Understanding Entertainment Trends during COVID-19 in Saudi Arabia
Abstract
:1. Introduction
- 1.
- Creating a Twitter dataset containing Arabic tweets relevant to gaming trends during the lockdown period posted by individuals living in Saudi Arabia. Specific game-related keywords were used to retrieve the tweets.
- 2.
- Analyzing the sentiment of the obtained dataset to discover the Saudi community’s style of gaming during the COVID-19 lockdowns (individually or in groups).
- 3.
- Analyzing the sentiment of the obtained dataset to discover the most popular online game and the most popular physical game within the Saudi community.
- 4.
- Investigating the impact of the preventative measures employed by the Saudi government on the gaming demand among the Saudi population during the lockdown period.
2. Related Work
2.1. COVID-19 Sentiment Analysis
2.2. Saudi Emotions during the COVID-19 Pandemic
3. Methodology
3.1. Dataset Collection and Construction
3.2. Dataset Preprocessing and Organization
- 1.
- Decrease the overall size of the dataset by removing irrelevant tweet attributes. The remaining attributes include the tweet text, language, mentions, URLs, photos, number of replies, number of retweets, number of likes, hashtags, quotes, and videos. These attributes were used later during the cleaning process.
- 2.
- Clean the dataset by removing irrelevant tweets, such as tweets containing only memes, jokes, quotes, videos, and URLs. The total number of tweets after cleaning is 208,159.
- 3.
- Clean the text of each tweet by removing English words, stop words, and vowel marks.
- 4.
- Normalization (e.g., teh marbuta “ة” to heh “ه” and alef variants to ’ا’)
- 5.
- Tokenize each Tweet text in the dataset using the Mazajak tool [20].
3.3. Sentiment Analysis
3.4. Mazajak Evaluation
4. Results
4.1. Preferred Gaming Style
4.2. Preferred Games
4.3. Impact of Preventative Measures on Gaming Demand
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Available online: https://www.who.int (accessed on 7 August 2021).
- Malema, M.J.; Achmat, G.; Smithdorf, G.E.; Andrews, B.; Schippers, R.; Onagbiye, S.; Malema, M.P. Online sports and e-gaming as means to promote leisure activity amidst COVID-19 pandemic. Int. Leis. Rev. 2021, 10, 73–81. [Google Scholar]
- Khan, R.; Shrivastava, P.; Kapoor, A.; Tiwari, A.; Mittal, A. Social media analysis with AI: Sentiment analysis techniques for the analysis of Twitter COVID-19 data. J. Crit. Rev. 2020, 7, 2761–2774. [Google Scholar]
- Twitter. Available online: https://marketing.twitter.com/en/insights/brandcommunications-in-times-of-crisis (accessed on 7 August 2021).
- ArabNews. Saudi Arabia Announces First Case of Coronavirus. Available online: https://www.arabnews.com/node/1635781/saudi-arabia (accessed on 2 March 2020).
- Alsaad, A.J.; Alabdulmuhsin, F.M.; Alamer, Z.M.; Alhammad, Z.A.; Al-Jamaan, K.A.; Al-sultan, Y.K. Impact of the COVID-19 pandemic quarantine on gaming behavior among children and adolescents in the eastern province of Saudi Arabia. Int. J. Med. Dev. Ctries. 2021, 5, 1007–1014. [Google Scholar] [CrossRef]
- Giunchiglia, F.; Maltese, V.; Madalli, D.; Baldry, A.; Wallner, C.; Lewis, P.; Denecke, K.; Skoutas, D.; Marenzi, I. Foundations for the Representation of Diversity, Evolution, Opinion and Bias. Available online: eprints.biblio.unitn.it/archive/00001758/01/063.pdf (accessed on 19 April 2022).
- Pokharel, B.P. Twitter Sentiment Analysis during COVID-19 Outbreak in Nepal. Available online: https://www.researchgate.net/profile/Bishwo-Prakash-Pokharel-2/publication/342228515_Twitter_Sentiment_Analysis_During_Covid-19_Outbreak_in_Nepal/links/5ef2b616458515ceb207eb07/Twitter-Sentiment-Analysis-During-Covid-19-Outbreak-in-Nepal.pdf (accessed on 19 April 2022).
