China Data Cube (CDC) for Big Earth Observation Data: Practices and Lessons Learned
Abstract
:1. Introduction
2. Open Data Cube for Earth Observations (EODC)
3. Development of the China Data Cube (CDC)
3.1. Data Access and ARD Production
3.2. Data Indexing Based on the CDC Grid
3.3. Data Storage Strategy and Services
4. Case Study and Results
4.1. Water Body Change Monitoring of the Baiyangdian Lake
4.2. Vegetation Change Detection in the Beijing Suburbs
5. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yao, X.; Li, G.; Xia, J.; Ben, J.; Cao, Q.; Zhao, L.; Ma, Y.; Zhang, L.; Zhu, D. Enabling the Big Earth Observation Data via Cloud Computing and DGGS: Opportunities and Challenges. Remote Sens. 2020, 12, 62. [Google Scholar] [CrossRef]
- Song, S.; Wang, S.; Ye, H.; Guan, Y. Exploratory Analysis on the Spatial Distribution and Influencing Factors of Beitang Landscape in the Shangzhuang Basin. Land 2022, 11, 418. [Google Scholar] [CrossRef]
- Xie, J.; Hüsler, F.; Jong, R.; Chimani, B.; Asam, S.; Sun, Y.; Schaepman, M.; Kneubuehler, M. Spring Temperature and Snow Cover Climatology Drive the Advanced Springtime Phenology (1991–2014) in the European Alps. J. Geophys. Res. Biogeosci. 2021, 126. [Google Scholar] [CrossRef]
- Han, F.; Fu, G.; Yu, C.; Wang, S. Modeling Nutrition Quality and Storage of Forage Using Climate Data and Normalized-Difference Vegetation Index in Alpine Grasslands. Remote Sens. 2022, 14, 3410. [Google Scholar] [CrossRef]
- Xie, J.; Sun, Y.; Liu, X.; Ding, Z.; Lu, M. Human Activities Introduced Degenerations of Wetlands (1975–2013) across the Sanjiang Plain North of the Wandashan Mountain, China. Land 2021, 10, 1361. [Google Scholar] [CrossRef]
- Liu, P. A survey of remote-sensing big data. Front Env Sci-Switz 2015, 3. [Google Scholar] [CrossRef]
- Giuliani, G.; Camara, G.; Killough, B.; Minchin, S. Earth Observation Open Science: Enhancing Reproducible Science Using Data Cubes. Data 2019, 4, 147. [Google Scholar] [CrossRef]
- OGC. OGC Standards and Supporting Documents. Available online: http://www.opengeospatial.org/standards/ (accessed on 22 June 2022).
- Müller, M.S. Service-oriented Geoprocessing in Spatial Data Infrastructures. Master’s Thesis, Technische Universität Dresden, Dresden, Germany, 2016. [Google Scholar]
- Merticariu, G.; Misev, D.; Baumann, P. Towards a General Array Database Benchmark: Measuring Storage Access; Springer International Publishing: Toronto, ON, Canada, 2015; pp. 40–67. [Google Scholar]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–22. [Google Scholar] [CrossRef]
- Open Data Cube. Available online: https://www.opendatacube.org/ (accessed on 22 June 2022).
