Cost-Effective Signcryption for Securing IoT: A Novel Signcryption Algorithm Based on Hyperelliptic Curves
Abstract
:1. Introduction
1.1. Physical Layer
1.2. Network Layer
1.3. Application Layer
2. Motivation and Methodology
- •
- Achieving efficiency and high security for resource-limited devices is a challenging task. To accomplish both of these objectives simultaneously, we use a hyperelliptic curve (HEC), which has exceptional dominance in cryptosystems due to its small key size and high security.
- •
- The proposed algorithm is based on hyperelliptic curve parameters. HEC computational operations are significantly faster than EC operations. This method attains reduced computational cost and increased efficiency, while its smaller key size reduces communication overload.
- •
- We complete a performance evaluation in terms of computational cost and bandwidth overload in comparison to existing techniques and to verify the efficiency of the proposed algorithm. The evaluation results provide evidence that the proposed solution is appropriate and well-suited for resource-constrained environment.
- •
- We validate and verify essential security properties using formal and informal methodologies, ensuring essential security attributes and the achieving of the desired security of the proposed algorithm required for the IoT framework.
3. Related Work
3.1. Preliminaries of Elliptic Curve Cryptography
3.2. Hyperelliptic Curve
3.3. Elliptic Curve Discrete Logarithm Problem (HECDLP)
4. Proposed Methodology
4.1. System Setup Phase
4.2. Key Generation
4.3. Theorem—IoT Device Signcryption
- i.
- And then, compute R = · D mod q, · ;
- ii.
- Compute = ( · , ) and = ( + ) · );
- iii.
- Compute C = ();
- iv.
- Calculate = ℏ (C, );
- v.
- Calculate S = ( + · ) mod q;
- vi.
- Send = {C,S,R} to the control center.
4.4. Theorem—Control Center Unsigncryption
- i.
- Compute = (S( · · ));
- ii.
- Compute = ℏ (C, );
- iii.
- Compute R = (D · + · );
- iv.
- Compute = ((R + · ) · );
- v.
- Compute = (C).
4.5. Correctness Proof of Algorithm
- = (R + · · ) and it should be equal to
- ( + · · )
- = (( · D + · ) · ) where R = · D
- = (( · D + · · D) · ) where = · D
- = (( + ) D · ) where = D ·
- = ( + · ) · ) = □
- R = (D · + · )
- In the above formula, can be calculated as ; hence,
- where
- □
5. Security Analysis and Correctness Proof
5.1. Confidentiality
5.2. Signcryption Process
5.3. Unsigncryption Process
5.4. Integrity
5.5. Authenticity
5.6. Replay Attack Resistance
5.7. Unforgeability
5.8. Forward Secrecy
5.9. Public Verifiability
5.10. Non-Repudiation
5.11. Protection Lifetime
5.12. Denial of Service
6. Results
6.1. Security Analysis
6.2. Computational Complexity Analysis
6.3. Communication Overhead Complexity Analysis
6.4. Communication Overhead Reduction
6.5. Formal Analysis and Security Validation
6.6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Domínguez-Bolaño, T.; Campos, O.; Barral, V.; Escudero, C.J.; García-Naya, J.A. An overview of IoT architectures, technologies, and existing open-source projects. Internet Things 2022, 20, 100626. [Google Scholar] [CrossRef]
- Azrour, M.; Mabrouki, J.; Guezzaz, A.; Kanwal, A. Internet of things security: Challenges and key issues. Secur. Commun. Netw. 2021, 2021, 1–11. [Google Scholar] [CrossRef]