- Gupta, P.; Kumar, S.; Suman, R.; Kumar, V. Sentiment analysis of lockdown in India during COVID-19: A case study on twitter. PIEEE Trans. Comput. Soc. Syst. 2020, 8, 992–1002. [Google Scholar] [CrossRef]
- Imran, A.; Daudpota, S.; Kastrati, Z.; Batra, R. Cross-cultural polarity and emotion detection using sentiment analysis and deep learning on COVID-19 related tweets. IEEE Access 2020, 8, 181074–181090. [Google Scholar] [CrossRef] [PubMed]
- Batra, R.; Imran, A.; Kastrati, Z.; Ghafoor, A.; Daudpota, S.; Shaikh, S. Evaluating polarity trend amidst the coronavirus crisis in peoples’ attitudes toward the vaccination drive. Sustainability 2021, 13, 5344. [Google Scholar] [CrossRef]
- Alotaibi, S.; Mehmood, R.; Katib, I. Sentiment analysis of Arabic tweets in smart cities: A review of Saudi dialect. In Proceedings of the 2019 Fourth International Conference on Fog and Mobile Edge Computing (FMEC); Rome, Italy, 10–13 June 2019, pp. 330–335.
- Aljameel, S.S.; Alabbad, D.A.; Alzahrani, N.A.; Alqarni, S.M.; Alamoudi, F.A.; Babili, L.M.; Aljaafary, S.K.; Alshamrani, F.M. A sentiment analysis approach to predict an individual’s awareness of the precautionary procedures to prevent COVID-19 outbreaks in Saudi Arabia. Int. J. Environ. Res. Public Health 2021, 18, 218. [Google Scholar] [CrossRef] [PubMed]
- Addawood, A.; Alsuwailem, A.; Alohali, A.; Alajaji, D.; Alsuhaibani, J.; Aljabli, F.; Alturki, M. Tracking and Understanding Public Reaction during COVID-19: Saudi Arabia as a Use Case. Available online: https://openreview.net/pdf?id=cTb46kPCBjb (accessed on 19 April 2022).
- Alsudias, L.; Rayson, P. COVID-19 and Arabic Twitter: How Can Arab World Governments and Public Health Organizations Learn from Social Media? Available online: https://openreview.net/pdf?id=yx-k0ukHzDR (accessed on 19 April 2022).
- Al-Qahtani, A.M.; Elgzar, W.T.; Ibrahim, H.A.-F. COVID-19 pandemic: Psycho-social consequences during the social distancing period among najran city population. Psychiatr. Danub. 2020, 32, 280–286. [Google Scholar] [CrossRef] [PubMed]
- Alhazmi, H.; Alharbi, M. Emotion analysis of arabic tweets during COVID-19 pandemic in Saudi Arabia. Emotion 2020, 11, 619–625. [Google Scholar] [CrossRef]
- Alharbi, A.A.; Alotebii, H.A.; AlMansour, A.A. Towards measuring happiness in Saudi Arabia based on tweets: A research proposal. In Proceedings of the 2018 1st International Conference on Computer Applications & Information Security (ICCAIS), Riyadh, Saudi Arabia, 4–6 April 2018; pp. 1–4. [Google Scholar]
- Alkhaldi, S.; Alzuabi, S.; Alqahtani, R.; Alshammari, A.; Alyousif, F.; Alboaneen, D.A.; Almelihi, M. Twitter sentiment analysis on activities of saudi general entertainment authority. In Proceedings of the 2020 3rd International Conference on Computer Applications & Information Security (ICCAIS), Riyadh, Saudi Arabia, 19–21 March 2020; pp. 1–5. [Google Scholar]
- Farha, I.A.; Magdy, W. Mazajak: An online Arabic sentiment analyser. In Proceedings of the Fourth Arabic Natural Language Processing Workshop, Florence, Italy, 1 August 2019; pp. 192–198. [Google Scholar]