- Sudmanns, M.; Augustin, H.; Killough, B.; Giuliani, G.; Tiede, D.; Leith, A.; Yuan, F.; Lewis, A. Think global, cube local: An Earth Observation Data Cube’s contribution to the Digital Earth vision. Big Earth Data 2022, 1–29. [Google Scholar] [CrossRef]
- Xu, C.; Du, X.; Jian, H.; Dong, Y.; Qin, W.; Mu, H.; Yan, Z.; Zhu, J.; Fan, X. Analyzing large-scale Data Cubes with user-defined algorithms: A cloud-native approach. Int. J. Appl. Earth Obs. 2022, 109, 102784. [Google Scholar] [CrossRef]
- Yan, J.; Liu, Y.; Wang, L.; Wang, Z.; Huang, X.; Liu, H. An Efficient Organization Method for Large-Scale and Long Time-Series Remote Sens. Data in a Cloud Computing Environment. IEEE J.-Stars 2021, 14, 9350–9363. [Google Scholar] [CrossRef]
- Yan, J.; Ma, Y.; Wang, L.; Choo, K.-K.R.; Jie, W. A cloud-based Remote Sens. data production system. Future Gener. Comput. Syst. 2018, 86, 1154–1166. [Google Scholar] [CrossRef]
- Baumann, P.; Dehmel, A.; Furtado, P.; Ritsch, R.; Widmann, N. The Multidimensional Database System RasDaMan. Acm. Sigmod. Record 1998, 27, 575–577. [Google Scholar] [CrossRef]
- Stonebraker, M.; Rogers, J.; Battle, L.; Papaemmanouil, O. SciDB DBMS Research at MIT. IEEE Data Eng. Bull. 2013, 36, 21–30. [Google Scholar]
- Dhu, T.; Dunn, B.; Lewis, B.; Lymburner, L.; Phillips, C. Digital earth Australia—Unlocking new value from earth observation data. Big Earth Data 2017, 1, 64–74. [Google Scholar] [CrossRef]
- Krause, C.E.; Newey, V.; Alger, M.J.; Lymburner, L. Mapping and Monitoring the Multi-Decadal Dynamics of Australia’s Open Waterbodies Using Landsat. Remote Sens. 2021, 13, 1437. [Google Scholar] [CrossRef]
- Malthus, T.J.; Lehmann, E.; Ho, X.; Botha, E.; Anstee, J. Implementation of a Satellite Based Inland Water Algal Bloom Alerting System Using Analysis Ready Data. Remote Sens. 2019, 11, 2954. [Google Scholar] [CrossRef]
- Lucas, R.; Mueller, N.; Siggins, A.; Owers, C.; Clewley, D.; Bunting, P.; Kooymans, C.; Tissott, B.; Lewis, B.; Lymburner, L. Land cover mapping using digital earth Australia. Data 2019, 4, 143. [Google Scholar] [CrossRef]
- Lewis, A.; Lymburner, L.; Purss, M.B.J.; Brooke, B.; Evans, B.; Ip, A.; Dekker, A.G.; Irons, J.R.; Minchin, S.; Mueller, N.; et al. Rapid, high-resolution detection of environmental change over continental scales from satellite data—The Earth Observation Data Cube. Int. J. Digit. Earth 2016, 9, 106–111. [Google Scholar] [CrossRef]
- Brooke, B.; Lymburner, L.; Lewis, A. Coastal dynamics of Northern Australia–Insights from the Landsat Data Cube. Remote Sens. Appl. 2017, 8, 94–98. [Google Scholar] [CrossRef]
- Chatenoux, B.; Richard, J.P.; Small, D.; Roeoesli, C.; Wingate, V.; Poussin, C.; Rodila, D.D.; Peduzzi, P.; Steinmeier, C.; Ginzler, C. The Swiss data cube, analysis ready data archive using earth observations of Switzerland. Sci. Data 2021, 8, 295. [Google Scholar] [CrossRef] [PubMed]
- Honeck, E.; Castello, R.; Chatenoux, B.; Richard, J.-P.; Lehmann, A.; Giuliani, G. From a Vegetation Index to a Sustainable Development Goal Indicator: Forest Trend Monitoring Using Three Decades of Earth Observations across Switzerland. ISPRS Int. J. Geo.-Inf. 2018, 7, 455. [Google Scholar] [CrossRef]
- Giuliani, G.; Chatenoux, B.; Piller, T.; Moser, F.; Lacroix, P. Data Cube on Demand (DCoD): Generating an earth observation Data Cube anywhere in the world. Int. J. Appl. Earth Obs. 2020, 87, 102035. [Google Scholar] [CrossRef]
- Giuliani, G.; Chatenoux, B.; Bono, A.D.; Rodila, D.; Richard, J.P.; Allenbach, K.; Dao, H.; Peduzzi, P. Building an Earth Observations Data Cube: Lessons learned from the Swiss Data Cube (SDC) on generating Analysis Ready Data (ARD). Big Earth Data 2017, 1, 18. [Google Scholar] [CrossRef]
