Online Customer Reviews and Satisfaction with an Upscale Hotel: A Case Study of Atlantis, The Palm in Dubai
Abstract
:1. Introduction
2. Literature Review
2.1. Dubai Tourism and Upscale Hotels
2.2. Customer Satisfaction and Online Reviews
2.3. Big Data Analysis
3. Methodology
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lohmann, G.; Albers, S.; Koch, B.; Pavlovich, K. From hub to tourist destination—An explorative study of Singapore and Dubai’s aviation-based transformation. J. Air Transp. Manag. 2009, 15, 205–211. [Google Scholar] [CrossRef] [Green Version]
- Anthonisz, A.; Mason, G. Reinventing tourism: The Dubai phenomenon. Worldw. Hosp. Tour. Themes. 2019, 11, 279–286. [Google Scholar] [CrossRef]
- Dubai Department of Economy and Tourism. Dubai Annual Report 2019; Dubai Department of Economy and Tourism: Dubai, United Arab Emirates, 2020. [Google Scholar]
- Dubai Department of Economy and Tourism. Dubai Annual Report 2020; Dubai Department of Economy and Tourism: Dubai, United Arab Emirates, 2021. [Google Scholar]
- Khudhair, H.Y.; Mardani, A. The positive role of the tourism industry for Dubai city in the United Arab Emirates. Int. J. Econ. Manag. 2021, 06, 185–199. [Google Scholar]
- Park, S.B.; Kim, J.; Lee, Y.K.; Ok, C.M. Visualizing theme park visitors’ emotions using social media analytics and geospatial analytics. Tour. Manag. 2020, 80, 104127. [Google Scholar] [CrossRef]
- Salama, H.H. Dubai: An urbanism shaped for global tourism. J. Archit. Eng. Tech. 2015, 4, 154. [Google Scholar] [CrossRef] [Green Version]
- Nuseir, M.T. Assessing the impact of brand equity and customer experience on brand loyalty in the United Arab Emirates’ hotel industry. Int. J. Bus. Excell. 2021, 25, 459–473. [Google Scholar] [CrossRef]
- Rapisarda, M. Atlantis: A grain of truth behind the fiction? Heritage 2019, 2, 254–278. [Google Scholar] [CrossRef] [Green Version]
- Gregory, J. Palm Islands; Weigl Publishers: Calgary, AB, Canada, 2019. [Google Scholar]
- Kim, Y.J.; Kim, H.S. The Impact of hotel customer experience on customer satisfaction through online reviews. Sustainability 2022, 14, 848. [Google Scholar] [CrossRef]
- Yu, J.; Kang, B.N.; Kim, H.S. A comparative study between Hilton hotels in South Korea and USA through user-generated content analytics. Culi. Sci. Hosp. Res. 2021, 27, 200–213. [Google Scholar] [CrossRef]
- Fu, W.; Kim, H.S. A study on wine cognition using semantic network analysis focused on Chinese wine market. Culi. Sci. Hosp. Res. 2021, 27, 221–231. [Google Scholar] [CrossRef]
- Kwon, H.J.; Ban, H.J.; Jun, J.K.; Kim, H.S. Topic modeling and sentiment analysis of online review for airlines. Information 2021, 12, 78. [Google Scholar] [CrossRef]
- Zhang, X.; Kim, H.S. Customer experience and satisfaction of Disneyland hotel through big data analysis of online customer reviews. Sustainability 2021, 13, 12699. [Google Scholar] [CrossRef]
