MA, USA, 1998; pp. 79–82. [Google Scholar]
- Rezaei, M.; Nezamabadi-pour, H. Using gravitational search algorithm in prototype generation for nearest neighbor classification. Neurocomputing 2015, 157, 256–263. [Google Scholar] [CrossRef]
- Rashedi, E.; Nezamabadi-pour, H.; Saryazdi, S. GSA: A Gravitational Search Algorithm. Inf. Sci. 2009, 179, 2232–2248. [Google Scholar] [CrossRef]
- Hu, W.; Tan, Y. Prototype Generation Using Multiobjective Particle Swarm Optimization for Nearest Neighbor Classification. IEEE Trans. Cybern. 2016, 46, 2719–2731. [Google Scholar] [CrossRef]
- Elkano, M.; Galar, M.; Sanz, J.; Bustince, H. CHI-PG: A fast prototype generation algorithm for Big Data classification problems. Neurocomputing 2018, 287, 22–33. [Google Scholar] [CrossRef]
- Escalante, H.J.; Graff, M.; Morales-Reyes, A. PGGP: Prototype Generation via Genetic Programming. Appl. Soft Comput. 2016, 40, 569–580. [Google Scholar] [CrossRef]
- Calvo-Zaragoza, J.; Valero-Mas, J.J.; Rico-Juan, J.R. Prototype Generation on Structural Data Using Dissimilarity Space Representation. Neural Comput. Appl. 2017, 28, 2415–2424. [Google Scholar] [CrossRef] [Green Version]
- Cruz-Vega, I.; Escalante, H.J. An Online and Incremental GRLVQ Algorithm for Prototype Generation Based on Granular Computing. Soft Comput. 2017, 21, 3931–3944. [Google Scholar] [CrossRef]
- Escalante, H.J.; Marin-Castro, M.; Morales-Reyes, A.; Graff, M.; Rosales-Pérez, A.; Montes-Y-Gómez, M.; Reyes, C.A.; Gonzalez, J.A. MOPG: A Multi-Objective Evolutionary Algorithm for Prototype Generation. Pattern Anal. Appl. 2017, 20, 33–47. [Google Scholar] [CrossRef]
- Jain, B.J.; Schultz, D. Asymmetric learning vector quantization for efficient nearest neighbor classification in dynamic time warping spaces. Pattern Recognit. 2018, 76, 349–366. [Google Scholar] [CrossRef] [Green Version]
- Silva, L.A.; de Vasconcelos, B.P.; Del-Moral-Hernandez, E. A Model to Estimate the Self-Organizing Maps Grid Dimension for Prototype Generation. Intell. Data Anal. 2021, 25, 321–338. [Google Scholar] [CrossRef]
- Sucholutsky, I.; Schonlau, M. Optimal 1-NN prototypes for pathological geometries. PeerJ Comput. Sci. 2021, 7, e464. [Google Scholar] [CrossRef]
- Chen, C.H.; Jóźwik, A. A sample set condensation algorithm for the class sensitive artificial neural network. Pattern Recogn. Lett. 1996, 17, 819–823. [Google Scholar] [CrossRef]
- Alcala-Fdez, J.; Sanchez, L.; Garcia, S.; del Jesus, M.J.; Ventura, S.; Guiu, J.M.G.; Otero, J.; Romero, C.; Bacardit, J.; Rivas, V.M.; et al. KEEL: A software tool to assess evolutionary algorithms for data mining problems. Soft Comput. 2008, 13, 307–318. [Google Scholar] [CrossRef]
- Ougiaroglou, S.; Evangelidis, G. EHC: Non-parametric Editing by Finding Homogeneous Clusters. In Foundations of Information and Knowledge Systems; Beierle, C., Meghini, C., Eds.; Lecture Notes in Computer Science; Springer International Publishing: Berlin/Heidelberg, Germany, 2014; Volume 8367, pp. 290–304. [Google Scholar] [CrossRef]
- Alcalá-Fdez, J.; Fernández, A.; Luengo, J.; Derrac, J.; García, S. KEEL Data-Mining Software Tool: Data Set Repository, Integration of Algorithms and Experimental Analysis Framework. J. Multiple Valued Log. Soft Comput. 2011, 17, 255–287. [Google Scholar]
- Dua, D.; Graff, C. UCI Machine Learning Repository; University of California, School of Information and Computer Science: Irvine, CA, USA, 2019; Available online: http://archive.ics.uci.edu/ml (accessed on 1 October 2022).