- Kumari, P.; Jain, A.K. A comprehensive study of DDoS attacks over IoT network and their countermeasures. Comput. Secur. 2023, 127, 103096. [Google Scholar] [CrossRef]
- Ansar, S.A.; Arya, S.; Aggrawal, S.; Saxena, S.; Kushwaha, A.; Pathak, P.C. Security in IoT Layers: Emerging Challenges with Countermeasures. In Computer Vision and Robotics: Proceedings of CVR 2022; Springer: Singapore, 2023; pp. 551–563. [Google Scholar]
- Al-Shareeda, M.A.; Manickam, S.; Laghari, S.A.; Jaisan, A. Replay-attack detection and prevention mechanism in industry 4.0 landscape for secure SECS/GEM communications. Sustainability 2022, 14, 15900. [Google Scholar] [CrossRef]
- Bout, E. Denial-of-Sleep Attacks on IoT Networks. Doctoral Dissertation, Université de Lille, Lille, France, 2022. [Google Scholar]
- Lightbody, D.; Ngo, D.M.; Temko, A.; Murphy, C.C.; Popovici, E. Attacks on IoT: Side-Channel Power Acquisition Framework for Intrusion Detection. Future Internet 2023, 15, 187. [Google Scholar] [CrossRef]
- Alfalouji, Q.; Schranz, T.; Kümpel, A.; Schraven, M.; Storek, T.; Gross, S.; Monti, A.; Müller, D.; Schweiger, G. IoT Middleware Platforms for Smart Energy Systems: An Empirical Expert Survey. Buildings 2022, 12, 526. [Google Scholar] [CrossRef]
- Mali, S.D.; Govinda, K. A study on network routing attacks in IoT. Mater. Today Proc. 2023, 80, 2997–3002. [Google Scholar] [CrossRef]
- Hasan, A.; Khan, M.A.; Shabir, B.; Munir, A.; Malik, A.W.; Anwar, Z.; Ahmad, J. Forensic Analysis of Blackhole Attack in Wireless Sensor Networks/Internet of Things. Appl. Sci. 2021, 12, 11442. [Google Scholar] [CrossRef]
- Kamis, N.H.; Yassin, W.; Abdollah, M.F.; Razak, S.F.A.; Yogarayan, S. Blackhole attacks in internet of things networks: A review. Indones. J. Electr. Eng. Comput. Sci. 2023, 30, 1080–1090. [Google Scholar] [CrossRef]
- Mabodi, K.; Yusefi, M.; Zandiyan, S.; Irankhah, L.; Fotohi, R. Multi-level trust-based intelligence schema for securing of internet of things (IoT) against security threats using cryptographic authentication. J. Supercomput. 2020, 76, 7081–7106. [Google Scholar] [CrossRef]
- Tatar, E.E.; Dener, M. Wormhole Attacks in IoT Based Networks. In Proceedings of the 2021 6th International Conference on Computer Science and Engineering (UBMK), Ankara, Turkey, 15–17 September 2021. [Google Scholar] [CrossRef]
- Gönen, S.; Barışkan, M.A.; Karacayılmaz, G.; Alhan, B.; Yılmaz, E.N.; Artuner, H.; Sindiren, E. A Novel Approach to Prevention of Hello Flood Attack in IoT Using Machine Learning Algorithm. El-Cezeri 2022, 9, 1529–1541. [Google Scholar] [CrossRef]
- Zrelli, A.; Nakkach, C.; Ezzedine, T. Cyber-security for IoT applications based on ANN algorithm. In Proceedings of the 2022 International Symposium on Networks, Computers and Communications (ISNCC), Shenzhen, China, 19–22 July 2022; 2022; pp. 1–5. [Google Scholar] [CrossRef]
- Kim, M.; Suh, T. Eavesdropping Vulnerability and Countermeasure in Infrared Communication for IoT Devices. Sensors 2021, 21, 8207. [Google Scholar] [CrossRef] [PubMed]
- Sivasankari, N.; Kamalakkannan, S. Detection and prevention of man-in-the-middle attack in iot network using regression modeling. Adv. Eng. Softw. 2022, 169, 103126. [Google Scholar] [CrossRef]