Group | Key Phrase (Arabic) | Key Phrase (English) | Num of Tweets |
---|---|---|---|
1 | لعبت / العب / بلعب + لحالي | I Play Alone | 1572 |
لعبت / العب / بلعب +لوحدي | I Play individually | 1251 | |
لعبت / العب / بلعب + مع نفسي | I Play with Myself | 1663 | |
2 | نلعب | We Play | 156,348 |
لعبنا | We Played | 19,271 | |
3 | من+ تلعب/ يلعب +معي | Who Play with Me | 17 |
4 | تلعب / تلعبين / تلعبون + معي | You Play with Me | 5479 |
نلعب سوا | We Play together | 536 |
Group | Sub-Group | Neutral | Positive | Negative | Total |
---|---|---|---|---|---|
1 | 1.1 | 566 (44.9%) | 194 (15.4%) | 499 (39.63%) | 1259 |
1.2 | 140 (14.5%) | 121 (12.5%) | 700 (72.8%) | 961 | |
1.3 | 191 (14.6%) | 194 (14.8%) | 922 (70.5%) | 1307 | |
2 | 2.1 | 39,582 (27.6%) | 19,034 (13.2%) | 65,727 (45.8%) | 143,377 |
2.2 | 2864 (19.6%) | 3500 (24%) | 8177 (56.23%) | 14,541 | |
3 | 3.1 | 1283 (27.8%) | 330 (7.2%) | 2998 (65%) | 4611 |
4 | 4.1 | 2165 (27.2%) | 621 (13.5%) | 1797 (39.2%) | 4583 |
4.2 | 1071 (29.9%) | 1061 (29.7%) | 1446 (40.4%) | 3578 | |
Total | 47,862 (27.5%) | 25,055 (14.4%) | 82,266 (47.22%) | 174,217 |
F1-Score | Accuracy | Precision | Recall |
---|---|---|---|
0.72 | 0.71 | 0.72 | 0.73 |
True Positive | True Negative | False Positive | False Negative |
---|---|---|---|
4685 | 4148 | 1865 | 1763 |
Group # | Group Name | Neutral | Positive | Negative | Positive + Neutral | Total |
---|---|---|---|---|---|---|
1 | Playing Alone | 897 (26%) | 509 (14%) | 2121 (60%) | 1406 (40%) | 3527 |
4 | Within Groups | 3236 (40%) | 1682 (20%) | 3243 (40%) | 4918 (60%) | 8161 |
Total | 4133 | 2191 | 5364 | 6324 | 11,688 |
Keyword | In English | Positive | Negative | Neutral |
---|---|---|---|---|
كود | Call of duty | 14 | 35 | 362 |
فورت | Fortnite | 4 | 12 | 71 |
رينبو | Rainbow | 1 | 0 | 7 |
كيرم | Keram | 0 | 3 | 5 |
لودو | Ludo | 14 | 28 | 1768 |
مونستر | Monster | 1 | 1 | 1 |
date | 26/03 | 25/03 | 24/03 | 27/03 | 23/03 | 28/03 | 22/03 |
---|---|---|---|---|---|---|---|
tweets | 3008 | 2871 | 2833 | 2817 | 2799 | 2767 | 2646 |
date | 21/06 | 09/03 | 24/04 | 25/04 | 10/03 | 29/04 | 26/04 |
---|---|---|---|---|---|---|---|
tweets | 3008 | 2871 | 2833 | 2817 | 2799 | 2767 | 2646 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aldawod, A.; Alsakran, R.; Alrasheed, H. Understanding Entertainment Trends during COVID-19 in Saudi Arabia. Information 2022, 13, 308. https://doi.org/10.3390/info13070308
Aldawod A, Alsakran R, Alrasheed H. Understanding Entertainment Trends during COVID-19 in Saudi Arabia. Information. 2022; 13(7):308. https://doi.org/10.3390/info13070308
Chicago/Turabian StyleAldawod, Amaal, Raseel Alsakran, and Hend Alrasheed. 2022. "Understanding Entertainment Trends during COVID-19 in Saudi Arabia" Information 13, no. 7: 308. https://doi.org/10.3390/info13070308
APA StyleAldawod, A., Alsakran, R., & Alrasheed, H. (2022). Understanding Entertainment Trends during COVID-19 in Saudi Arabia. Information, 13(7), 308. https://doi.org/10.3390/info13070308