Versatile Machine Learning-Based Authentications by Using Enhanced Time-Sliced Electrocardiograms
Abstract
:1. Introduction
2. Theoretical Background
2.1. Tailor-Made Compact Data Learning
2.2. Support Vector Machine Algorithm
2.3. Machine Learning Performance Measures
- the number of the true negative;
- the number of the false negative;
- the number of the false positive;
- the number of the true positive.
3. Preliminary ECG Authentication Systems
3.1. Use Case of ECG Authentication
3.2. Pre-Processes for ECG Signal Enhancement
3.3. ECG Time-Slicing Techniques
4. Robust Optimization for ML Model Selection
4.1. Experimental Setup
- Data acquisition: The dataset was gathered from PhysioNet [37], which is a free repository of a medical research database. This database provides multiple open-source biomedical data, including heartbeats (ECG) and brain waves (EEG; electroencephalogram);
- Dataset construction: This is the core part of our research. Various time-slicing techniques were applied for the SCK use case, which is defined on Table 1. The original time-slicing (TS) [15] and the combined time-slicing with the RR-interval framing [18] techniques were applied for reconstructing the training and testing ECG datasets;
- Model training: To obtain a fast and efficient authentication system, we needed to constantly adjust and optimize the hyperparameters of the ML models [38]. We input the constructed training set into five different machine learning algorithms (KNN, SVM, RF, CNN, and LSTM), and trained corresponding models;
- System verification: We used four common machine learning model evaluation metrics (accuracy, recall, precision, and F1-score) to verify the model’s effectiveness. We input the constructed testing data into the trained models, obtained the model’s test results, and determined the best model.
4.2. Robust Optimization for Selecting Machine Learning Models
4.3. Experimental Result
5. Machine Learning-Based Combined Time-Sliced ECG Authentication Systems
5.1. System Design for Enhanced ECG-Based Authentication System
5.2. Performance Result
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dharavath, K.; Talukdar, F.A.; Laskar, R.H. Study on biometric authentication systems, challenges and future trends: A review. In Proceedings of the 2013 IEEE International Conference on Computational Intelligence and Computing Research, Enathi, India, 26–28 December 2013; IEEE: Danvers, MA, USA, 2013; pp. 1–7. [Google Scholar]
- Rui, Z.; Yan, Z. A survey on biometric authentication: Toward secure and privacy-preserving identification. IEEE Access 2018, 7, 5994–6009. [Google Scholar] [CrossRef]
- Velásquez, I.; Caro, A.; Rodríguez, A. Authentication schemes and methods: A systematic literature review. Inf. Softw. Technol. 2018, 94, 30–37. [Google Scholar] [CrossRef]
- Barkadehi, M.H.; Nilashi, M.; Ibrahim, O.; Fardi, A.Z.; Samad, S. Authentication systems: A literature review and classification. Telemat. Inform. 2018, 35, 1491–1511. [Google Scholar] [CrossRef]
- Sarkar, A.; Singh, B.K. A review on performance, security and various biometric template protection schemes for biometric authentication systems. Multimed. Tools Appl. 2020, 79, 27721–27776. [Google Scholar] [CrossRef]
- Alsaadi, I.M. Physiological biometric authentication systems, advantages, disadvantages and future development: A review. Int. J. Sci. Technol. Res. 2015, 4, 285–289. [Google Scholar]
- Kataria, A.N.; Adhyaru, D.M.; Sharma, A.K.; Zaveri, T.H. A survey of automated biometric authentication techniques. In Proceedings of the 2013 Nirma university international conference on engineering (NUiCONE), Ahmedabad, India, 28–30 November 2013; IEEE: Danvers, MA, USA, 2013; pp. 1–6. [Google Scholar]
- Pahuja, G.; Nagabhushan, T. Biometric authentication & identification through behavioral biometrics: A survey. In Proceedings of the 2015 International Conference on Cognitive Computing and Information Processing (CCIP), Noida, India, 3–4 March 2015; IEEE: Danvers, MA, USA, 2015; pp. 1–7. [Google Scholar]