- Chataut, R.; Phoummalayvane, A.; Akl, R. Unleashing the Power of IoT: A Comprehensive Review of IoT Applications and Future Prospects in Healthcare, Agriculture, Smart Homes, Smart Cities, and Industry 4.0. Sensors 2023, 23, 7194. [Google Scholar] [CrossRef] [PubMed]
- Yildirim, M.; Demiroğlu, U.; Şenol, B. An in-depth exam of iot, iot core components, iot layers, and attack types. Avrupa Bilim ve Teknoloji Dergisi 2021, 28, 665–669. [Google Scholar] [CrossRef]
- Islam, M.R.; Aktheruzzaman, K.M. An analysis of cybersecurity attacks against internet of things and security solutions. J. Comput. Commun. 2020, 8, 11–25. [Google Scholar] [CrossRef]
- Yaacoub, J.P.A.; Noura, H.N.; Salman, O.; Chehab, A. Ethical hacking for IoT: Security issues, challenges, solutions and recommendations. Internet Things Cyber-Phys. Syst. 2023, 3, 280–308. [Google Scholar] [CrossRef]
- Taherdoost, H. Security and Internet of Things: Benefits, Challenges, and Future Perspectives. Electronics 2023, 12, 1901. [Google Scholar] [CrossRef]
- Kumar, M.; Verma, H.K.; Sikka, G. A secure lightweight signature based authentication for Cloud-IoT crowdsensing environments. Trans. Emerg. Telecommun. Technol. 2019, 30, e3292. [Google Scholar] [CrossRef]
- Ali, W.; Zhu, C.; Latif, R.; Asim, M.; Tariq, M.U. Image Encryption Scheme Based on Orbital Shift Pixels Shuffling with ILM Chaotic System. Entropy 2023, 25, 787. [Google Scholar] [CrossRef]
- Zheng, Y. Digital signcryption or how to achieve cost (signature & encryption)≪ cost (signature)+ cost (encryption). In Advances in Cryptology—CRYPTO’97, Proceedings of the 17th Annual International Cryptology Conference, Santa Barbara, CA, USA, 17–21 August 1997; Springer: Berlin/Heidelberg, Germany, 1997; pp. 165–179. [Google Scholar]
- Singh, A.K. A review of elliptic curve based signcryption schemes. Int. J. Comput. Appl. 2014, 102, 26–30. [Google Scholar] [CrossRef]
- Ye, G.; Jiao, K.; Wu, H.; Pan, C.; Huang, X. An asymmetric image encryption algorithm based on a fractional-order chaotic system and the RSA public-key cryptosystem. Int. J. Bifurc. Chaos 2020, 30, 2050233. [Google Scholar] [CrossRef]
- Medaglia, C.M.; Serbanati, A. An overview of privacy and security issues in the internet of things. In The Internet of Things: 20th Tyrrhenian Workshop on Digital Communications; Springer: New York, NY, USA, 2010; pp. 389–395. [Google Scholar]
- Waheed, A.; Iqbal, J.; Din, N.; Islam, S.U.; Umar, A.I.; Amin, N.U. Improved cryptanalysis of provable certificateless generalized signcryption. Int. J. Adv. Comput. Sci. Appl. 2019, 10. [Google Scholar] [CrossRef]
- Paterson, K.G.; Price, G. A comparison between traditional public key infrastructures and identity-based cryptography. Inf. Secur. Tech. Rep. 2003, 8, 57–72. [Google Scholar] [CrossRef]
- Ting, P.Y.; Tsai, J.L.; Wu, T.S. Signcryption method suitable for low-power IoT devices in a wireless sensor network. IEEE Syst. J. 2017, 12, 2385–2394. [Google Scholar] [CrossRef]
- Challa, S.; Das, A.K.; Gope, P.; Kumar, N.; Wu, F.; Vasilakos, A.V. Design and analysis of authenticated key agreement scheme in cloud-assisted cyber–physical systems. Future Gener. Comput. Syst. 2020, 108, 1267–1286. [Google Scholar] [CrossRef]