- Killough, B. The impact of analysis ready data in the Africa regional data cube. In Proceedings of the IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 5646–5649. [Google Scholar]
- Yuan, F.; Repse, M.; Leith, A.; Rosenqvist, A.; Milcinski, G.; Moghaddam, N.F.; Dhar, T.; Burton, C.; Hall, L.; Jorand, C.; et al. An Operational Analysis Ready Radar Backscatter Dataset for the African Continent. Remote Sens. 2022, 14, 351. [Google Scholar] [CrossRef]
- Yuan, F.; Lewis, A.; Leith, A.; Dhar, T.; Gavin, D. Analysis Ready Data for Africa. In Proceedings of the 2021 IEEE International Geoscience and Remote Sens. Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; pp. 1789–1791. [Google Scholar]
- Mubea, K.; Mfundisi, K.; Yuan, F.; Burton, C.; Boamah, E. Analysing Effects of Drought on Inundation Extent and Vegetation Cover Dynamics in the Okavango Delta. In Proceedings of the AGU Fall Meeting Abstracts, New Orleans, LA, USA, 1 December 2021; p. 0652. [Google Scholar]
- Halabisky, A.M.; Mubea, K.; Mar, F.; Yuan, F.; Burton, C.; Birchall, E.; Moghaddam, N.F.; Adimou, G.; Mamane, B.; Ongo, D.; et al. Water Observations from Space: Accurate maps of surface water through time for the continent of Africa. ESSOAr 2021, 9. [Google Scholar] [CrossRef]
- Burton, C.; Yuan, F.; Chong, E.-F.; Halabisky, M.; Ongo, D.; Mar, F.; Addabor, V.; Mamane, B.; Adimou, S. Co-Production of a 10 m Cropland Extent Map for Continental Africa using Sentinel-2, Cloud Computing, and the Open Data Cube. J AGU Fall Meeting Abstracts 2021, 0924. [Google Scholar] [CrossRef]
- Lewis, A.; Oliver, S.; Lymburner, L.; Evans, B.; Wyborn, L.; Mueller, N.; Raevksi, G.; Hooke, J.; Woodcock, R.; Sixsmith, J. The Australian Geoscience Data Cube—Foundations and lessons learned. Remote Sens. Environ. 2017, 276–292. [Google Scholar] [CrossRef]
- Xu, D. Research on the Key Techniques of Multi-source Remote Sens. Big Data Management under the Cloud Computing Environment; University of Chinese Academy of Sciences: Beijing, China, 2018. [Google Scholar]
- Unidata | NetCDF. Available online: https://www.unidata.ucar.edu/software/netcdf/ (accessed on 1 March 2022).
- PostgreSQL: The world’s most advanced open source database. Available online: https://www.postgresql.org/ (accessed on 1 June 2022).
- Yao, X.; Liu, Y.; Cao, Q.; Li, J.; Huang, R.; Woodcock, R.; Paget, M.; Wang, J.; Li, G. China Data Cube (CDC) for Big Earth Observation Data: Lessons Learned from the Design and Implementation. In Proceedings of the 2018 International Workshop on Big Geospatial Data and Data Science (BGDDS), Wuhan, China, 22–23 September 2018; pp. 1–3. [Google Scholar]
- Ross, J.; Killough, B.; Dhu, T.; Paget, M. Open Data Cube and the Committee on Earth Observation Satellites Data Cube Initiative; IAC: Adelaide, Australia, 2017; Volume 17, p. 6. [Google Scholar]
- Lewis, A.; Lacey, J.; Mecklenburg, S.; Ross, J.; Hosford, S. CEOS Analysis Ready Data for Land (CARD4L) Overview. In Proceedings of the IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 7407–7410. [Google Scholar]
- Dwyer, J.L.; Roy, D.P.; Sauer, B.; Jenkerson, C.B.; Lymburner, L. Analysis ready data: Enabling analysis of the landsat archive. Remote Sens. 2018, 10, 1363. [Google Scholar] [CrossRef]
- San A, B. Evaluation of different Atmospheric Correction Algorithms for EO-1 Hyperion Imagery. 2010. Available online: https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.222.1799 (accessed on 22 June 2022).