- Bigné, J.E.; Andreu, L.; Gnoth, J. The theme park experience: An analysis of pleasure, arousal and satisfaction. Tour. Manag. 2005, 26, 833–844. [Google Scholar] [CrossRef]
- Geissler, G.L.; Rucks, C.T. The overall theme park experience: A visitor satisfaction tracking study. J. Vacat. Mark. 2011, 17, 127–138. [Google Scholar] [CrossRef]
- Torres, E.N.; Milman, A.; Park, S. Delighted or outraged? Uncovering key drivers of exceedingly positive and negative theme park guest experiences. J. Hosp. Tour. Manag. 2017, 1, 65–85. [Google Scholar] [CrossRef]
- Albayrak, T.; Cengizci, A.D.; Caber, M.; Nang Fong, L.H. Big data use in determining competitive position: The case of theme parks in Hong Kong. J. Dest. Mark. Manage. 2021, 22, 100668. [Google Scholar] [CrossRef]
- Stephenson, M.L. Tourism, development and ‘destination Dubai’: Cultural dilemmas and future challenges. Curr. Issues Tour. 2014, 17, 723–738. [Google Scholar] [CrossRef]
- Bagaeen, S. Brand Dubai: The instant city; or the instantly recognizable city. Int. Plan. Stud. 2007, 12, 173–197. [Google Scholar] [CrossRef]
- Sharpley, R. Planning for tourism: The case of Dubai. Tour. Hosp. Plan. Dev. 2008, 5, 13–30. [Google Scholar] [CrossRef]
- Al-Qasem, D.A. Impact of pandemic coronavirus disease (COVID 19) on United Araba Emirates tourism industry. PalArch’s J. Archaeol. Egypt Egyptol. 2021, 18, 2556–2570. [Google Scholar]
- Haak-Saheem, W. Talent management in Covid-19 crisis: How Dubai manages and sustains its global talent pool. Asian. Bus. Manage. 2020, 19, 298–301. [Google Scholar] [CrossRef]
- Langton, J. Dubai Plans to Be the World’s Most Popular Tourist Destination by 2025. The National, 2018. Available online: https://www.thenational.ae/uae/dubai-plans-to-be-world-s-most-popular-tourist-destination-by-2025-1.776970 (accessed on 28 January 2022).
- Liu, C.R.; Wu, T.C.; Yeh, P.H.; Chen, S.P. Equity-based customer loyalty mode for the upscale hotels—Alternative models for leisure and business travels. Tour. Manag. Perspect. 2015, 16, 139–147. [Google Scholar] [CrossRef]
- Hsu, C.H.C.; Oh, H.; Assaf, A.G. A customer-based brand equity model for upscale hotels. J. Travel Res. 2012, 51, 81–93. [Google Scholar] [CrossRef]
- Israeli, A.A. Star rating and corporate affiliation: Their influence on room price and performance of hotels in Israel. Int. J. Hosp. Manag. 2002, 21, 405–424. [Google Scholar] [CrossRef]
- Ariffin, A.A.M.; Maghzi, A. A Preliminary Study on Customer Expectations of Hotel Hospitality: Influences of Personal and Hotel Factors. Int. J. Hosp. Manag. 2012, 31, 191–198. [Google Scholar] [CrossRef]
- Musante, M.D.; Bojanic, D.C.; Zhang, J. An Evaluation of Hotel Website Attribute Utilization and Effectiveness by Hotel Class. J. Vacat. Mark. 2009, 15, 203–215. [Google Scholar] [CrossRef]
- Heyes, A.; Nadkarni, S. Luxury consumption in tourism: The case of Dubai—Part 2. J. Hosp. Tour. Manag. 2020, 10, 51–53. [Google Scholar] [CrossRef]