- Khan, M.A.; Ullah, I.; Nisar, S.; Noor, F.; Qureshi, I.M.; Khanzada, F.; Khattak, H.; Aziz, M.A. Multiaccess edge computing empowered flying ad hoc networks with secure deployment using identity-based generalized signcryption. Mob. Inf. Syst. 2020, 2020, 8861947. [Google Scholar] [CrossRef]
- Roy, S.; Chatterjee, S.; Das, A.K.; Chattopadhyay, S.; Kumar, N.; Vasilakos, A.V. On the design of provably secure lightweight remote user authentication scheme for mobile cloud computing services. IEEE Access 2017, 5, 25808–25825. [Google Scholar] [CrossRef]
- Khan, M.A.; Qureshi, I.M.; Ullah, I.; Khan, S.; Khanzada, F.; Noor, F. An efficient and provably secure certificateless blind signature scheme for flying ad-hoc network based on multi-access edge computing. Electronics 2019, 9, 30. [Google Scholar] [CrossRef]
- ur Rahman, A.; Ullah, I.; Naeem, M.; Anwar, R.; Khattak, H.; Ullah, S. A lightweight multi-message and multi-receiver heterogeneous hybrid signcryption scheme based on hyper elliptic curve. Int. J. Adv. Comput. Sci. Appl. 2018, 9. [Google Scholar] [CrossRef]
- Safi, A. Improving the security of internet of things using encryption algorithms. Int. J. Comput. Inf. Eng. 2017, 11, 558–561. [Google Scholar]
- Zhang, Y.; Deng, R.H.; Zheng, D.; Li, J.; Wu, P.; Cao, J. Efficient and robust certificateless signature for data crowdsensing in cloud-assisted industrial IoT. IEEE Trans. Ind. Inform. 2019, 15, 5099–5108. [Google Scholar] [CrossRef]
- Han, Y.; Yang, X.; Hu, Y. Signcryption based on elliptic curve and its multi-party schemes. In Proceedings of the 3rd International Conference on Information Security, Shanghai, China, 14–16 November 2004; pp. 216–217. [Google Scholar] [CrossRef]
- Libert, B.; Quisquater, J.J. A new identity based signcryption scheme from pairings. In Proceedings of the 2003 IEEE Information Theory Workshop (Cat. No. 03EX674), Paris, France, 31 March–4 April 2003; pp. 155–158. [Google Scholar] [CrossRef]
- Tweneboah-Koduah, S.; Skouby, K.E.; Tadayoni, R. Cyber security threats to IoT applications and service domains. Wirel. Pers. Commun. 2017, 95, 169–185. [Google Scholar] [CrossRef]
- Tawalbeh, L.A.; Muheidat, F.; Tawalbeh, M.; Quwaider, M. IoT Privacy and security: Challenges and solutions. Appl. Sci. 2020, 10, 4102. [Google Scholar] [CrossRef]
- Nayak, P.; Swapna, G. Security issues in IoT applications using certificateless aggregate signcryption schemes: An overview. Internet Things 2022, 21, 100641. [Google Scholar] [CrossRef]
- Thabit, F.; Can, O.; Aljahdali, A.O.; Al-Gaphari, G.H.; Alkhzaimi, H.A. A Comprehensive Literature Survey of Cryptography Algorithms for Improving the IoT Security. Internet Things 2023, 22, 100759. [Google Scholar] [CrossRef]
- Chiadighikaobi, I.R.; Katuk, N. A scoping study on lightweight cryptography reviews in IoT. Baghdad Sci. J. 2021, 18 (Suppl. S2), 0989. [Google Scholar] [CrossRef]
- Gong, B.; Wu, Y.; Wang, Q.; Ren, Y.H.; Guo, C. A secure and lightweight certificateless hybrid signcryption scheme for Internet of Things. Future Gener. Comput. Syst. 2022, 127, 23–30. [Google Scholar] [CrossRef]
- Wu, Y.; Gong, B.; Zhang, Y. An improved efficient certificateless hybrid signcryption scheme for internet of things. Wirel. Commun. Mob. Comput. 2022, 2022, 6945004. [Google Scholar] [CrossRef]
- Kiran, M.A.; Pasupuleti, S.K.; Eswari, R. Efficient Pairing-Free Identity-Based Signcryption Scheme for Cloud-Assisted IoT. Int. J. Cloud Appl. Comput. (IJCAC) 2022, 12, 1–15. [Google Scholar]
