Copper Nodule Defect Detection in Industrial Processes Using Deep Learning
Abstract
:1. Introduction
- As the primary feature extraction network, the lightweight MobileNetV3 network is presented, significantly decreasing the model’s computational demands and parameter count while expediting the training process.
- In the neck network, the model’s performance in detecting small targets is enhanced by incorporating the BiFormer attention mechanism.
- By combining the advantages of Efficient IoU loss and Focal loss, the initial CloU loss function is replaced with the Focal-EloU loss function. This change addresses the disadvantages of low resolution, significant noise interference, and low contrast between nodules and the cathode copper plate images, ultimately improving detection accuracy.
- In order to apply the detection model to industrial production, a detection system for cathode copper plate surface nodules was built.
2. Related Work
2.1. Two-Stage Object Detection Algorithm
2.2. One-Stage Object Detection Algorithm
3. Method
3.1. YOLOv5
3.2. YOLOv5 Algorithm Improvements
3.2.1. MobileNetV3 Backbone Network
3.2.2. BiFormer Attention Mechanism
3.2.3. F-EIOU Loss Function
4. Experiments
4.1. Dataset Preparation
4.2. Experimental Environment
4.3. Evaluation Metrics
4.4. Experimental Results and Analysis
4.4.1. Ablation Experiments
4.4.2. Comparison of the Improved Model with Different Models
5. Industrial Application
- (1)
- When the number of nodules is less than or equal to 30, the quality is assessed as “Good”, indicating that there are few surface defects and the overall quality is high.
- (2)
- When the number of nodules is between 30 and 100, the quality is assessed as “Neutral”, suggesting that there are a certain number of defects on the copper plate surface, but they remain within an acceptable range.
- (3)
- When the number of nodules exceeds 100, the quality is assessed as “Poor”, meaning that the copper plate surface has significant defects that may impact the product’s quality and subsequent use.
6. Limitation and Future Work
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, Q. Present Situation and Trend of Copper Industry in China. Nonferrous Met. Process. 2018, 47, 1–6. [Google Scholar] [CrossRef]
- Schlesinger, M.E.; Sole, K.C.; Davenport, W.G. “Electrolytic Refining” in Extractive Metallurgy of Copper, 6th ed.; Elsevier Ltd.: Oxford, UK, 2021; pp. 331–359. [Google Scholar]
- Chen, S. The Reason for Nodules Forming on the Bottom of Cathode Copper and Countermeasures. Copper Eng. 2022, 39, 42–45. [Google Scholar] [CrossRef]
- Fang, Y.; Pan, M.; Huang, H.; Shao, Y.; He, Y.; Chen, B.; Guo, Z. Current situation and prospect of additives in copper electrolysis deposition process. Min. Metall. 2021, 30, 61–69. [Google Scholar] [CrossRef]
- Meng, Y.; Liu, H.; Li, C. Cathodic current change and nodulation morphology during short circuit of copper electrolysis. Chin. J. Nonferrous Met. 2022, 32, 262–270. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, D.; Liu, H.; Yu, H. Intelligent recognition method for surface defects of cold rolling copper strip. J. Nonferrous Met. 2022, 32, 2950–2964. [Google Scholar] [CrossRef]
- Yang, X.; Tang, D.; Cai, B.; Yuan, H.; Pan, X.; Chang, Y.; Zhang, C. Image threshold segmentation method for surface nodulation detection of cathode copper plate based on IGWO. J. Shaanxi Univ. Technol. Nat. Sci. Ed. 2023, 39, 31–39. [Google Scholar] [CrossRef]
- Lee, E.T.; Fan, Z.; Burak, S. A new approach to detect surface defects from 3D point cloud data with surface normal Gabor filter (SNGF). J. Manuf. Process. 2023, 92 (Suppl. C), 196–205. [Google Scholar] [CrossRef]
- Cui, Y.; Zhao, L.; Li, H.; Liu, H. Strip surface defect detection based on wavelet denoising and improved Canny algorithm. Mod. Electron. Tech. 2024, 47, 148–152. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, Z.; Yin, W.; Zhou, G.; Wang, L.; Li, Y.; Zhao, C.; Wang, C. Shape characterization and depth recognition of metal cracks based on laser infrared thermography and machine learning. Expert Syst. Appl. 2024, 238, 122083. [Google Scholar] [CrossRef]