- Choi, T.Y.; Chu, R. Determinants of hotel guests’ satisfaction and repeat patronage in the Hong Kong hotel industry. Int. J. Hosp. Manag. 2001, 20, 277–297. [Google Scholar] [CrossRef]
- Ban, H.J.; Kim, H.S. Understanding customer experience and satisfaction through airline passengers’ online review. Sustainability 2019, 11, 4066. [Google Scholar] [CrossRef] [Green Version]
- Afthanorhan, A.; Awang, Z.; Rashid, N.; Foziah, H.; Ghazali, P. Assessing the effects of service quality on customer satisfaction. Manag. Sci. Lett. 2019, 9, 13–24. [Google Scholar] [CrossRef]
- Ahn, J.; Jun, K.; Kim, H.S. An exploration of the relationships among brand value, customer satisfaction and behavioral intention in fast food restaurant visitors. Culi. Sci. Hosp. Res. 2015, 21, 14–24. [Google Scholar]
- McColl-Kennedy, J.; Schneider, U. Measuring customer satisfaction: Why, what and how. Total Qual. Manag. 2000, 11, 883–896. [Google Scholar] [CrossRef]
- Serra Cantallops, A.; Salvi, F. New consumer behavior: A review of research on EWOM and hotels. Int. J. Hosp. Manag. 2014, 36, 41–51. [Google Scholar] [CrossRef]
- Hu, N.; Liu, L.; Zhang, J.J. Do online reviews affect product sales? The role of reviewer characteristics and temporal effects. Inf. Technol. Manage. 2008, 9, 201–214. [Google Scholar] [CrossRef]
- Li, M.; Ma, Y.; Cao, P. Revealing customer satisfaction with hotels through multi-site online reviews: A method based on the evidence theory. IEEE Access 2020, 8, 225226–225239. [Google Scholar] [CrossRef]
- Wang, Y.; Lu, X.; Tan, Y. Impact of product attributes on customer satisfaction: An analysis of online reviews for washing machines. Electron. Commer. Res. Appl. 2018, 29, 1–11. [Google Scholar] [CrossRef]
- Borges, A.P.; Vieira, E.; Lopes, J.M. Emotional intelligence profile of tourists and its impact on tourism. J. Qual. Assur. 2021, 1–22. [Google Scholar] [CrossRef]
- Xu, X. How do consumers in the sharing economy value sharing? Evidence from online reviews. Decis. Support Syst. 2020, 128, 113162. [Google Scholar] [CrossRef]
- Kitchin, R.; McArdle, G. What makes big data, big data? Exploring the ontological characteristics of 26 datasets. Big Data Soc. 2016, 3, 2053951716631130. [Google Scholar] [CrossRef]
- Sehgal, D.; Agarwal, A.K. Real-time sentiment analysis of big Data applications using twitter data with Hadoop framework. In Soft Computing: Theories and Applications. Advances in Intelligent Systems and Computing; Pant, M., Ray, K., Sharma, T.K., Rawat, S., Bandyopadhyay, A., Eds.; Springer: Singapore, 2018; pp. 765–772. [Google Scholar] [CrossRef]
- Sohangir, S.; Wang, D.; Pomeranets, A.; Khoshgoftaar, T.M. Big data: Deep learning for financial sentiment analysis. J. Big Data 2018, 5, 3. [Google Scholar] [CrossRef] [Green Version]
- Shayaa, S.; Jaafar, N.I.; Bahri, S.; Sulaiman, A.; Seuk Wai, P.; Wai Chung, Y.; Piprani, A.Z.; Al-Garadi, M.A. Sentiment analysis of big data: Methods, applications, and open challenges. IEEE Access 2018, 6, 37807–37827. [Google Scholar] [CrossRef]
