PUF-Based Post-Quantum CAN-FD Framework for Vehicular Security
Abstract
:1. Introduction
- Minimizing performance and size cost.
- Maintaining the CAN protocol and standards.
- Minimize overhead in message transmission.
1.1. Motivation
1.2. Contribution
2. Background
2.1. Post Quantum Cryptography
2.2. Related Work
3. Proposed PUF-Based CAN-FD Post Quantum Framework
3.1. Design
Algorithm 1 PUF-PQC-CANFD: Server-Node Authentication Scheme. |
|
3.2. Post-Quantum Cryptography
4. Security Analysis
4.1. Attack Protection and Security
4.2. Post-Quantum Authentication
4.3. Area and Computational Cost
5. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Labrado, C.; Thapliyal, H.; Mohanty, S.P. Fortifying Vehicular Security through Low Overhead Physically Unclonable Functions. J. Emerg. Technol. Comput. Syst. 2021, 18, 3442443. [Google Scholar] [CrossRef]
- Moody, D.; Alagic, G.; Apon, D.; Cooper, D.; Dang, Q.; Kelsey, J.; Liu, Y.K.; Miller, C.; Peralta, R.; Perlner, R.; et al. Status Report on the Second Round of the NIST Post-Quantum Cryptography Standardization Process; NIST: Gaithersburg, MD, USA, 2020. [Google Scholar] [CrossRef]
- Chen, S.; Hu, J.; Shi, Y.; Peng, Y.; Fang, J.; Zhao, R.; Zhao, L. Vehicle-to-Everything (v2x) Services Supported by LTE-Based Systems and 5G. IEEE Commun. Stand. Mag. 2017, 1, 70–76. [Google Scholar] [CrossRef]
- Moore, M.R.; Bridges, R.A.; Combs, F.L.; Anderson, A.L. Data-driven extraction of vehicle states from can bus traffic for cyberprotection and safety. IEEE Consum. Electron. Mag. 2019, 8, 104–110. [Google Scholar] [CrossRef]
- Jo, H.J.; Choi, W. A Survey of Attacks on Controller Area Networks and Corresponding Countermeasures. IEEE Trans. Intell. Transp. Syst. 2021, 23, 6123–6141. [Google Scholar] [CrossRef]
- George, T.; Li, J.; Fournaris, A.P.; Zhao, R.K.; Sakzad, A.; Steinfeld, R. Performance Evaluation of Post-Quantum TLS 1.3 on Embedded Systems; Cryptology ePrint Archive, Paper 2021/1553; ACM: New York, NY, USA, 2021; Available online: https://eprint.iacr.org/2021/1553 (accessed on 5 August 2022).
- Siddiqui, A.S.; Gui, Y.; Plusquellic, J.; Saqib, F. A Secure Communication Framework for ECUs. Adv. Sci. Technol. Eng. Syst. J. 2017, 2, 1307–1313. [Google Scholar] [CrossRef]
- Sadhu, P.K.; Yanambaka, V.P.; Mohanty, S.P.; Kougianos, E. Easy-Sec: PUF-Based Rapid and Robust Authentication Framework for the Internet of Vehicles. arXiv 2022, arXiv:2204.07709. [Google Scholar]
- Woo, S.; Jo, H.J.; Lee, D.H. A Practical Wireless Attack on the Connected Car and Security Protocol for In-Vehicle CAN. IEEE Trans. Intell. Transp. Syst. 2015, 16, 993–1006. [Google Scholar] [CrossRef]
- Ravi, P.; Sundar, V.K.; Chattopadhyay, A.; Bhasin, S.; Easwaran, A. Authentication Protocol for Secure Automotive Systems: Benchmarking Post-Quantum Cryptography. In Proceedings of the 2020 IEEE International Symposium on Circuits and Systems (ISCAS), Sevilla, Spain, 12–14 October 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Alkim, E.; Bindel, N.; Buchmann, J.; Dagdelen, Ö.; Eaton, E.; Gutoski, G.; Krämer, J.; Pawlega, F. Revisiting TESLA in the Quantum Random Oracle Model. In Proceedings of the Post-Quantum Cryptography, Utrecht, The Netherlands, 26–28 June 2017; Lange, T., Takagi, T., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 143–162. [Google Scholar]
- Schreiner, M.; Donat, L.; Köngeter, S. Introduction of CAN FD into the next generation of vehicle E/E architectures. IEEE Int. Conf. Commun. 2017. [Google Scholar]
- Möller, D.P.; Haas, R.E. Guide to Automotive Connectivity and Cybersecurity; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Koziel, B.; Azarderakhsh, R.; Kermani, M.M. A High-Performance and Scalable Hardware Architecture for Isogeny-Based Cryptography. IEEE Trans. Comput. 2018, 67, 1594–1609. [Google Scholar] [CrossRef]
- Sung, B.Y.; Kim, K.B.; Shin, K.W. An AES-GCM authenticated encryption crypto-core for IoT security. In Proceedings of the 2018 International Conference on Electronics, Information, and Communication (ICEIC), Honolulu, HI, USA, 24–27 January 2018; pp. 1–3. [Google Scholar] [CrossRef]
- Castryck, W.; Decru, T. An Efficient Key Recovery Attack on SIDH (Preliminary Version); Cryptology ePrint Archive, Paper 2022/975; ACM: New York, NY, USA, 2022; Available online: https://eprint.iacr.org/2022/975 (accessed on 5 August 2022).