- Xie, W.; Ma, W.; Sun, X. An efficient re-parameterization feature pyramid network on YOLOv8 to the detection of steel surface defect. Neurocomputing 2024, 614, 128775. [Google Scholar] [CrossRef]
- Zhang, Y.; Feng, T.; Song, Y.; Shi, Y.; Cai, G. An Improved Target Network Model for Rail Surface Defect Detection. Appl. Sci. 2024, 14, 6467. [Google Scholar] [CrossRef]
- Cao, Y.; Zhu, W.; Yang, J.; Fu, G.; Lin, D.; Cao, Y. An effective industrial defect classification method under the few-shot setting via two-stream training. Opt. Lasers Eng. 2023, 161 (Suppl. C), 107294. [Google Scholar] [CrossRef]
- Li, W.; Zhang, S.; Zhang, T.; Shen, Y.; Han, L.; Peng, Z.; Xie, Z.; Zhong, C.; Jia, S. Surface Defect Detection and Evaluation Method of Large Wind Turbine Blades Based on an Improved Deeplabv3+ Deep Learning Model. Struct. Durab. Health Monit. 2024, 18, 553–575. [Google Scholar] [CrossRef]
- Zhang, H.; Fu, W.; Wang, X.; Li, D.; Zhu, D.; Su, X. An efficient model for metal surface defect detection based on attention mechanism and multi-scale feature. J. Supercomput. 2024, 81, 40. [Google Scholar] [CrossRef]
- Cardellicchio, A.; Nitti, M.; Patruno, C.; Mosca, N.; di Summa, M.; Stella, E.; Renò, V. Automatic quality control of aluminium parts welds based on 3D data and artificial intelligence. J. Intell. Manuf. 2023, 35, 1629–1648. [Google Scholar] [CrossRef]
- Liso, A.; Cardellicchio, A.; Patruno, C.; Nitti, M.; Ardino, P.; Stella, E.; Renò, V. A Review of Deep Learning-Based Anomaly Detection Strategies in Industry 4.0 Focused on Application Fields, Sensing Equipment, and Algorithms. IEEE Access 2024, 12, 93911–93923. [Google Scholar] [CrossRef]
- Jiang, F.; Li, N.; Qiu, C.; Liu, D. Defect detection method of wire mesh based on improved Faster RCNN. China Sciencepap. 2024, 19, 153–159. [Google Scholar] [CrossRef]
- Li, H.; Chen, Z.; Xiu, H.; Huang, X. Improved YOLO steel surface defect detection algorithm. Mod. Electron. Tech. 2024, 47, 7–14. [Google Scholar] [CrossRef]
- Girshick, R.; Donahue, J.; Darrell, T.; Jitendra, M. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation. In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, OH, USA, 23–28 June 2014; pp. 580–587. [Google Scholar] [CrossRef]
- Wu, J.; Wang, J.; Fu, M.; Wang, Z.; Lu, Y. Determination of defect-testing for steel strips based on improved faster-RCNN algorithm. Angang Technol. 2022, 23, 23–28. [Google Scholar] [CrossRef]
- Yang, F.; Huo, J.; Cheng, Z.; Chen, H.; Shi, Y. An improved mask R-CNN micro-crack detection model for the surface of metal structural parts. Sensors 2024, 24, 62. [Google Scholar] [CrossRef]
- Pang, J.; Chen, K.; Shi, J.; Feng, H.; Ouyang, W.; Lin, D. Libra r-cnn: Towards balanced learning for object detection. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019. [Google Scholar]
- Cai, Z.; Vasconcelos, N. Cascade r-cnn: Delving into high quality object detection. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake, UT, USA, 18–23 June 2018; pp. 6154–6162. [Google Scholar]
- Wang, H.; Han, W.; Wang, K. Metal surface defect detection algorithm based on YOLOX. Comput. Eng. Des. 2023, 44, 2803–2810. [Google Scholar] [CrossRef]
- Wang, C.; Yamg, S.; Zhou, L.; Hua, B.; Wang, S.; Lv, J. Research on metal gear end-face defect detection method based on adaptive multi-scale feature fusion network. J. Electron. Meas. Instrum. 2023, 37, 153–163. [Google Scholar] [CrossRef]
- Yang, S.; Ding, F.; Wen, H.; Li, P.; Hu, S. Hot-rolled steel strip surface defects detection based on CAYOLOv5. J. Optoelectron. Laser 2024, 35, 21–28. [Google Scholar] [CrossRef]
- Wang, H.; Liu, H.; Shao, Y. An Improved YOLOv5 Algorithm for Metal Surface Defect Detection. Mech. Sci. Technol. Aerosp. Eng. 2023, 43, 1–6. [Google Scholar] [CrossRef]
- Song, X.; Cao, S.; Zhang, J.; Hou, Z. Steel Surface Defect Detection Algorithm Based on YOLOv8. Electronics 2024, 13, 988. [Google Scholar] [CrossRef]