- Ingale, M.; Cordeiro, R.; Thentu, S.; Park, Y.; Karimian, N. Ecg biometric authentication: A comparative analysis. IEEE Access 2020, 8, 117853–117866. [Google Scholar] [CrossRef]
- Fratini, A.; Sansone, M.; Bifulco, P.; Cesarelli, M. Individual identification via electrocardiogram analysis. Biomed. Eng. Online 2015, 14, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Bharadwaj, S.; Vatsa, M.; Singh, R. Biometric quality: A review of fingerprint, iris, and face. EURASIP J. Image Video Process. 2014, 2014, 34. [Google Scholar] [CrossRef]
- Ryu, R.; Yeom, S.; Kim, S.H.; Herbert, D. Continuous multimodal biometric authentication schemes: A systematic review. IEEE Access 2021, 9, 34541–34557. [Google Scholar] [CrossRef]
- Abdeldayem, S.S.; Bourlai, T. A novel approach for ECG-based human identification using spectral correlation and deep learning. IEEE Trans. Biom. Behav. Identity Sci. 2019, 2, 1–14. [Google Scholar] [CrossRef]
- Merdjanovska, E.; Rashkovska, A. Comprehensive survey of computational ECG analysis: Databases, methods and applications. Expert Syst. Appl. 2022, 203, 117206. [Google Scholar] [CrossRef]
- Kim, S.K.; Yeun, C.Y.; Damiani, E.; Lo, N.W. A machine learning framework for biometric authentication using electrocardiogram. IEEE Access 2019, 7, 94858–94868. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, S.; Lin, F.; Ren, W.; Choo, K.K.R.; Min, G. 1DIEN: Cross-Session Electrocardiogram Authentication Using 1D Integrated EfficientNet. ACM Trans. Multimed. Comput. Commun. Appl. 2023, 20, 1–17. [Google Scholar] [CrossRef]
- Al Alkeem, E.; Kim, S.K.; Yeun, C.Y.; Zemerly, M.J.; Poon, K.F.; Gianini, G.; Yoo, P.D. An enhanced electrocardiogram biometric authentication system using machine learning. IEEE Access 2019, 7, 123069–123075. [Google Scholar] [CrossRef]
- Kim, S.K.; Yeun, C.Y.; Yoo, P.D. An enhanced machine learning-based biometric authentication system using RR-interval framed electrocardiograms. IEEE Access 2019, 7, 168669–168674. [Google Scholar] [CrossRef]
- Kim, S.K. Compact Data Learning For Machine Learning Classifications. Axioms 2024, 3, 137. [Google Scholar] [CrossRef]
- Kim, S.K. Toward Compact Data from Big Data. In Proceedings of the 2020 15th International Conference for Internet Technology and Secured Transactions (ICITST), London, UK, 8–10 December 2020; IEEE: Danvers, MA, USA, 2020; pp. 1–5. [Google Scholar]
- Kim, S.K.; Yeun, C.Y.; Yoo, P.D.; Lo, N.W.; Damiani, E. Deep Learning-Based Arrhythmia Detection Using RR-Interval Framed Electrocardiograms. In Proceedings of the Proceedings of Eighth International Congress on Information and Communication Technology, London, UK, 30 July 2023; Springer: Singapore, 2023; pp. 11–21. [Google Scholar]
- Yoon, S.; Kim, S.K.; Cantwell, W.J.; Yeun, C.Y.; Cho, C.S.; Byon, Y.J.; Kim, T.Y. Defect detection in composites by deep learning using solitary waves. Int. J. Mech. Sci. 2023, 239, 107882. [Google Scholar] [CrossRef]
- Fawcett, T. An introduction to ROC analysis. Pattern Recognit. Lett. 2006, 27, 861–874. [Google Scholar] [CrossRef]
- Mahesh, B. Machine learning algorithms—A review. Int. J. Sci. Res. (IJSR) 2020, 9, 381–386. [Google Scholar]
- Jordan, M.I.; Mitchell, T.M. Machine learning: Trends, perspectives, and prospects. Science 2015, 349, 255–260. [Google Scholar] [CrossRef]
- Chen, K.; Yao, H.; Han, Z. Arithmetic optimization algorithm to optimize support vector machine for chip defect Identification. In Proceedings of the 2022 28th International Conference on Mechatronics and Machine Vision in Practice (M2VIP), Nanjing, China, 6–18 November 2022; IEEE: Danvers, MA, USA, 2022; pp. 1–5. [Google Scholar]
- Kim, B.H.; Pyun, J.Y. ECG identification for personal authentication using LSTM-based deep recurrent neural networks. Sensors 2020, 20, 3069. [Google Scholar] [CrossRef] [PubMed]
- Hossin, M.; Sulaiman, M.N. A review on evaluation metrics for data classification evaluations. Int. J. Data Min. Knowl. Manag. Process 2015, 5, 1. [Google Scholar]
- U.S. General Services Administration. Use Cases. 2019. Available online: https://www.usability.gov/how-to-and-tools/methods/use-cases.html (accessed on 16 November 2023).