- Bos, J.; Ducas, L.; Kiltz, E.; Lepoint, T.; Lyubashevsky, V.; Schanck, J.M.; Schwabe, P.; Seiler, G.; Stehlé, D. CRYSTALS-Kyber: A CCA-secure module-lattice-based KEM. In Proceedings of the 2018 IEEE European Symposium on Security and Privacy (EuroS&P), London, UK, 24–26 April 2018; IEEE: Hoboken, NJ, USA, 2018; pp. 353–367. [Google Scholar]
CAN/CAN-FD Frameworks | ||||
---|---|---|---|---|
Criteria | PUF-PQC-CANFD | Labrado [1] | Siddiqui [7] | LASAN [10] |
Replay Defense | ✔ | ✔ | ✘ | ✔ |
Sender Authenticity | ✔ | ✘ | ✘ | ✔ |
Snooping Defense | ✔ | ✔ | ✔ | ✔ |
Spoofing Defense | ✔ | ✔ | ✔ | ✔ |
Node Blacklists | ✔ | ✘ | ✔ | ✔ |
Post-Quantum | ✔ | ✘ | ✘ | ✔ |
Server Verification | ✔ | ✔ | ✘ | ✘ |
DoS Defense | ✘ | ✘ | ✘ | ✘ |
Transmitted Message | Message/Byte Count per Node | |||
---|---|---|---|---|
Proposal | Labrado [1] | Siddiqui [7] | LASAN_M [10] | |
Authentication (initial) | ||||
Authentication (repeat) | N/A |
Number of ECUs to Authenticate | ||||||||
---|---|---|---|---|---|---|---|---|
Framework | 5 | 10 | 15 | 20 | 25 | 50 | 75 | 100 |
PUF-PQC-CANFD | 1.68 ms | 3.36 ms | 5.04 ms | 6.72 ms | 8.4 ms | 16.8 ms | 25.2 ms | 33.6 ms |
Labrado [1] | 2.24 ms | 4.48 ms | 6.72 ms | 8.96 ms | 11.2 ms | 22.4 ms | 33.6 ms | 44.8 ms |
Siddiqui [7] | 9.52 ms | 35.84 ms | 78.96 ms | 138.87 ms | 215.6 ms | 851.2 ms | 1906.8 ms | 3382.4 ms |
LASAN_M [10] | 179.62 ms | 359.24 ms | 538.86 ms | 718.48 ms | 898.1 ms | 1796.2 ms | 2694.3 ms | 3592.4 ms |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cultice, T.; Thapliyal, H. PUF-Based Post-Quantum CAN-FD Framework for Vehicular Security. Information 2022, 13, 382. https://doi.org/10.3390/info13080382
Cultice T, Thapliyal H. PUF-Based Post-Quantum CAN-FD Framework for Vehicular Security. Information. 2022; 13(8):382. https://doi.org/10.3390/info13080382
Chicago/Turabian StyleCultice, Tyler, and Himanshu Thapliyal. 2022. "PUF-Based Post-Quantum CAN-FD Framework for Vehicular Security" Information 13, no. 8: 382. https://doi.org/10.3390/info13080382
APA StyleCultice, T., & Thapliyal, H. (2022). PUF-Based Post-Quantum CAN-FD Framework for Vehicular Security. Information, 13(8), 382. https://doi.org/10.3390/info13080382