Non-Local Prior Dense Feature Distillation Network for Image Compressive Sensing
Abstract
:1. Introduction
- To reduce network complexity, a discrete wavelet decomposition learning module and an inverse discrete wavelet reconstruction module were designed to replace traditional downsampling and upsampling methods. This approach significantly reduces computational complexity while maintaining high reconstruction quality and better extracts and restores multi-scale image features, thereby enhancing the details and overall visual quality of the final reconstruction. Furthermore, a dense feature distillation block was proposed, which dynamically adjusts the number of feature reuses based on the distance between features to achieve efficient feature reuse and reduce redundancy in the network.
- To enhance texture information in the reconstructed image, a non-local prior sampling module was first designed to fully leverage the original image’s non-local information. This module enables the network to more comprehensively capture the dependencies between distant pixels in the original image, thereby improving the recovery of texture details. Additionally, a multi-scale enhanced spatial attention module was introduced to enrich the diversity of feature representations, allowing the model to reconstruct the image’s texture information more accurately.
- Experimental results show that NPDFD-Net demonstrates a significant advantage in running speed compared to other methods. Additionally, this model can produce more realistic texture details in image reconstruction and exhibits robust resistance to noise, providing an efficient and high-performance solution for CS image reconstruction.
2. Related Works
2.1. Theory of CS
2.2. Deep Learning-Based CS
2.3. Sampling Network
3. Methodology
3.1. The Proposed Network Architecture
3.2. Non-Local Prior Sampling and Initial Reconstruction Sub-Network
3.3. Discrete Wavelet Decomposition Learning Module
3.4. Multi-Scale Enhanced Spatial Attention
3.5. Dense Feature Distillation Block
3.6. Inverse Discrete Wavelet Reconstruction Module
4. Experiment
4.1. Experimental Settings
4.2. Performance of Different Numbers of DFDBs
4.3. Ablation Experiment Analysis of the Reconstruction Network Structure
4.4. Effectiveness Analysis of the NP Sampling Sub-Network
4.5. Comparisons with State-of-the-Art Method
4.6. Comparison of Noise Robustness
4.7. Comparison of Running Time
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Donoho, D.L. Compressive sensing. IEEE Trans. Inf. Theory 2006, 52, 1289–1306. [Google Scholar] [CrossRef]
- Duarte, M.F.; Davenport, M.A.; Takhar, D.; Laska, J.N.; Sun, T.; Kelly, K.F.; Baraniuk, R.G. Single-pixel imaging via compressive sampling. IEEE Signal Process. Mag. 2008, 25, 83–91. [Google Scholar] [CrossRef]
- Lustig, M.; Donoho, D.; Pauly, J.M. Sparse MRI: The application of compressed sensing for rapid MR imaging. Magn. Reson. Med. 2007, 58, 1182–1195. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Yuan, X.; Suo, J.; Suo, J.L.; Brady, D.J.; Dai, Q.H. Rank minimization for snapshot compressive imaging. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 41, 2990–3006. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, S.; Huang, X.; Chen, B.; Zhu, C. Hybrid CS-DMRI: Periodic time-variant subsampling and omnidirectional total variation based reconstruction. IEEE Trans. Med. Imaging 2017, 36, 2148–2159. [Google Scholar] [CrossRef]