- Zhang, D. Wavelet approach for ECG baseline wander correction and noise reduction. In Proceedings of the 2005 IEEE engineering in medicine and biology 27th annual conference, Shanghai, China, 7–18 January 2006; IEEE: Danvers, MA, USA, 2006; pp. 1212–1215. [Google Scholar]
- Arlinghaus, S.L.; Arlinghaus, W.C. Practical Handbook of Curve Fitting; Crc Press: Boca Raton, FL, USA, 1994. [Google Scholar]
- Kumar, P.; Sharma, V.K. Detection and classification of ECG noises using decomposition on mixed codebook for quality analysis. Healthc. Technol. Lett. 2020, 7, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Kaur, A.; Agarwal, A.; Agarwal, R.; Kumar, S. A novel approach to ECG R-peak detection. Arab. J. Sci. Eng. 2019, 44, 6679–6691. [Google Scholar] [CrossRef]
- Sasikala, P.; Wahidabanu, R. Robust r peak and qrs detection in electrocardiogram using wavelet transform. Int. J. Adv. Comput. Sci. Appl. 2010, 12, 19638. [Google Scholar] [CrossRef]
- Palaniappan, R.; Krishnan, S.M. Identifying individuals using ECG beats. In Proceedings of the 2004 International Conference on Signal Processing and Communications, 2004, SPCOM’04, Bangalore, India, 11–14 December 2004; IEEE: Danvers, MA, USA, 2004; pp. 569–572. [Google Scholar]
- Faust, O.; Kareem, M.; Ali, A.; Ciaccio, E.J.; Acharya, U.R. Automated arrhythmia detection based on RR intervals. Diagnostics 2021, 11, 1446. [Google Scholar] [CrossRef] [PubMed]
- Goldberger, A.L.; Amaral, L.A.; Glass, L.; Hausdorff, J.M.; Ivanov, P.C.; Mark, R.G.; Mietus, J.E.; Moody, G.B.; Peng, C.K.; Stanley, H.E. PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation 2000, 101, e215–e220. [Google Scholar] [CrossRef]
- Luo, G. A review of automatic selection methods for machine learning algorithms and hyper-parameter values. Netw. Model. Anal. Health Inform. Bioinform. 2016, 5, 1–16. [Google Scholar] [CrossRef]
- Moody, G.; Mark, R. The impact of the MIT-BIH Arrhythmia Database. IEEE Eng. Med. Biol. Mag. 2001, 20, 45–50. [Google Scholar] [CrossRef]
- Apandi, Z.F.M.; Ikeura, R.; Hayakawa, S. Arrhythmia detection using MIT-BIH dataset: A review. In Proceedings of the 2018 International Conference on Computational Approach in Smart Systems Design and Applications (ICASSDA), Kuching, Malaysia, 15–17 August 2018; IEEE: Danvers, MA, USA, 2018; pp. 1–5. [Google Scholar]
- Lynn, H.M.; Yeom, S.; Kim, P. ECG-Based Biometric Human Identification Based on Backpropagation Neural Network. In Proceedings of the Proceedings of the 2018 Conference on Research in Adaptive and Convergent Systems, RACS ’18, New York, NY, USA, 9–12 October 2018; pp. 6–10. [Google Scholar]
- Xie, C.; McCullum, L.; Johnson, A.; Pollard, T.; Gow, B.; Moody, B. Waveform Database Software Package (wfdb) for Python. 2022. Available online: https://physionet.org/ (accessed on 1 March 2024).