- Sheskin, D. Handbook of Parametric and Nonparametric Statistical Procedures; A Chapman & Hall book; Chapman & Hall/CRC: Boca Raton, FL, USA, 2011. [Google Scholar]
Dataset | Instances | Attributes | Classes |
---|---|---|---|
Balance (BL) | 625 | 4 | 3 |
KDD Cup (KDD) | 494,020/141,481 | 40 | 23 |
Banana (BN) | 5300 | 2 | 2 |
Letter Image Recognition (LIR) | 20,000 | 16 | 26 |
Landsat Satellite (LS) | 6435 | 36 | 7 |
Magic Gamma Telescope (MGT) | 19,020 | 11 | 2 |
MONK-2 (MNK) | 432 | 6 | 2 |
Pen Digits (PD) | 10,992 | 16 | 10 |
Phoneme (PH) | 5404 | 5 | 2 |
Shuttle (SH) | 58,000 | 9 | 7 |
Textrue (TXR) | 5500 | 40 | 11 |
Yeast (YST) | 1484 | 8 | 10 |
Pima (PM) | 768 | 8 | 2 |
Twonorm (TN) | 7400 | 20 | 2 |
Waveform (WF) | 5000 | 21 | 3 |
Eye State (EEG) | 14,980 | 14 | 2 |
Dataset | NOP | RSP3 | RSP3E | RSP3-RND | RSP3E-RND | RSP3-M | RSP3E-M | RSP3-M2 | RSP3E-M2 | |
---|---|---|---|---|---|---|---|---|---|---|
BL | ACC: | 80.61 | 72.75 | 86.86 | 74.37 | 86.86 | 66.19 | 71.80 | 69.72 | 82.21 |
RR: | - | 63.20 | 86.40 | 58.60 | 86.44 | 83.76 | 91.48 | 70.76 | 89.44 | |
DC: | - | 0.254 | 0.254 | 0.007 | 0.007 | 0.005 | 0.005 | 0.007 | 0.007 | |
CPU: | - | 0.198 | 0.149 | 0.087 | 0.062 | 0.039 | 0.042 | 0.068 | 0.089 | |
KDD | ACC: | 99.71 | 99.60 | 99.62 | 99.46 | 99.52 | 98.91 | 98.79 | 98.87 | 99.05 |
RR: | - | 98.54 | 99.06 | 97.76 | 98.53 | 99.30 | 99.58 | 99.09 | 99.44 | |
DC: | - | 20,278.7 | 20,278.7 | 2.1 | 2.1 | 1.8 | 1.8 | 1.8 | 1.8 | |
CPU: | - | 42,388.5 | 49,080.4 | 703.9 | 670.8 | 163.4 | 153.7 | 170.0 | 177.1 | |
BN | ACC: | 86.92 | 84.60 | 88.36 | 84.43 | 88.30 | 80.61 | 87.81 | 84.47 | 87.51 |
RR: | - | 75.09 | 90.43 | 73.70 | 89.83 | 82.39 | 91.73 | 77.96 | 90.43 | |
DC: | - | 18.88 | 18.88 | 0.078 | 0.078 | 0.066 | 0.066 | 0.077 | 0.077 | |
CPU: | - | 16.96 | 15.22 | 10.61 | 10.19 | 8.78 | 8.79 | 9.20 | 8.96 | |
LIR | ACC: | 95.75 | 95.56 | 91.87 | 95.56 | 90.98 | 92.05 | 89.82 | 94.70 | 92.03 |
RR: | - | 61.88 | 84.08 | 54.31 | 83.89 | 82.74 | 91.30 | 71.62 | 87.66 | |
DC: | - | 329.8 | 329.8 | 0.48 | 0.48 | 0.39 | 0.39 | 0.44 | 0.44 | |
CPU: | - | 1065.8 | 1175.6 | 1277.8 | 1418.0 | 199.9 | 189.9 | 539.5 | 541.9 | |