- Zhang, T. Sparse recovery with orthogonal matching pursuit under RIP. IEEE Trans. Inf. Theory 2001, 57, 6215–6221. [Google Scholar] [CrossRef]
- Mun, S.; Fowler, J.E. Block Compressive sensing of images using directional transforms. In Proceedings of the 2009 IEEE International Conference on Image Processing (ICIP), Cairo, Egypt, 7–10 November 2009; pp. 3021–3024. [Google Scholar]
- Munsif, M.; Khan, N.; Hussain, A.; Kim, M.J.; Baik, S.W. Darkness-adaptive action recognition: Leveraging efficient tubelet slow-fast network for industrial applications. IEEE Trans. Industr Inform. 2024, in press. [Google Scholar] [CrossRef]
- Munsif, M.; Khan, S.U.; Khan, N.; Hussain, A.; Kim, M.J.; Baik, S.W. Contextual visual and motion salient fusion framework for action recognition in dark environments. Knowl. Based Syst. 2024, 304, 112480. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, B.; Xiong, R.; Zhang, Y. Physics-inspired compressive sensing: Beyond deep unrolling. IEEE Signal Process. Mag. 2023, 40, 58–72. [Google Scholar] [CrossRef]
- Machidon, A.L.; Pejović, V. Deep learning for compressive sensing: A ubiquitous systems perspective. Artif. Intell. Rev. 2023, 56, 3619–3658. [Google Scholar] [CrossRef]
- Kulkarni, K.; Lohit, S.; Turaga, P.; Kerviche, R.; Ashok, A. ReconNet: Non-Iterative Reconstruction of Images from Compressively Sensed Measurements. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 449–458. [Google Scholar]
- Zhang, J.; Ghanem, B. ISTA-Net: Interpretable optimization-inspired deep network for image compressive sensing. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018; pp. 1828–1837. [Google Scholar]
- Yao, H.; Dai, F.; Zhang, S.; Zhang, Y.; Tian, Q. DR2-Net: Deep residual reconstruction network for image compressive sensing. Neurocomputing 2019, 359, 483–493. [Google Scholar] [CrossRef]
- Shi, W.; Jiang, F.; Zhang, S.; Zhao, D. Image compressed sensing using convolutional neural network. IEEE Trans. Image Process. 2019, 29, 375–388. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhao, C.; Gao, W. Optimization-inspired compact deep compressive sensing. IEEE J. Sel. Top. Signal Process. 2020, 14, 765–774. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, Y.; Liu, J.; Wen, F.; Zhu, C. AMP-Net: Denoising-based deep unfolding for compressive image sensing. IEEE Trans. Image Process. 2020, 30, 1487–1500. [Google Scholar] [CrossRef] [PubMed]
- Tian, J.; Yuan, W.; Tu, Y. Image compressed sensing using multi-scale residual generative adversarial network. Vis. Comput. 2021, 38, 4193–4202. [Google Scholar] [CrossRef]
- Shen, M.; Gan, H.; Ning, C.; Hua, Y.; Zhang, T. TransCS: A transformer-based hybrid architecture for image compressive sensing. IEEE Trans. Image Process. 2022, 31, 6991–7005. [Google Scholar] [CrossRef]
- Ye, D.; Ni, Z.; Wang, H.; Zhang, J.; Wang, S.; Kwong, S. Csformer: Bridging convolution and transformer for compressive sensing. IEEE Trans. Image Process. 2023, 32, 2827–2842. [Google Scholar] [CrossRef]