- Barsky, J.D. Customer satisfaction in the hotel industry: Meaning and measurement. Tour. Hosp. Res. 1992, 16, 51–73. [Google Scholar] [CrossRef]
- Kim, H.D.; Choi, H.Y.; Kim, H.S. The study on job satisfaction, turnover intention and organization commitment of employees in domestic independent hotel and international chain hotels. Culi. Sci. Hosp. Res. 2017, 23, 216–224. [Google Scholar]
- Alaei, A.R.; Becken, S.; Stantic, B. Sentiment analysis in tourism: Capitalizing on big data. J. Travel Res. 2017, 58, 175–191. [Google Scholar] [CrossRef]
- Van der Loo, M.P.J. Learning RStudio for R Statistical Computing; Packt Publishing Ltd.: Birmingham, UK, 2012. [Google Scholar]
- Stiglic, G.; Watson, R.; Cilar, L. R You ready? Using the R programme for statistical analysis and graphics. Res. Nurs. Health 2019, 42, 494–499. [Google Scholar] [CrossRef] [PubMed]
- Borgatti, S.; Everett, M.; Freeman, L. UCINET for Windows: Software for Social Network Analysis; Analytic Technologies: Harvard, MA, USA, 2002. [Google Scholar]
- Johnson, J.D. UCINET: A software tool for network analysis. Commun. Educ. 1987, 36, 92–94. [Google Scholar] [CrossRef]
- Tao, S.; Kim, H.S. Cruising in Asia: What can we dig from online cruiser reviews to understand their experience and satisfaction. Asia Pac. J. Tour. Res. 2019, 24, 514–528. [Google Scholar] [CrossRef]
- Yu, J.; Kim, H.S. A study on the perception of maratang restaurants in Busan area through online review analysis. Culi. Sci. Hosp. Res. 2021, 27, 246–255. [Google Scholar] [CrossRef]
- Shadiyar, A.; Ban, H.J.; Kim, H.S. Extracting key drivers of air passenger’s experience and satisfaction through online review analysis. Sustainability 2020, 12, 9188. [Google Scholar] [CrossRef]
- Ban, H.J.; Choi, H.; Choi, E.K.; Lee, S.; Kim, H.S. Investigating key attributes in experience and satisfaction of hotel customer using online review data. Sustainability 2019, 11, 6570. [Google Scholar] [CrossRef] [Green Version]
Rank | Word | Freq. | % | Rank | Word | Freq. | % |
---|---|---|---|---|---|---|---|
1 | amazing | 516 | 6.884% | 26 | sea | 94 | 1.254% |
2 | great | 490 | 6.537% | 27 | trip | 90 | 1.201% |
3 | service | 451 | 6.017% | 28 | expensive | 84 | 1.121% |
4 | water | 382 | 5.096% | 29 | clean | 84 | 1.121% |
5 | experience | 373 | 4.976% | 30 | fantastic | 81 | 1.081% |
6 | staff | 302 | 4.029% | 31 | dinner | 75 | 1.001% |
7 | family | 301 | 4.015% | 32 | club | 73 | 0.974% |
8 | park | 292 | 3.895% | 33 | facilities | 67 | 0.894% |
9 | beautiful | 291 | 3.882% | 34 | helpful | 66 | 0.880% |
10 | restaurants | 281 | 3.749% | 35 | island | 66 | 0.880% |
11 | view | 276 | 3.682% | 36 | friend | 64 | 0.854% |
12 | aquarium | 250 | 3.335% | 37 | property | 53 | 0.707% |
13 | food | 233 | 3.108% | 38 | buffet | 51 | 0.680% |