LS | ACC: | 89.94 | 89.76 | 89.06 | 90.02 | 89.79 | 86.62 | 87.02 | 89.46 | 89.70 |
RR: | - | 72.89 | 89.06 | 69.38 | 88.15 | 90.48 | 94.17 | 79.03 | 90.94 | |
DC: | - | 34.02 | 34.02 | 0.11 | 0.11 | 0.08 | 0.08 | 0.11 | 0.11 | |
CPU: | - | 113.3 | 109.3 | 25.9 | 26.1 | 3.8 | 3.7 | 11.1 | 11.8 | |
MGT | ACC: | 80.50 | 77.41 | 81.98 | 77.32 | 82.04 | 71.98 | 77.11 | 76.99 | 81.46 |
RR: | - | 58.75 | 84.32 | 56.48 | 84.37 | 80.68 | 89.11 | 64.50 | 85.34 | |
DC: | - | 364.8 | 364.8 | 0.41 | 0.41 | 0.32 | 0.32 | 0.43 | 0.43 | |
CPU: | - | 1062.3 | 1156.0 | 858.8 | 871.5 | 319.9 | 315.6 | 813.9 | 818.1 | |
MNK | ACC: | 90.51 | 91.22 | 91.21 | 80.31 | 84.71 | 88.88 | 89.81 | 87.50 | 87.73 |
RR: | - | 61.33 | 81.68 | 71.85 | 78.38 | 95.20 | 95.55 | 95.67 | 95.95 | |
DC: | - | 0.125 | 0.125 | 0.004 | 0.004 | 0.002 | 0.002 | 0.002 | 0.002 | |
CPU: | - | 0.098 | 0.099 | 0.017 | 0.017 | 0.007 | 0.007 | 0.007 | 0.007 | |
PD | ACC: | 99.33 | 99.16 | 99.05 | 99.00 | 98.73 | 96.78 | 96.95 | 98.23 | 98.39 |
RR: | - | 89.64 | 93.31 | 82.80 | 89.83 | 96.56 | 97.75 | 93.59 | 96.07 | |
DC: | - | 86.14 | 86.14 | 0.19 | 0.19 | 0.15 | 0.15 | 0.17 | 0.17 | |
CPU: | - | 133.35 | 122.85 | 29.45 | 25.86 | 2.85 | 2.53 | 6.09 | 5.97 | |
PH | ACC: | 89.64 | 86.62 | 86.16 | 86.21 | 85.90 | 82.73 | 83.79 | 86.21 | 85.80 |
RR: | - | 69.31 | 85.67 | 67.40 | 86.42 | 80.94 | 89.29 | 74.08 | 86.95 | |
DC: | - | 21.37 | 21.37 | 0.09 | 0.09 | 0.07 | 0.07 | 0.09 | 0.09 | |
CPU: | - | 25.04 | 22.76 | 17.06 | 18.75 | 8.55 | 8.21 | 11.59 | 11.73 | |
SH | ACC: | 99.93 | 99.48 | 99.58 | 99.25 | 99.20 | 99.01 | 98.71 | 95.83 | 95.95 |
RR: | - | 99.41 | 99.54 | 98.76 | 98.98 | 99.65 | 99.72 | 99.67 | 99.74 | |
DC: | - | 5991.0 | 5991.0 | 0.77 | 0.77 | 0.60 | 0.60 | 0.64 | 0.64 | |
CPU: | - | 3517.9 | 4183.2 | 16.8 | 14.9 | 5.2 | 4.4 | 5.4 | 5.0 | |
TXR | ACC: | 98.91 | 98.62 | 97.65 | 98.35 | 97.58 | 95.87 | 94.85 | 97.42 | 96.69 |
RR: | - | 82.32 | 89.84 | 77.92 | 87.81 | 94.62 | 96.41 | 88.94 | 93.67 | |
DC: | - | 25.74 | 25.74 | 0.09 | 0.09 | 0.06 | 0.06 | 0.07 | 0.07 | |
CPU: | - | 84.25 | 81.33 | 8.21 | 8.03 | 1.70 | 1.58 | 3.26 | 3.15 | |
