On the Use of Mouse Actions at the Character Level
Abstract
:1. Introduction
2. Related Work
3. IPNMT Framework
4. Mouse Actions
4.1. Non-Explicit MAs
4.2. Interactive-Explicit MAs
5. Experimental Setup
5.1. Corpora
5.2. Model Architecture
5.3. System Evaluation
5.4. User Simulation
5.5. Results
6. Discussion
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Toral, A. Reassessing Claims of Human Parity and Super-Human Performance in Machine Translation at WMT 2019. In Proceedings of the 22nd Annual Conference of the European Association for Machine Translation, EAMT, Lisboa, Portugal, 3–5 November 2020; pp. 185–194. [Google Scholar]
- Isabelle, P.; Church, K.W. Special Issue: New Tools for Human Translators; Springer: New York, NY, USA, 1997; Volume 12. [Google Scholar] [CrossRef]
- Foster, G.; Isabelle, P.; Plamondon, P. Target-text mediated interactive machine translation. Mach. Transl. 1997, 12, 175–194. [Google Scholar] [CrossRef]
- Cubel, E.; González, J.; Lagarda, A.; Casacuberta, F.; Juan, A.; Vidal, E. Adapting finite-state translation to the TransType2 project. In Proceedings of the EAMT Workshop: Improving MT through other language technology tools: Resources and tools for building MT, European Association for Machine Translation, Budapest, Hungary, 13 April 2003; pp. 15–17. [Google Scholar]
- Alabau, V.; Bonk, R.; Buck, C.; Carl, M.; Casacuberta, F.; García-Martínez, M.; González-Rubio, J.; Koehn, P.; Leiva, L.; Mesa-Lao, B.; et al. CASMACAT: An open source workbench for advanced computer aided translation. Prague Bull. Math. Linguist. 2013, 100, 101–112. [Google Scholar] [CrossRef]
- Barrachina, S.; Bender, O.; Casacuberta, F.; Civera, J.; Cubel, E.; Khadivi, S.; Lagarda, A.; Ney, H.; Tomás, J.; Vidal, E.; et al. Statistical Approaches to Computer-Assisted Translation. Comput. Linguist. 2009, 35, 3–28. [Google Scholar] [CrossRef]
- González-Rubio, J.; Ortíz-Martínez, D.; Casacuberta, F. On the Use of Confidence Measures within an Interactive-predictive Machine Translation System. In Proceedings of the 14th Annual conference of the European Association for Machine Translation, EAMT, Saint Raphaël, France, 27–28 May 2010. [Google Scholar]
- Brown, P.F.; Della Pietra, S.A.; Della Pietra, V.J.; Mercer, R.L. The Mathematics of Statistical Machine Translation: Parameter Estimation. Comput. Linguist. 1993, 19, 263–311. [Google Scholar]
- Wang, Q.; Zhang, J.; Liu, L.; Huang, G.; Zong, C. Touch Editing: A Flexible One-Time Interaction Approach for Translation. In Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing, Suzhou, China, 4–7 December 2020; pp. 1–11. [Google Scholar]
- Teixeira, C.S.; Moorkens, J.; Turner, D.; Vreeke, J.; Way, A. Creating a multimodal translation tool and testing machine translation integration using touch and voice. In Informatics; Multidisciplinary Digital Publishing Institute: Basel, Switzerland, 2019; Volume 6, p. 13. [Google Scholar]
- Navarro, Á.; Casacuberta, F. Confidence Measures for Interactive Neural Machine Translation. Proc. IberSPEECH 2021, 1, 195–199. [Google Scholar]
- González-Rubio, J.; Ortíz-Martínez, D.; Casacuberta, F. Balancing User Effort and Translation Error in Interactive Machine Translation via Confidence Measures. In Proceedings of the Association for Computational Linguistics 2010 Conference Short Papers; ACL: Uppsala, Sweden, 2010; pp. 173–177. [Google Scholar]
- Lam, T.K.; Kreutzer, J.; Riezler, S. A reinforcement learning approach to interactive-predictive neural machine translation. arXiv 2018, arXiv:1805.01553. [Google Scholar]
- Sanchis-Trilles, G.; González, M.T.; Casacuberta, F.; Vidal, E.; Civera, J. Introducing Additional Input Information into Interactive Machine Translation Systems. In Proceedings of the International Workshop on Machine Learning for Multimodal Interaction; Springer: New York, NY, USA, 2008; pp. 284–295. [Google Scholar]
- Domingo, M.; Peris, Á.; Casacuberta, F. Segment-based interactive-predictive machine translation. Mach. Transl. 2017, 31, 163–185. [Google Scholar] [CrossRef]