14 | kid | 193 | 2.575% | 39 | hospitality | 48 | 0.640% |
15 | beach | 180 | 2.401% | 40 | quality | 47 | 0.627% |
16 | world | 158 | 2.108% | 41 | entertainment | 44 | 0.587% |
17 | recommend | 149 | 1.988% | 42 | incredible | 42 | 0.560% |
18 | resort | 148 | 1.974% | 43 | walk | 42 | 0.560% |
19 | pool | 142 | 1.894% | 44 | amenities | 42 | 0.560% |
20 | luxury | 115 | 1.534% | 45 | spacious | 39 | 0.520% |
21 | fun | 114 | 1.521% | 46 | reception | 38 | 0.507% |
22 | wonderful | 112 | 1.494% | 47 | covid | 38 | 0.507% |
23 | activities | 110 | 1.467% | 48 | price | 38 | 0.507% |
24 | friendly | 102 | 1.361% | 49 | front | 36 | 0.480% |
25 | breakfast | 98 | 1.307% | 50 | spa | 35 | 0.467% |
Freq. | Degree | Eigenvector | Freq. | Degree | Eigenvector | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Word | Freq. | Rank | Coef. | Rank | Coef. | Rank | Word | Freq. | Rank | Coef. | Rank | Coef. | Rank |
amazing | 516 | 1 | 13.331 | 5 | 0.265 | 5 | sea | 94 | 26 | 3.368 | 31 | 0.070 | 31 |
great | 490 | 2 | 13.825 | 3 | 0.283 | 3 | trip | 90 | 27 | 3.862 | 26 | 0.085 | 25 |
service | 451 | 3 | 14.549 | 2 | 0.283 | 4 | expensive | 84 | 28 | 2.919 | 34 | 0.064 | 33 |
water | 382 | 4 | 15.284 | 1 | 0.317 | 1 | clean | 84 | 29 | 3.994 | 25 | 0.085 | 24 |
experience | 373 | 5 | 10.753 | 8 | 0.217 | 7 | fantastic | 81 | 30 | 3.643 | 28 | 0.075 | 29 |
staff | 302 | 6 | 10.851 | 7 | 0.216 | 8 | dinner | 75 | 31 | 3.665 | 27 | 0.076 | 27 |
family | 301 | 7 | 10.577 | 9 | 0.215 | 9 | club | 73 | 32 | 3.522 | 29 | 0.072 | 30 |
park | 292 | 8 | 13.474 | 4 | 0.290 | 2 | facilities | 67 | 33 | 2.864 | 35 | 0.059 | 35 |
beautiful | 291 | 9 | 7.867 | 13 | 0.162 | 13 | helpful | 66 | 34 | 3.215 | 32 | 0.066 | 32 |
restaurants | 281 | 10 | 12.453 | 6 | 0.250 | 6 | island | 66 | 35 | 2.348 | 37 | 0.046 | 37 |
view | 276 | 11 | 8.811 | 12 | 0.170 | 12 | friend | 64 | 36 | 2.633 | 36 | 0.057 | 36 |
aquarium | 250 | 12 | 10.171 | 10 | 0.213 | 10 | property | 53 | 37 | 1.920 | 42 | 0.038 | 43 |
food | 233 | 13 | 9.710 | 11 | 0.199 | 11 | buffet | 51 | 38 | 3.061 | 33 | 0.062 | 34 |
kid | 193 | 14 | 7.615 | 14 | 0.158 | 15 | hospitality | 48 | 39 | 1.799 | 44 | 0.039 | 42 |
beach | 180 | 15 | 7.593 | 15 | 0.161 | 14 | quality | 47 | 40 | 2.041 | 41 | 0.043 | 39 |
world | 158 | 16 | 5.080 | 20 | 0.103 | 21 | entertainment | 44 | 41 | 1.865 | 43 | 0.037 | 45 |
recommend | 149 | 17 | 6.452 | 17 | 0.135 | 17 | incredible | 42 | 42 | 1.372 | 48 | 0.031 | 47 |
resort | 148 | 18 | 5.223 | 19 | 0.107 | 19 | walk | 42 | 43 | 1.415 | 47 | 0.028 | 50 |
pool | 142 | 19 | 7.011 | 16 | 0.150 | 16 | amenities | 42 | 44 | 2.096 | 39 | 0.044 | 38 |
luxury | 115 | 20 | 4.136 | 24 | 0.081 | 26 | spacious | 39 | 45 | 2.041 | 40 | 0.041 | 41 |
fun | 114 | 21 | 4.191 | 23 | 0.093 | 23 | reception | 38 | 46 | 1.799 | 45 | 0.038 | 44 |
wonderful | 112 | 22 | 3.412 | 30 | 0.075 | 28 | covid | 38 | 47 | 1.350 | 50 | 0.030 | 48 |
