An Information Gradient Approach to Optimizing Traffic Sensor Placement in Statewide Networks
Abstract
:1. Introduction
2. Problem Formulation and the Proposed Framework
2.1. Problem Formulation
2.1.1. Data Input
2.1.2. TSLP Objective Function
2.2. Proposed Solution Framework
3. Methods
3.1. Topology Embedding
3.2. Spatial Kriging Analysis
3.3. K-Nearest-Neighbor Information Gradient Descent (KNN-IGD)
Algorithm 1. KNN-IGD |
Input: Number of sensors: ; the network screening threshold: ; the number of nearest neighbors: k; exploration rate: ; search space: S.
tracks explored and current neighbor locations. // tracks unexplored potential locations. // retains the currently selected locations of n sensors. //
|
3.3.1. KNN Matrix
3.3.2. Information Gradient
3.3.3. Exploitation and Exploration
3.4. Genetic Algorithm
4. Results
4.1. Implementation of GA as a Baseline
4.2. Comparison of KNN-IGD and GA
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cirianni, F.M.M.; Comi, A.; Quattrone, A. Mobility Control Centre and Artificial Intelligence for Sustainable Urban Districts. Information 2023, 14, 581. [Google Scholar] [CrossRef]
- Alonso, B.; Musolino, G.; Rindone, C.; Vitetta, A. Estimation of a Fundamental Diagram with Heterogeneous Data Sources: Experimentation in the City of Santander. ISPRS Int. J. Geo-Inf. 2023, 12, 418. [Google Scholar] [CrossRef]
- Birgillito, G.; Rindone, C.; Vitetta, A. Passenger Mobility in a Discontinuous Space: Modelling Access/Egress to Maritime Barrier in a Case Study. J. Adv. Transp. 2018, 2018, 1–13. [Google Scholar] [CrossRef]
- Owais, M. Traffic Sensor Location Problem: Three decades of research. Expert Syst. Appl. 2022, 208, 118134. [Google Scholar] [CrossRef]
- Viti, F.; Verbeke, W.; Tampère, C.M.J. Sensor locations for reliable travel time prediction and dynamic management of traffic networks. Transp. Res. Rec. J. Transp. Res. Board 2008, 2049, 103–110. [Google Scholar] [CrossRef]
- Mahmoud, O.; El Deeb, M.; Abbas, Y.A. Distributing portable excess speed detectors in AL Riyadh city. Int. J. Civ. Eng. 2020, 18, 1301–1314. [Google Scholar]
- Gentili, M.; Mirchandani, P. Locating sensors on traffic networks: Models, challenges and research opportunities. Transp. Res. Part C Emerg. Technol. 2012, 24, 227–255. [Google Scholar] [CrossRef]
- Salari, M.; Kattan, L.; Lam, W.H.; Lo, H.; Esfeh, M.A. Optimization of traffic sensor location for complete link flow observability in traffic network considering sensor failure. Transp. Res. Part B Methodol. 2019, 121, 216–251. [Google Scholar] [CrossRef]
- Owais, M.; Moussa, G.S.; Hussain, K.F. Sensor location model for O/D estimation: Multi-criteria meta-heuristics approach. Oper. Res. Perspect. 2019, 6, 100100. [Google Scholar] [CrossRef]
- Li, R.; Mehr, N.; Horowitz, R. Submodularity of optimal sensor placement for Traffic Networks. Transp. Res. Part B Methodol. 2023, 171, 29–43. [Google Scholar] [CrossRef]
- Georgia’s Traffic Monitoring Program. Available online: https://www.dot.ga.gov/DriveSmart/Data/Documents/Guides/2018_Georgia_Traffic_Monitoring_Program.pdf (accessed on 17 August 2024).