- Peris, Á.; Domingo, M.; Casacuberta, F. Interactive neural machine translation. Comput. Speech Lang. 2017, 45, 201–220. [Google Scholar] [CrossRef] [Green Version]
- Sanchis-Trilles, G.; Ortíz-Martínez, D.; Civera, J.; Casacuberta, F.; Vidal, E.; Hoang, H. Improving Interactive Machine Translation via Mouse Actions. In Proceedings of the 2008 Conference on Empirical Methods in Natural Language Processing, Association for Computational Linguistics, Honolulu, HI, USA, 25–27 October 2008; pp. 485–494. [Google Scholar]
- Navarro, Á.; Casacuberta, F. Introducing Mouse Actions into Interactive-Predictive Neural Machine Translation. In Proceedings of the 18th Biennial Machine Translation Summit (Volume 1: Research Track), virtual online, 16–18 August 2021; pp. 270–281. [Google Scholar]
- Knowles, R.; Koehn, P. Neural interactive translation prediction. In Proceedings of the Association for Machine Translation in the Americas, Austin, TX, USA, 28 October–1 November 2016; pp. 107–120. [Google Scholar]
- Huang, G.; Liu, L.; Wang, X.; Wang, L.; Li, H.; Tu, Z.; Huang, C.; Shi, S. Transmart: A practical interactive machine translation system. arXiv 2021, arXiv:2105.13072. [Google Scholar]
- Peris, Á.; Casacuberta, F. Online learning for effort reduction in interactive neural machine translation. Comput. Speech Lang. 2019, 58, 98–126. [Google Scholar] [CrossRef] [Green Version]
- Lam, T.K.; Schamoni, S.; Riezler, S. Interactive-predictive neural machine translation through reinforcement and imitation. arXiv 2019, arXiv:1907.02326. [Google Scholar]
- Zhao, T.; Liu, L.; Huang, G.; Li, H.; Liu, Y.; GuiQuan, L.; Shi, S. Balancing quality and human involvement: An effective approach to interactive neural machine translation. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34, pp. 9660–9667. [Google Scholar]
- Ive, J.; Blain, F.; Specia, L. DeepQuest: A Framework for Neural-based Quality Estimation. In Proceedings of the 27th International Conference on Computational Linguistics, Santa Fe, NM, USA, 20–26 August 2018; pp. 3146–3157. [Google Scholar]
- Kepler, F.; Trénous, J.; Treviso, M.; Vera, M.; Martins, A.F.T. OpenKiwi: An Open Source Framework for Quality Estimation. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: System Demonstrations, Florence, Italy, 28 July–2 August 2019; pp. 117–122. [Google Scholar]
- Casta no, A.; Casacuberta, F. A connectionist approach to machine translation. In Proceedings of the Fifth European Conference on Speech Communication and Technology, Rhodes, Greece, 22–25 September 1997; pp. 91–94. [Google Scholar]
- Cho, K.; van Merriënboer, B.; Bahdanau, D.; Bengio, Y. On the Properties of Neural Machine Translation: Encoder–Decoder Approaches. In Proceedings of the Eighth Workshop on Syntax, Semantics and Structure in Statistical Translation, Association for Computational Linguistics, Doha, Qatar, 25 October 2014; pp. 103–111. [Google Scholar]
- Klein, G.; Kim, Y.; Deng, Y.; Senellart, J.; Rush, A. OpenNMT: Open-Source Toolkit for Neural Machine Translation. In Proceedings of the Association for Computational Linguistics 2017, System Demonstrations, Association for Computational Linguistics, Vancouver, BC, Canada, 30 July–4 August 2017; pp. 67–72. [Google Scholar]
- Wu, Y.; Schuster, M.; Chen, Z.; Le, Q.V.; Norouzi, M.; Macherey, W.; Krikun, M.; Cao, Y.; Gao, Q.; Macherey, K.; et al. Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv 2016, arXiv:1609.08144. [Google Scholar]
- Bubeck, S.; Cesa-Bianchi, N. Regret analysis of stochastic and nonstochastic multi-armed bandit problems. arXiv 2012, arXiv:1204.5721. [Google Scholar]
- Koehn, P. Europarl: A parallel corpus for statistical machine translation. In Proceedings of the Machine Translation Summit, Citeseer, Phuket, Thailand, 13–15 September 2005; Volume 5, pp. 79–86. [Google Scholar]