- Xie, W.; Sun, X.; Ma, W. A light weight multi-scale feature fusion steel surface defect detection model based onYOLOv8. Meas. Sci. Technol. 2024, 35, 055017. [Google Scholar] [CrossRef]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar]
- Lin, T.Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature Pyramid Networks for Object Detection. arXiv 2017, arXiv:1612.03144. [Google Scholar]
- Li, H.; Xiong, P.; An, J.; Wang, L. Pyramid Attention Network for Semantic Segmentation. arXiv 2018, arXiv:1805.10180. [Google Scholar]
- Howard, A.; Sandler, M.; Chu, G.; Chen, L.-C.; Chen, B.; Tan, M.; Wang, W.; Zhu, Y.; Pang, R.; Vasudevan, V. Searching for MobileNetV3. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019. [Google Scholar]
- Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. Mobile-NetV2: Inverted residuals and linear bottlenecks. arXiv 2018, arXiv:1801.04381. [Google Scholar]
- Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPR), Salt Lake City, UT, USA, 18–22 June 2018; pp. 7132–7144. [Google Scholar]
- Qi, X.; Zhi, M. Review of Attention Mechanisms in image Processing. J. Front. Comput. Sci. Technol. 2024, 18, 345–362. [Google Scholar] [CrossRef]
- Zhu, L.; Wang, X.; Ke, Z.; Zhang, W.; Lau, R. BiFormer: Vision Transformer with Bi-Level Routing Attention. arXiv 2023, arXiv:2303.08810. [Google Scholar]
- Liu, X.; Yang, X.; Chen, Y.; Zhao, S. Object detection method based on CloU improved bounding box loss function. Chin. J. Liq. Cryst. Dis. 2023, 38, 656–665. [Google Scholar] [CrossRef]
- Naik, T.B.; Hashmi, M.F.; Gupta, A. EIoU-distance loss: An automated team-wise player detection and tracking with jersey colour recognition in soccer. Connect. Sci. 2024, 36, 2291991. [Google Scholar] [CrossRef]
- Zhang, Y.-F.; Ren, W.; Zhang, Z.; Jia, Z.; Wang, L.; Tan, T. Focal and efficient IOU loss for accurate bounding box regression. Neurocomputing 2022, 506, 146–157. [Google Scholar] [CrossRef]
Module | Precision (%) | Recall (%) | mAP (%) | Params (B) | SpeedGPU (ms) | Weight (M) | ||
---|---|---|---|---|---|---|---|---|
MobileNetV3 | BiFormer | EIOU | ||||||
93.27 | 90.40 | 92.38 | 7,020,913 | 6.99 | 13.62 | |||
√ | 87.34 | 85.93 | 86.23 | 1,509,487 | 4.57 | 2.87 | ||
√ | 94.71 | 92.06 | 93.01 | 7,020,913 | 7.14 | 13.75 | ||
√ | 93.45 | 91.03 | 92.74 | 7,088,241 | 6.87 | 13.62 | ||
√ | √ | 92.13 | 89.42 | 91.67 | 1,531,951 | 4.69 | 2.91 | |
√ | √ | 87.83 | 86.48 | 86.77 | 1,509,487 | 4.64 | 2.87 | |
√ | √ | √ | 92.71 | 91.24 | 92.69 | 1,531,951 | 4.61 | 2.91 |
Module | Precision (%) | Recall (%) | mAP (%) | Params (B) | Weight (M) |
---|---|---|---|---|---|
YOLOv5s | 93.27 | 90.40 | 92.38 | 7,020,913 | 13.62 |
YOLOv8s | 91.39 | 86.49 | 92.29 | 11,166,544 | 22.6 |
YOLOv10s | 92.47 | 87.16 | 93.32 | 8,067,126 | 16.6 |
Ours | 92.71 | 91.24 | 92.69 | 1,531,951 | 2.91 |
Module | Precision (%) | Recall (%) | mAP (%) | Weight (M) |
---|---|---|---|---|
Yolov3-tiny | 79.72 | 75.13 | 73.72 | 17.5 |
SSD | 86.25 | 75.72 | 89.75 | 94.34 |
Faster RCNN | 79.31 | 70.68 | 68.51 | 108.29 |
Ours | 92.71 | 91.24 | 92.69 | 2.91 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Huang, X.; Wei, D.; Chang, Q.; Liu, J.; Jing, Q. Copper Nodule Defect Detection in Industrial Processes Using Deep Learning. Information 2024, 15, 802. https://doi.org/10.3390/info15120802
Zhang Z, Huang X, Wei D, Chang Q, Liu J, Jing Q. Copper Nodule Defect Detection in Industrial Processes Using Deep Learning. Information. 2024; 15(12):802. https://doi.org/10.3390/info15120802
Chicago/Turabian StyleZhang, Zhicong, Xiaodong Huang, Dandan Wei, Qiqi Chang, Jinping Liu, and Qingxiu Jing. 2024. "Copper Nodule Defect Detection in Industrial Processes Using Deep Learning" Information 15, no. 12: 802. https://doi.org/10.3390/info15120802
APA StyleZhang, Z., Huang, X., Wei, D., Chang, Q., Liu, J., & Jing, Q. (2024). Copper Nodule Defect Detection in Industrial Processes Using Deep Learning. Information, 15(12), 802. https://doi.org/10.3390/info15120802