- Yang, L.; Shami, A. On hyperparameter optimization of machine learning algorithms: Theory and practice. Neurocomputing 2020, 415, 295–316. [Google Scholar] [CrossRef]
- Komer, B.; Bergstra, J.; Eliasmith, C. Hyperopt-sklearn: Automatic hyperparameter configuration for scikit-learn. In Proceedings of the ICML workshop on AutoML, Austin, TX, USA, 19 April 2014; Volume 9, p. 50. [Google Scholar]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Bergstra, J.; Komer, B.; Eliasmith, C.; Yamins, D.; Cox, D.D. Hyperopt: A python library for model selection and hyperparameter optimization. Comput. Sci. Discov. 2015, 8, 014008. [Google Scholar] [CrossRef]
- Yu, T.; Zhu, H. Hyper-parameter optimization: A review of algorithms and applications. arXiv 2020, arXiv:2003.05689. [Google Scholar]
- Cadogan, M. PR Interval. 2021. Available online: https://litfl.com/pr-interval-ecg-library/ (accessed on 30 December 2023).
Category Type | Description | Known ID | Unknown ID | Personal Status |
---|---|---|---|---|
HOS | Identifying patients in a hospital before a patient takes their heart test. | O | X | X |
SCK | Using ECG data in a security check. | O | O | X |
WD | Identifying ownership for using personal wearable devices. | X | O | O |
Parameters | CNN | LSTM |
---|---|---|
Learning Rate | 0.003 | 0.002 |
Optimizer | Adam | Adam |
Loss Function | Cross-entropy | Cross-entropy |
Dropout | 0.5 | 0.3 |
Number of hidden layers | 7 | 4 |
Epoch | 50 | 100 |
Parameters | KNN | Parameters | SVM | Parameters | RF |
---|---|---|---|---|---|
Neighbors | 31 | C | 13 | Criterion | Gini |
Weights | Distance | Kernel | RBF | n-estimators | 50 |
Algorithm | Kd-tree | Probability | True | Random state | 10 |
Leaf size | 30 | Gamma | Scale | Max. depth | 15 |
Metric | Euclidean | DFS | OVO | OOB score | True |
P | 2 | Shrinking | True |
Model | Accuracy | Precision | Recall | F1-Score | Train Time (Sec) |
---|---|---|---|---|---|
SVM | 92.43% | 96.18% | 91.99% | 0.940 | 0.164 |
RF | 92.12% | 92.64% | 95.64% | 0.941 | 1.410 |
CNN | 90.78% | 89.80% | 96.76% | 0.932 | 67.281 |
LSTM | 84.89% | 87.64% | 89.25% | 0.884 | 83.655 |
KNN | 85.32% | 89.30% | 87.92% | 0.886 | 0.179 |
Model | Accuracy | Precision | Recall | F1-Score | Train Time (s) |
---|---|---|---|---|---|
SVM | 95.07% | 97.90% | 94.30% | 0.961 | 0.172 |
RF | 94.90% | 97.35% | 94.67% | 0.960 | 1.521 |
CNN | 90.25% | 91.37% | 93.55% | 0.924 | 123.864 |
KNN | 87.19% | 91.10% | 88.58% | 0.898 | 0.199 |
LSTM | 86.45% | 93.65% | 84.47% | 0.888 | 126.401 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Kim, S.-K. Versatile Machine Learning-Based Authentications by Using Enhanced Time-Sliced Electrocardiograms. Information 2024, 15, 187. https://doi.org/10.3390/info15040187
Zhao Y, Kim S-K. Versatile Machine Learning-Based Authentications by Using Enhanced Time-Sliced Electrocardiograms. Information. 2024; 15(4):187. https://doi.org/10.3390/info15040187
Chicago/Turabian StyleZhao, Yi, and Song-Kyoo Kim. 2024. "Versatile Machine Learning-Based Authentications by Using Enhanced Time-Sliced Electrocardiograms" Information 15, no. 4: 187. https://doi.org/10.3390/info15040187
APA StyleZhao, Y., & Kim, S. -K. (2024). Versatile Machine Learning-Based Authentications by Using Enhanced Time-Sliced Electrocardiograms. Information, 15(4), 187. https://doi.org/10.3390/info15040187