- Yongquan, Z.; Xiaojun, S.; Ping, T. Spatial Consistency Analysis and Relative Geometric Correction of Low Spatial Resolution Multi\|source Remote Sens. Data. Remote Sens. Technol. Appl. 2014, 29, 155–163. [Google Scholar]
- The Official YAML Web Site. Available online: https://yaml.org/ (accessed on 1 June 2022).
- Yinghu, L.I.; Baoshan, C.; Zhifeng, Y. Influence of hydrological characteristic change of Baiyangdian on the ecological environment in wetland. J. Nat. Resour. 2004, 19, 62–68. [Google Scholar] [CrossRef]
- Zhuo, L.A.; Wja, B.; Ww, C.; Zheng, C.C.; Zl, B.; Jl, A. Ecological risk assessment of the wetlands in Beijing-Tianjin-Hebei urban agglomeration—ScienceDirect. Ecol. Indic. 2020, 117. [Google Scholar] [CrossRef]
- Louati, M.; Saidi, H.; Zargouni, F. Shoreline change assessment using Remote Sens. and GIS techniques: A case study of the Medjerda delta coast, Tunisia. Arab. J. Geosci. 2015, 8, 4239–4255. [Google Scholar] [CrossRef]
- Alesheikh, A.A.; Ghorbanali, A.; Nouri, N. Coastline change detection using Remote Sensing. Int. J. Environ. Sci. Technol. 2007, 4, 61–66. [Google Scholar] [CrossRef]
- Durduran, S.S. Coastline change assessment on water reservoirs located in the Konya Basin Area, Turkey, using multitemporal landsat imagery. Environ. Monit Assess 2010, 164, 453–461. [Google Scholar] [CrossRef] [PubMed]
- Mueller, N.; Lewis, A.; Roberts, D.; Ring, S.; Melrose, R.; Sixsmith, J.; Lymburner, L.; McIntyre, A.; Tan, P.; Curnow, S.; et al. Water observations from space: Mapping surface water from 25years of Landsat imagery across Australia. Remote Sens. Environ. 2016, 174, 341–352. [Google Scholar] [CrossRef]
- Available online: http://www.bjhr.gov.cn/ywdt/mtgz/202106/t20210603_2404698.html (accessed on 22 June 2022).
- Cao, Q.; Li, G.; Yao, X.; Jia, T.; Yu, G.; Zhang, L.; Xu, D.; Zhang, H.; Shan, X. GF-1 Satellite Imagery Data Service and Application Based on Open Data Cube. Appl. Sci. 2022, 12, 7816. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, Q.; Li, G.; Yao, X.; Ma, Y. China Data Cube (CDC) for Big Earth Observation Data: Practices and Lessons Learned. Information 2022, 13, 407. https://doi.org/10.3390/info13090407
Cao Q, Li G, Yao X, Ma Y. China Data Cube (CDC) for Big Earth Observation Data: Practices and Lessons Learned. Information. 2022; 13(9):407. https://doi.org/10.3390/info13090407
Chicago/Turabian StyleCao, Qianqian, Guoqing Li, Xiaochuang Yao, and Yue Ma. 2022. "China Data Cube (CDC) for Big Earth Observation Data: Practices and Lessons Learned" Information 13, no. 9: 407. https://doi.org/10.3390/info13090407
APA StyleCao, Q., Li, G., Yao, X., & Ma, Y. (2022). China Data Cube (CDC) for Big Earth Observation Data: Practices and Lessons Learned. Information, 13(9), 407. https://doi.org/10.3390/info13090407