- Song, J.; Mou, C.; Wang, S.; Ma, S.W.; Zhang, J. Optimization-Inspired Cross-Attention Transformer for Compressive Sensing. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, BC, Canada, 17–24 June 2023; pp. 6174–6184. [Google Scholar]
- Song, J.; Chen, B.; Zhang, J. Dynamic path-controllable deep unfolding network for compressive sensing. IEEE Trans. Image Process. 2023, 32, 2202–2214. [Google Scholar] [CrossRef]
- Zhang, K.; Hua, Z.; Li, Y.; Zhang, Y.; Zhou, Y. Uformer-ICS: A U-Shaped Transformer for Image Compressive Sensing Service. IEEE Trans. Serv. Comput. 2023, 17, 2974–2988. [Google Scholar] [CrossRef]
- Li, W.; Chen, B.; Liu, S.; Zhao, S.; Du, B.; Zhang, Y.; Zhang, J. D3C2-Net: Dual-Domain Deep Convolutional Coding Network for Compressive Sensing. IEEE Trans. Circuits Syst. Video Technol. 2024, 34, 9341–9355. [Google Scholar] [CrossRef]
- Canh, T.N.; Jeon, B. Multi-scale deep compressive sensing network. In Proceedings of the 2018 IEEE Visual Communications and Image Processing (VCIP), Taichung, Taiwan, 9–12 December 2018; pp. 1–4. [Google Scholar]
- Yin, Z.; Shi, W.; Wu, Z.; Zhang, J. Multilevel wavelet-based hierarchical networks for image compressive sensing. Pattern Recognit. 2022, 129, 108758. [Google Scholar] [CrossRef]
- Shi, W.; Jiang, F.; Liu, S.; Zhao, D. Multi-scale deep networks for image compressive sensing. In Proceedings of the IEEE International Conference on Image Processing (ICIP), Athens, Greece, 7–10 October 2018; pp. 46–50. [Google Scholar]
- Zhang, K.; Hua, Z.; Li, Y.; Chen, Y.; Zhou, Y. Ams-net: Adaptive multi-scale network for image compressive sensing. IEEE Trans. Multimed. 2022, 25, 5676–5689. [Google Scholar] [CrossRef]
- Huang, Z.; Wang, X.; Huang, L.; Huang, C.; Wei, Y.; Liu, W. Ccnet: Criss-cross attention for semantic segmentation. In Proceedings of the IEEE/CVF International Conference On Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019; pp. 603–612. [Google Scholar]
- Zhao, X.; Huang, P.; Shu, X. Wavelet-Attention CNN for image classification. Multimed. Syst. 2022, 28, 915–924. [Google Scholar] [CrossRef]
- Duan, Y.; Liu, F.; Jiao, L.; Zhao, P.; Zhang, L. SAR image segmentation based on convolutional-wavelet neural network and Markov random field. Pattern Recognit. 2017, 64, 255–267. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, W.; Tang, Y.; Wu, G. Residual feature aggregation network for image super-resolution. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 2359–2368. [Google Scholar]
- Zhang, Y.; Tian, Y.; Kong, Y.; Zhong, B.; Fu, Y. Residual dense network for image super-resolution. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–22 June 2018; pp. 2472–2481. [Google Scholar]
- Wang, P.; Chen, P.; Yuan, Y.; Liu, D.; Huang, Z.; Hou, X.; Cottrell, G. Understanding convolution for semantic segmentation. In Proceedings of the 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), Lake Tahoe, NV, USA, 12–15 March 2018; pp. 1451–1460. [Google Scholar]
- Timofte, R.; Agustsson, E.; Gool, V.L.; Yang, M.; Zhang, L. Ntire 2017 challenge on single image super-resolution: Methods and results. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Honolulu, HI, USA, 21–26 July 2017; pp. 114–125. [Google Scholar]
- Bevilacqua, M.; Roumy, A.; Guillemot, C.; Morel, A. Low-Complexity Single Image Super-Resolution Basedon Nonnegative Neighbor Embedding. In Proceedings of the 23rd British Machine Vision Conference (BMVC), Surrey, UK, 3–7 September 2012; pp. 1–10. [Google Scholar]