YST | ACC: | 51.58 | 49.76 | 56.30 | 50.50 | 54.42 | 45.38 | 50.51 | 47.34 | 53.68 |
RR: | - | 28.16 | 83.83 | 25.78 | 84.47 | 50.13 | 81.33 | 33.99 | 82.54 | |
DC: | - | 2.14 | 2.14 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | |
CPU: | - | 3.87 | 3.33 | 2.38 | 2.14 | 1.47 | 1.36 | 2.14 | 2.14 | |
PM | ACC: | 70.54 | 67.67 | 70.93 | 67.67 | 73.14 | 63.49 | 68.97 | 67.80 | 71.18 |
RR: | - | 44.56 | 81.63 | 40.91 | 81.95 | 69.67 | 84.53 | 50.78 | 82.25 | |
DC: | - | 0.56 | 0.56 | 0.012 | 0.012 | 0.008 | 0.008 | 0.011 | 0.011 | |
CPU: | - | 0.81 | 0.60 | 0.27 | 0.43 | 0.10 | 0.14 | 0.28 | 0.23 | |
TN | ACC: | 94.7 | 93.11 | 95.61 | 93.51 | 95.55 | 82.84 | 84.65 | 92.68 | 94.84 |
RR: | - | 84.31 | 92.21 | 74.17 | 88.48 | 97.91 | 98.52 | 84.35 | 92.59 | |
DC: | - | 37.49 | 37.49 | 0.15 | 0.15 | 0.05 | 0.05 | 0.12 | 0.12 | |
CPU: | - | 74.53 | 67.32 | 22.83 | 21.75 | 1.09 | 0.79 | 8.39 | 8.15 | |
WF | ACC: | 77.26 | 77.54 | 81.04 | 77.94 | 80.88 | 70.84 | 71.94 | 77.86 | 80.36 |
RR: | - | 57.03 | 85.11 | 50.31 | 84.42 | 91.15 | 93.90 | 61.36 | 86.23 | |
DC: | - | 16.99 | 16.99 | 0.11 | 0.11 | 0.06 | 0.06 | 0.1 | 0.1 | |
CPU: | - | 52.95 | 46.95 | 32.09 | 28.85 | 1.81 | 1.49 | 17.79 | 17.66 | |
EEG | ACC: | 45.62 | 47.31 | 44.48 | 46.81 | 44.71 | 48.10 | 46.21 | 46.93 | 45.13 |
RR: | - | 53.76 | 81.20 | 45.75 | 82.83 | 76.88 | 86.82 | 61.01 | 82.01 | |
DC: | - | 499.1 | 499.1 | 0.36 | 0.36 | 0.26 | 0.26 | 0.39 | 0.39 | |
CPU: | - | 972.4 | 1054.5 | 639.2 | 597.6 | 249.1 | 239.0 | 493.5 | 492.2 | |
AVG | ACC: | 84.47 | 83.14 | 84.99 | 82.54 | 84.52 | 79.39 | 81.17 | 82.00 | 83.86 |
RR: | - | 68.76 | 87.96 | 65.37 | 87.17 | 85.75 | 92.57 | 75.40 | 90.08 | |
DC: | - | 1731.69 | 1731.69 | 0.31 | 0.31 | 0.25 | 0.25 | 0.27 | 0.27 | |
CPU: | - | 3094.52 | 3569.98 | 227.84 | 232.19 | 60.48 | 58.20 | 130.76 | 131.51 |
Dataset | NOP | RSP3 | RSP3E | RSP3-RND | RSP3E-RND | RSP3-M | RSP3E-M | RSP3-M2 | RSP3E-M2 | |
---|---|---|---|---|---|---|---|---|---|---|
AVG | ACC: | 84.47 | 83.14 | 84.99 | 82.54 | 84.52 | 79.39 | 81.17 | 82.00 | 83.86 |
RR: | - | 68.76 | 87.96 | 65.37 | 87.17 | 85.75 | 92.57 | 75.40 | 90.08 | |
DC: | - | 1731.69 | 1731.69 | 0.31 | 0.31 | 0.25 | 0.25 | 0.27 | 0.27 | |