- Koehn, P.; Hoang, H.; Birch, A.; Callison-Burch, C.; Federico, M.; Bertoldi, N.; Cowan, B.; Shen, W.; Moran, C.; Zens, R.; et al. Moses: Open Source Toolkit for Statistical Machine Translation. In Proceedings of the 45th Annual Meeting of the Association for Computational Linguistics Companion Volume Proceedings of the Demo and Poster Sessions, Prague, Czech Republic, 25–27 June 2007; pp. 177–180. [Google Scholar]
- Sennrich, R.; Haddow, B.; Birch, A. Neural Machine Translation of Rare Words with Subword Units. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Berlin, Germany, 7–12 August 2016; pp. 1715–1725. [Google Scholar]
- Peris, Á.; Casacuberta, F. NMT-Keras: A Very Flexible Toolkit with a Focus on Interactive NMT and Online Learning. Prague Bull. Math. Linguist. 2018, 111, 113–124. [Google Scholar] [CrossRef] [Green Version]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is all you need. arXiv 2017, arXiv:1706.03762. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2017, arXiv:1412.6980. [Google Scholar]
- Granell, E.; Romero, V.; Martínez-Hinarejos, C.D. Study of the influence of lexicon and language restrictions on computer assisted transcription of historical manuscripts. Neurocomputing 2020, 390, 12–27. [Google Scholar] [CrossRef]
- Tomás, J.; Casacuberta, F. Statistical Phrase-Based Models for Interactive Computer-Assisted Translation. In Proceedings of the COLING/ACL 2006 Main Conference Poster Sessions, Sydney, Australia, 17–18 July 2006; pp. 835–841. [Google Scholar]
De-En | Es-En | Fr-En | |||||
---|---|---|---|---|---|---|---|
Training | Sentences | 751K | 730K | 688K | |||
Avg. Length | 20 | 21 | 21 | 20 | 22 | 20 | |
Run. Words | 15M | 16M | 15M | 15M | 15M | 14M | |
Vocabulary | 195K | 65K | 102K | 64K | 80K | 61K | |
Development | Sentences | 2000 | 2000 | 2000 | |||
Avg. Length | 27 | 29 | 30 | 29 | 33 | 29 | |
Run. Words | 55K | 59K | 60K | 59K | 67K | 59K | |
Test | Sentences | 2000 | 2000 | 2000 | |||
Avg. Length | 27 | 29 | 30 | 29 | 33 | 29 | |
Run. Words | 54K | 58K | 67K | 58K | 66K | 58K |
BLEU(↑) | |
---|---|
De-En | 28.8 |
En-De | 19.2 |
Es-En | 32.1 |
En-Es | 31.4 |
Fr-En | 31.1 |
En-Fr | 32.3 |
Baseline | Non-Explicit | Interaction-Explicit | ||||||
---|---|---|---|---|---|---|---|---|
cMAR (↓) | (CSR) (↓) | cMAR (↓) | (CSR) (↓) | (CSR) rel. (↑) | cMAR (↓) | (CSR) (↓) | (CSR) rel. (↑) | |
De-En | 14.70 | 15.92 | 14.70 | 7.06 | 55.65 | 30.91 | 2.61 | 83.61 |
En-De | 16.53 | 17.56 | 16.53 | 8.24 | 53.08 | 36.76 | 3.45 | 80.35 |
Es-En | 14.01 | 15.19 | 14.01 | 6.68 | 56.02 | 29.31 | 2.43 | 84.00 |
En-Es | 14.15 | 15.16 | 14.15 | 6.60 | 56.46 | 29.19 | 2.38 | 84.30 |
Fr-En | 14.23 | 15.44 | 14.23 | 6.71 | 56.54 | 29.51 | 2.46 | 84.07 |
En-Fr | 13.10 | 13.93 | 13.10 | 6.08 | 56.35 | 27.15 | 2.25 | 83.85 |
Baseline | Non-Explicit | Interaction-Explicit | ||||||
---|---|---|---|---|---|---|---|---|
MAR (↓) | WSR (↓) | MAR (↓) | WSR (↓) | WSR rel. (↑) | MAR (↓) | WSR (↓) | WSR rel. (↑) | |
De-En | 42.5 | 40.5 | 44.3 | 29.1 | 28.2 | 136.7 | 17.5 | 56.7 |
En-De | 49.7 | 47.8 | 51.8 | 36.2 | 24.3 | 173.1 | 24.5 | 48.8 |
Es-En | 40.5 | 38.2 | 42.2 | 27.0 | 29.3 | 127.9 | 16.3 | 57.4 |
En-Es | 41.4 | 39.6 | 43.3 | 28.7 | 27.6 | 135.9 | 17.8 | 55.1 |
Fr-En | 41.2 | 38.9 | 42.9 | 27.3 | 29.9 | 129.6 | 16.4 | 58.0 |
En-Fr | 38.1 | 36.2 | 39.7 | 25.7 | 29.0 | 121.2 | 15.3 | 57.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Navarro, Á.; Casacuberta, F. On the Use of Mouse Actions at the Character Level. Information 2022, 13, 294. https://doi.org/10.3390/info13060294
Navarro Á, Casacuberta F. On the Use of Mouse Actions at the Character Level. Information. 2022; 13(6):294. https://doi.org/10.3390/info13060294
Chicago/Turabian StyleNavarro, Ángel, and Francisco Casacuberta. 2022. "On the Use of Mouse Actions at the Character Level" Information 13, no. 6: 294. https://doi.org/10.3390/info13060294
APA StyleNavarro, Á., & Casacuberta, F. (2022). On the Use of Mouse Actions at the Character Level. Information, 13(6), 294. https://doi.org/10.3390/info13060294