- Zeyde, R.; Elad, M.; Protter, M. On Single Image Scale-Up Using Sparse-Representations. In Proceedings of the Curves and Surfaces: 7th International Conference, Avignon, France, 24–30 June 2010; pp. 711–730. [Google Scholar]
- Martin, D.; Fowlkes, C.; Tal, D.; Malik, J. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Vancouver, BC, Canada, 7–14 July 2001; pp. 416–423. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
Datasets | Number of DFDBs | r = 0.01 | r = 0.04 | r = 0.10 | r = 0.25 | Average | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
PSNR /dB | SSIM | PSNR /dB | SSIM | PSNR /dB | SSIM | PSNR /dB | SSIM | PSNR /dB | SSIM | ||
Set5 | 8 | 24.55 | 0.6672 | 29.56 | 0.8578 | 33.63 | 0.9287 | 37.71 | 0.9641 | 31.36 | 0.8545 |
7 | 24.53 | 0.6686 | 29.63 | 0.8573 | 33.77 | 0.9306 | 37.74 | 0.9651 | 31.42 | 0.8554 | |
6 | 23.44 | 0.6613 | 29.50 | 0.8507 | 33.60 | 0.9291 | 37.77 | 0.9653 | 31.08 | 0.8516 | |
Set14 | 8 | 23.06 | 0.5460 | 26.77 | 0.7403 | 29.85 | 0.8440 | 33.52 | 0.9241 | 28.30 | 0.7636 |
7 | 23.01 | 0.5698 | 26.77 | 0.7388 | 29.88 | 0.8461 | 33.66 | 0.9276 | 28.33 | 0.7706 | |
6 | 23.02 | 0.5617 | 26.61 | 0.7329 | 29.85 | 0.8459 | 33.54 | 0.9261 | 28.26 | 0.7667 | |
BSD100 | 8 | 23.87 | 0.5460 | 26.53 | 0.7001 | 28.81 | 0.8107 | 32.19 | 0.9074 | 27.84 | 0.7411 |
7 | 23.87 | 0.5481 | 26.52 | 0.6986 | 28.82 | 0.8108 | 32.28 | 0.9102 | 27.87 | 0.7419 | |
6 | 23.82 | 0.5413 | 26.45 | 0.6942 | 28.80 | 0.8112 | 32.32 | 0.9106 | 27.85 | 0.7368 |
Variants | FLOPs/G | Params/K | Set5 | Set14 | BSD100 | |||
---|---|---|---|---|---|---|---|---|
PSNR /dB | SSIM | PSNR /dB | SSIM | PSNR /dB | SSIM | |||
N1 | 19.04 | 1628.53 | 33.65 | 0.9220 | 29.75 | 0.8423 | 28.78 | 0.8088 |
N2 | 26.49 | 2136.70 | 33.29 | 0.9177 | 29.56 | 0.8285 | 28.63 | 0.7997 |
N3 | 18.81 | 1632.81 | 33.65 | 0.9290 | 29.77 | 0.8438 | 28.80 | 0.8098 |
N4 | 76.13 | 1632.81 | 33.59 | 0.9285 | 29.72 | 0.8427 | 28.73 | 0.8081 |
NPDFD-Net | 19.05 | 1632.81 | 33.77 | 0.9306 | 29.88 | 0.8461 | 28.82 | 0.8108 |
Methods | r = 0.01 | r = 0.04 | r = 0.10 | r = 0.25 | Average | |||||
---|---|---|---|---|---|---|---|---|---|---|
PSNR /dB | SSIM | PSNR /dB | SSIM | PSNR /dB | SSIM | PSNR /dB | SSIM | PSNR /dB | SSIM | |
ISTA-Net+ [13] | 18.55 | 0.4408 | 23.45 | 0.6619 | 28.61 | 0.9315 | 34.17 | 0.9272 | 26.20 | 0.7404 |
DR2-Net [14] | 18.50 | 0.4527 | 22.74 | 0.6177 | 26.56 | 0.7571 | 31.01 | 0.8676 | 24.70 | 0.6620 |
OPINE-Net+ [16] | 21.89 | 0.5939 | 27.95 | 0.8280 | 32.51 | 0.9150 | 36.78 | 0.9565 | 30.03 | 0.8234 |
AMP-Net [17] | 22.42 | 0.6183 | 27.81 | 0.8172 | 32.10 | 0.9024 | 36.79 | 0.9532 | 29.78 | 0.8228 |
TransCS [19] | 24.32 | 0.6644 | 28.14 | 0.8280 | 32.47 | 0.9142 | 37.02 | 0.9595 | 30.49 | 0.8415 |
MR_CSGAN [18] | 24.40 | 0.6444 | 28.83 | 0.8304 | 32.81 | 0.9153 | 37.77 | 0.9651 | 30.95 | 0.8388 |
OCTUF [21] | 23.12 | 0.6398 | 28.71 | 0.8452 | 33.18 | 0.9243 | 37.78 | 0.9634 | 30.70 | 0.8432 |
DPC-DUN [22] | 24.33 | 0.6636 | 29.28 | 0.8397 | 33.51 | 0.9169 | 37.39 | 0.9576 | 31.13 | 0.8445 |
D3C2-Net [24] | 24.07 | 0.6682 | 29.17 | 0.8561 | 33.44 | 0.9286 | - | - | - | - |