CPU: | - | 3094.52 | 3569.98 | 227.84 | 232.19 | 60.48 | 58.20 | 130.76 | 131.51 | |
STD | ACC: | 16.53 | 16.77 | 15.71 | 16.52 | 15.63 | 17.04 | 15.92 | 16.71 | 15.49 |
RR: | - | 19.28 | 5.78 | 19.76 | 5.44 | 13.01 | 5.42 | 18.36 | 5.82 | |
DC: | - | 5161.65 | 5161.65 | 0.52 | 0.52 | 0.45 | 0.45 | 0.45 | 0.45 | |
CPU: | - | 10,517.29 | 12,182.89 | 403.95 | 425.69 | 107.31 | 104.05 | 252.08 | 253.07 | |
CV | ACC: | 84.47 | 0.20 | 0.20 | 0.18 | 0.20 | 0.18 | 0.21 | 0.20 | 0.18 |
RR: | - | 0.28 | 0.07 | 0.30 | 0.06 | 0.15 | 0.06 | 0.24 | 0.06 | |
DC: | - | 2.98 | 2.98 | 1.68 | 1.68 | 1.82 | 1.82 | 1.67 | 1.67 | |
CPU: | - | 3.40 | 3.41 | 1.77 | 1.83 | 1.77 | 1.79 | 1.93 | 1.92 |
Methods | Accuracy | Reduction Rate | CPU | |||
---|---|---|---|---|---|---|
w/l/t | Wilc. | w/l/t | Wilc. | w/l/t | Wilc. | |
NOP vs. RSP3 | 13/3 | 0.020 | - | - | - | - |
NOP vs. RSP3E | 8/8 | 0.501 | - | - | - | - |
NOP vs. RSP3-RND | 13/3 | 0.008 | - | - | - | - |
NOP vs. RSP3E-RND | 9/7 | 0.877 | - | - | - | - |
NOP vs. RSP3-M | 15/1 | 0.001 | - | - | - | - |
NOP vs. RSP3E-M | 14/2 | 0.001 | - | - | - | - |
NOP vs. RSP3-M2 | 14/2 | 0.002 | - | - | - | - |
NOP vs. RSP3E-M2 | 9/7 | 0.352 | - | - | - | - |
RSP3 vs. RSP3E | 7/9 | 0.215 | 0/16 | 0.000 | 6/10 | 0.215 |
RSP3 vs. RSP3-RND | 9/5 | 0.778 | 15/1 | 0.000 | 1/15 | 0.001 |
RSP3 vs. RSP3E-RND | 8/8 | 0.469 | 2/14 | 0.000 | 1/15 | 0.001 |
RSP3 vs. RSP3-M | 15/1 | 0.001 | 0/16 | 0.000 | 0/16 | 0.000 |
RSP3 vs. RSP3E-M | 13/3 | 0.015 | 0/16 | 0.001 | 0/16 | 0.000 |
RSP3 vs. RSP3-M2 | 14/2 | 0.001 | 0/16 | 0.007 | 0/16 | 0.000 |
RSP3 vs. RSP3E-M2 | 9/7 | 0.605 | 0/16 | 0.000 | 0/16 | 0.000 |
RSP3E vs. RSP3-RND | 11/5 | 0.059 | 16/0 | 0.000 | 1/15 | 0.001 |
RSP3E vs. RSP3E-RND | 11/4/1 | 0.139 | 10/6 | 0.109 | 1/15 | 0.001 |
RSP3E vs. RSP3-M | 14/2 | 0.003 | 8/8 | 0.717 | 0/16 | 0.000 |
RSP3E vs. RSP3E-M | 15/1 | 0.001 | 1/15 | 0.001 | 0/16 | 0.000 |
RSP3E vs. RSP3-M2 | 12/4 | 0.008 | 12/4 | 0.007 | 0/16 | 0.000 |
RSP3E vs. RSP3E-M2 | 12/4 | 0.007 | 1/14 | 0.004 | 0/16 | 0.000 |
RSP3-RND vs. RSP3E-RND | 7/9 | 0.148 | 0/16 | 0.000 | 5/10 | 0.532 |
RSP3-RND vs. RSP3-M | 14/2 | 0.010 | 0/16 | 0.000 | 0/16 | 0.000 |