- Gharaee, Z.; Kowshik, S.; Stromann, O.; Felsberg, M. Graph representation learning for road type classification. Pattern Recognit. 2021, 120, 108174. [Google Scholar] [CrossRef]
- Yang, Y.; Yang, J.J. Strategic Sensor Placement in Expansive Highway Networks: A Novel Framework for Maximizing Information Gain. Systems 2023, 11, 577. [Google Scholar] [CrossRef]
- van Erven, T.; Harremoes, P. Rényi Divergence and Kullback-Leibler Divergence. IEEE Trans. Inf. Theory 2014, 60, 3797–3820. [Google Scholar] [CrossRef]
- Grover, A.; Leskovec, J. Node2vec: Scalable Feature Learning for Networks. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 855–864. [Google Scholar] [CrossRef]
- McInnes, L.; Healy, J.; Melville, J. UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction. arXiv 2018, arXiv:1802.03426. [Google Scholar]
- Oliver, M.A.; Webster, R. Kriging: A method of interpolation for geographical information systems. Int. J. Geogr. Inf. Sci. 1990, 4, 313–332. [Google Scholar] [CrossRef]
- Asa, E.; Saafi, M.; Membah, J.; Billa, A. Comparison of linear and nonlinear kriging methods for characterization and interpolation of soil data. J. Comput. Civ. Eng. 2012, 26, 11–18. [Google Scholar] [CrossRef]
- Zhu, Q.; Lin, H. Comparing ordinary kriging and regression kriging for soil properties in contrasting landscapes. Pedosphere 2010, 20, 594–606. [Google Scholar] [CrossRef]
- Yamamoto, J.K. An alternative measure of the reliability of ordinary kriging estimates. J. Int. Assoc. Math. Geol. 2000, 32, 489–509. [Google Scholar] [CrossRef]
- Thomas, C.; Hart, P. Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 1967, 13, 21–27. [Google Scholar]
- Sebastian, R. An overview of gradient descent optimization algorithms. arXiv 2016, arXiv:1609.04747. [Google Scholar]
- Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; A Bradford Book; MIT Press: Cambridge, MA, USA, 2018. [Google Scholar]
- Talbi, E.G. Metaheuristics: From Design to Implementation; Wiley: Hoboken, NJ, USA, 2009. [Google Scholar]
- Eiben, A.E.; Smith, J.E. Introduction to Evolutionary Computing; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Holland, J.H. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence; MIT Press: Cambridge, MA, USA, 1992. [Google Scholar]
- Goldberg, D.E. Genetic Algorithms in Search, Optimization, and Machine Learning; Addison-Wesley: Reading, MA, USA, 1989. [Google Scholar]
- Michalewicz, Z. Genetic Algorithms + Data Structures = Evolution Programs; Springer: Berlin/Heidelberg, Germany, 1996. [Google Scholar]
- Nievergelt, J. Exhaustive search, combinatorial optimization and enumeration: Exploring the potential of raw computing power. In International Conference on Current Trends in Theory and Practice of Computer Science; Springer: Berlin/Heidelberg, Germany, 2000; pp. 18–35. [Google Scholar]
- Maucher, M.; Schöning, U.; Kestler, H.A. Search heuristics and the influence of non-perfect randomness: Examining Genetic Algorithms and Simulated Annealing. Comput. Stat. 2011, 26, 303–319. [Google Scholar] [CrossRef]
- Gad, A.F. PyGAD: An intuitive genetic algorithm Python library. Multimed. Tools Appl. 2024, 83, 58029–58042. [Google Scholar] [CrossRef]
- Rouder, J.N.; Speckman, P.L.; Sun, D.; Morey, R.D.; Iverson, G. Bayesian t tests for accepting and rejecting the null hypothesis. Psychon. Bull. Rev. 2009, 16, 225–237. [Google Scholar] [CrossRef] [PubMed]
- Comi, A.; Rossolov, A.; Polimeni, A.; Nuzzolo, A. Private car OD flow estimation based on automated vehicle monitoring data: Theoretical issues and empirical evidence. Information 2021, 12, 493. [Google Scholar] [CrossRef]
Parameter | Value | Description |
---|---|---|
30 | Walk length, i.e., the number of nodes in each walk | |
200 | Number of walks per node | |
1 | The likelihood of backtracking the walk and immediately revisiting a node in the random walk. | |
1 | The In-Out parameter q allows the traversal calculation to differentiate between inward and outward nodes. | |
8 | The output node2vec embeddings dimension |
Parameter | Value |
---|---|
Number of generations | 200 |
Number of parents mating | 30 |
Population size | 100 |
Number of genes | 7624 |
Gene space | [0, 1] |
Parent selection | roulette wheel |
Crossover | single point |
Mutation | random |
Mutation percent for genes | 10 |
Null Hypothesis () | t-Statistic | p-Value |
---|---|---|
−26.91 | <0.001 | |
−20.24 | <0.001 | |
−10.34 | <0.001 |
Methods | Mean | SD | Entropy |
---|---|---|---|
RS | 1.27 | 0.21 | 6.62 |
GA | 0.60 | 0.10 | 6.46 |
KNN-IGD | 0.42 | 0.06 | 6.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Zhen, H.; Yang, J.J. An Information Gradient Approach to Optimizing Traffic Sensor Placement in Statewide Networks. Information 2024, 15, 654. https://doi.org/10.3390/info15100654
Yang Y, Zhen H, Yang JJ. An Information Gradient Approach to Optimizing Traffic Sensor Placement in Statewide Networks. Information. 2024; 15(10):654. https://doi.org/10.3390/info15100654
Chicago/Turabian StyleYang, Yunxiang, Hao Zhen, and Jidong J. Yang. 2024. "An Information Gradient Approach to Optimizing Traffic Sensor Placement in Statewide Networks" Information 15, no. 10: 654. https://doi.org/10.3390/info15100654
APA StyleYang, Y., Zhen, H., & Yang, J. J. (2024). An Information Gradient Approach to Optimizing Traffic Sensor Placement in Statewide Networks. Information, 15(10), 654. https://doi.org/10.3390/info15100654