NPDFD-Net (Ours) | 24.53 | 0.6686 | 29.63 | 0.8573 | 33.77 | 0.9306 | 37.74 | 0.9651 | 31.42 | 0.8554 |
Methods | r = 0.01 | r = 0.04 | r = 0.10 | r = 0.25 | Average | |||||
---|---|---|---|---|---|---|---|---|---|---|
PSNR /dB | SSIM | PSNR /dB | SSIM | PSNR /dB | SSIM | PSNR /dB | SSIM | PSNR /dB | SSIM | |
ISTA-Net+ [13] | 18.22 | 0.4014 | 22.08 | 0.5708 | 26.00 | 0.7289 | 30.62 | 0.8700 | 24.23 | 0.6428 |
DR2-Net [14] | 18.31 | 0.4149 | 21.33 | 0.5373 | 24.44 | 0.6644 | 28.13 | 0.7997 | 23.05 | 0.6041 |
OPINE-Net+ [16] | 21.36 | 0.5262 | 25.50 | 0.7122 | 28.77 | 0.8294 | 33.12 | 0.9196 | 27.18 | 0.7469 |
AMP-Net [17] | 21.65 | 0.6183 | 25.49 | 0.7004 | 28.76 | 0.8182 | 33.21 | 0.9144 | 27.47 | 0.7628 |
TransCS [19] | 23.03 | 0.5708 | 25.51 | 0.7132 | 28.81 | 0.8343 | 33.38 | 0.9244 | 27.68 | 0.7607 |
MR_CSGAN [18] | 23.05 | 0.5613 | 26.44 | 0.7239 | 29.38 | 0.8347 | 33.80 | 0.9280 | 28.17 | 0.7620 |
OCTUF [21] | 21.99 | 0.5481 | 26.04 | 0.7303 | 29.48 | 0.8454 | 34.18 | 0.9312 | 27.92 | 0.7638 |
DPC-DUN [22] | 22.95 | 0.5769 | 26.64 | 0.7206 | 29.79 | 0.8269 | 33.72 | 0.9174 | 28.27 | 0.7602 |
D3C2-Net [24] | 22.73 | 0.5823 | 26.58 | 0.7361 | 29.97 | 0.8544 | - | - | - | - |
NPDFD-Net (Ours) | 23.01 | 0.5698 | 26.77 | 0.7388 | 29.88 | 0.8461 | 33.66 | 0.9276 | 28.33 | 0.7706 |
Methods | r = 0.01 | r = 0.04 | r = 0.10 | r = 0.25 | Average | |||||
---|---|---|---|---|---|---|---|---|---|---|
PSNR /dB | SSIM | PSNR /dB | SSIM | PSNR /dB | SSIM | PSNR /dB | SSIM | PSNR /dB | SSIM | |
ISTA-Net+ [13] | 19.36 | 0.4074 | 22.23 | 0.5403 | 25.09 | 0.6843 | 29.04 | 0.8405 | 23.93 | 0.6181 |
DR2-Net [14] | 19.25 | 0.4281 | 21.72 | 0.5271 | 24.04 | 0.6375 | 27.23 | 0.7774 | 23.06 | 0.5926 |
OPINE-Net+ [16] | 21.90 | 0.5002 | 25.00 | 0.6675 | 27.55 | 0.7906 | 31.21 | 0.8984 | 26.42 | 0.7152 |
AMP-Net [17] | 22.28 | 0.5273 | 25.12 | 0.6641 | 27.63 | 0.7836 | 31.38 | 0.9023 | 26.60 | 0.7193 |
TransCS [19] | 23.92 | 0.5494 | 25.14 | 0.6765 | 27.63 | 0.8005 | 31.37 | 0.9099 | 27.01 | 0.7317 |
MR_CSGAN [18] | 23.84 | 0.5403 | 26.31 | 0.6867 | 28.57 | 0.8008 | 32.41 | 0.9114 | 27.78 | 0.7348 |
OCTUF [21] | 22.63 | 0.5247 | 25.40 | 0.6809 | 27.99 | 0.8090 | 31.73 | 0.9151 | 26.94 | 0.7324 |
DPC-DUN [22] | 23.82 | 0.5538 | 26.41 | 0.6779 | 28.81 | 0.7895 | 32.39 | 0.8987 | 27.86 | 0.7300 |
D3C2-Net [24] | 23.01 | 0.5415 | 25.66 | 0.6949 | 28.26 | 0.8025 | - | - | - | - |
NPDFD-Net (Ours) | 23.87 | 0.5481 | 26.52 | 0.6986 | 28.82 | 0.8108 | 32.28 | 0.9102 | 27.87 | 0.7419 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, M.; Han, X.; Zheng, K. Non-Local Prior Dense Feature Distillation Network for Image Compressive Sensing. Information 2024, 15, 773. https://doi.org/10.3390/info15120773
Feng M, Han X, Zheng K. Non-Local Prior Dense Feature Distillation Network for Image Compressive Sensing. Information. 2024; 15(12):773. https://doi.org/10.3390/info15120773
Chicago/Turabian StyleFeng, Mingkun, Xiaole Han, and Kai Zheng. 2024. "Non-Local Prior Dense Feature Distillation Network for Image Compressive Sensing" Information 15, no. 12: 773. https://doi.org/10.3390/info15120773
APA StyleFeng, M., Han, X., & Zheng, K. (2024). Non-Local Prior Dense Feature Distillation Network for Image Compressive Sensing. Information, 15(12), 773. https://doi.org/10.3390/info15120773