activities | 110 | 23 | 4.784 | 22 | 0.103 | 20 | price | 38 | 48 | 1.547 | 46 | 0.031 | 46 |
friendly | 102 | 24 | 4.817 | 21 | 0.101 | 22 | front | 36 | 49 | 1.361 | 49 | 0.029 | 49 |
breakfast | 98 | 25 | 5.519 | 18 | 0.109 | 18 | spa | 35 | 50 | 2.118 | 38 | 0.043 | 40 |
Extracted Words | Significant Words | |
---|---|---|
Service | Trip/helpful/reception/wonderful/great/service/Staff/ family/front/friendly/experience/friend/ Hospitality/kid/amazing/covid | Trip/helpful/reception/wonderful/great/ service/Staff/experience/Hospitality/amazing/ |
Dining | Breakfast/dinner/price/food/fantastic/buffet/facilities/ Spacious/clean/recommend/expensive/amenities/ Quality/Restaurants | Breakfast/dinner/price/food/buffet/ spacious/clean/expensive/quality/restaurant |
Scenery | Beach/walk/sea/view/beautiful/island | Beach/walk/sea/view/beautiful/island |
Facilities | Luxury/water/park/activities/world/aquarium/ incredible/Spa/club/entertainment/resort/pool/ property/fun/amenities/facilities | Luxury/water/park/activities/aquarium/spa/club/ entertainment/pool/amenities |
Words | Factor Loading | Eigenvalue | Variance (%) | |
---|---|---|---|---|
Facility | Park | 0.813 | 3.057 | 19.108 |
Water | 0.804 | |||
Aquarium | 0.601 | |||
Beach | 0.538 | |||
Pool | 0.482 | |||
Restaurants | 0.469 | |||
Value | Trip | 0.846 | 1.794 | 11.212 |
Service | 0.785 | |||
Family | 0.611 | |||
Dinning | Dinner | 0.705 | 1.492 | 9.325 |
Buffet | 0.693 | |||
Breakfast | 0.628 | |||
Food | 0.448 | |||
Service | Staff | 0.775 | 1.342 | 8.387 |
Friendly | 0.718 | |||
Helpful | 0.688 | |||
Total Variance (%) = 48.032 | ||||
KMO (Kaiser–Meyer–Olkin) = 0.696 | ||||
Bartlett chi-square (p) = 5845.187 (p < 0.001) |
Model | Unstandardized Coef. | Standardized Coef. | t | |
---|---|---|---|---|
B | Std. Error | Beta | ||
(Constant) | 4.620 | 0.019 | 239.693 | |
Facility (F) | −0.004 | 0.019 | −0.005 | −0.227 |
Value (V) | −0.140 | 0.019 | −0.158 | −7.256 * |
Dining (D) | −0.058 | 0.019 | −0.066 | −3.025 ** |
Service (S) | −0.014 | 0.019 | −0.016 | −0.718 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, S.; Kim, H.-S. Online Customer Reviews and Satisfaction with an Upscale Hotel: A Case Study of Atlantis, The Palm in Dubai. Information 2022, 13, 150. https://doi.org/10.3390/info13030150
Wei S, Kim H-S. Online Customer Reviews and Satisfaction with an Upscale Hotel: A Case Study of Atlantis, The Palm in Dubai. Information. 2022; 13(3):150. https://doi.org/10.3390/info13030150
Chicago/Turabian StyleWei, Shengnan, and Hak-Seon Kim. 2022. "Online Customer Reviews and Satisfaction with an Upscale Hotel: A Case Study of Atlantis, The Palm in Dubai" Information 13, no. 3: 150. https://doi.org/10.3390/info13030150
APA StyleWei, S., & Kim, H.-S. (2022). Online Customer Reviews and Satisfaction with an Upscale Hotel: A Case Study of Atlantis, The Palm in Dubai. Information, 13(3), 150. https://doi.org/10.3390/info13030150