RSP3-RND vs. RSP3E-M | 12/4 | 0.079 | 0/16 | 0.000 | 0/16 | 0.000 |
RSP3-RND vs. RSP3-M2 | 11/4/1 | 0.036 | 0/16 | 0.000 | 1/15 | 0.001 |
RSP3-RND vs. RSP3E-M2 | 8/8 | 0.277 | 0/16 | 0.000 | 1/15 | 0.001 |
RSP3E-RND vs. RSP3-M | 13/3 | 0.013 | 8/8 | 0.877 | 0/16 | 0.000 |
RSP3E-RND vs. RSP3E-M | 14/2 | 0.010 | 1/15 | 0.001 | 0/16 | 0.000 |
RSP3E-RND vs. RSP3-M2 | 12/4 | 0.030 | 11/5 | 0.015 | 1/14 | 0.001 |
RSP3E-RND vs. RSP3E-M2 | 13/3 | 0.049 | 2/14 | 0.005 | 1/14 | 0.005 |
RSP3-M vs. RSP3E-M | 5/11 | 0.056 | 0/16 | 0.000 | 3/12 | 0.100 |
RSP3-M vs. RSP3-M2 | 4/12 | 0.006 | 14/2 | 0.001 | 15/0/1 | 0.001 |
RSP3-M vs. RSP3E-M2 | 4/12 | 0.056 | 4/12 | 0.046 | 14/1/1 | 0.001 |
RSP3E-M vs. RSP3-M2 | 7/9 | 0.501 | 15/1 | 0.001 | 15/0/1 | 0.001 |
RSP3E-M vs. RSP3E-M2 | 4/12 | 0.020 | 13/3 | 0.002 | 15/0/1 | 0.001 |
RSP3-M2 vs. RSP3E-M2 | 4/12 | 0.063 | 0/16 | 0.000 | 6/8/2 | 0.975 |
Algorithm | Mean Rank | ||
---|---|---|---|
ACC | RR | CPU | |
NOP | 6.94 | - | - |
RSP3 | 5.94 | 2.06 | 1.5 |
RSP3E | 6.78 | 5.03 | 1.75 |
RSP3-RND | 5.16 | 1.06 | 3.34 |
RSP3E-RND | 6.03 | 4.63 | 3.72 |
RSP3-M | 2.38 | 5.13 | 7.09 |
RSP3E-M | 3.13 | 7.63 | 7.72 |
RSP3-M2 | 3.59 | 3.75 | 5.34 |
RSP3E-M2 | 5.06 | 6.72 | 5.53 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ougiaroglou, S.; Mastromanolis, T.; Evangelidis, G.; Margaris, D. Fast Training Set Size Reduction Using Simple Space Partitioning Algorithms. Information 2022, 13, 572. https://doi.org/10.3390/info13120572
Ougiaroglou S, Mastromanolis T, Evangelidis G, Margaris D. Fast Training Set Size Reduction Using Simple Space Partitioning Algorithms. Information. 2022; 13(12):572. https://doi.org/10.3390/info13120572
Chicago/Turabian StyleOugiaroglou, Stefanos, Theodoros Mastromanolis, Georgios Evangelidis, and Dionisis Margaris. 2022. "Fast Training Set Size Reduction Using Simple Space Partitioning Algorithms" Information 13, no. 12: 572. https://doi.org/10.3390/info13120572
APA StyleOugiaroglou, S., Mastromanolis, T., Evangelidis, G., & Margaris, D. (2022). Fast Training Set Size Reduction Using Simple Space Partitioning Algorithms. Information, 13(12), 572. https://doi.org/10.3390/info13120572