- Zhang, B.; Jia, Z.; Zhao, C. An efficient certificateless generalized signcryption scheme. Secur. Commun. Netw. 2018, 2018, 3578942. [Google Scholar] [CrossRef]
- Zhou, P.; Jin, C.; Chen, Z.; Chen, G.; Wang, L. An efficient heterogeneous signcryption scheme for internet of things. Pervasive Mob. Comput. 2023, 94, 101821. [Google Scholar] [CrossRef]
- Singh, A.K.; Solanki, A.; Nayyar, A.; Qureshi, B. Elliptic curve signcryption-based mutual authentication protocol for smart cards. Appl. Sci. 2020, 10, 8291. [Google Scholar] [CrossRef]
- Eltaieb, R.A.; El-Banby, G.M.; El-Shafai, W.; Abd El-Samie, F.E.; Abbas, A.M. Efficient implementation of cancelable face recognition based on elliptic curve cryptography. Opt. Quantum Electron. 2023, 55, 841. [Google Scholar] [CrossRef]
- Verma, S.K.; Ojha, D.B. A discussion on elliptic curve cryptography and its applications. Int. J. Comput. Sci. Issues (IJCSI) 2012, 9, 74. [Google Scholar]
- Sajjad, A.; Afzal, M.; Iqbal, M.M.W.; Abbas, H.; Latif, R.; Raza, R.A. Kleptographic attack on elliptic curve based cryptographic protocols. IEEE Access 2020, 8, 139903–139917. [Google Scholar] [CrossRef]
- Ullah, S.; Zheng, J.; Din, N.; Hussain, M.T.; Ullah, F.; Yousaf, M. Elliptic Curve Cryptography; Applications, challenges, recent advances, and future trends: A comprehensive survey. Comput. Sci. Rev. 2023, 47, 100530. [Google Scholar] [CrossRef]
- Hu, Z.; Lin, D.; Zhao, C.A. Fast scalar multiplication of degenerate divisors for hyperelliptic curve cryptosystems. Appl. Math. Comput. 2021, 404, 126239. [Google Scholar] [CrossRef]
- Pelzl, J.; Wollinger, T.; Guajardo, J.; Paar, C. Hyperelliptic curve cryptosystems: Closing the performance gap to elliptic curves. In Cryptographic Hardware and Embedded Systems-CHES 2003, Proceedings of the 5th International Workshop, Cologne, Germany, 8–10 September 2003; Springer: Berlin/Heidelberg, Germany, 2003; pp. 351–365. [Google Scholar]
- Hosni, A.I.E.; Li, K.; Ahmad, S. DARIM: Dynamic approach for rumor influence minimization in online social networks. In International Conference on Neural Information Processing; Springer: Cham, Switzerland, 2019; Volume 12, pp. 619–630. [Google Scholar]
- Hosni, A.I.E.; Li, K.; Ding, C.; Ahmed, S. Least cost rumor influence minimization in multiplex social networks. In International Conference on Neural Information Processing; Springer: Cham, Switzerland, 2018; Volume 13, pp. 93–105. [Google Scholar]
- Debiao, H.; Jianhua, C.; Jin, H. An ID-based proxy signature schemes without bilinear pairings. Ann. Telecommun. 2011, 66, 657–662. [Google Scholar] [CrossRef]
- Hussain, S.; Ullah, S.S.; Ali, I.; Xie, J.; Inukollu, V.N. Certificateless signature schemes in Industrial Internet of Things: A comparative survey. Comput. Commun. 2022, 181, 116–131. [Google Scholar] [CrossRef]
- Fatima, R.; Shaikh, N.S.; Riaz, A.; Ahmad, S.; El-Affendi, M.A.; Alyamani, K.A.Z.; Nabeel, M.; Khan, J.A.; Yasin, A.; Latif, R.M.A. A natural language processing (NLP) evaluation on COVID-19 rumour dataset using deep learning techniques. Comput. Intell. Neurosci. J. 2022, 2022, 6561622. [Google Scholar] [CrossRef] [PubMed]
- Omala, A.A.; Ali, I.; Li, F. Heterogeneous signcryption with keyword search for wireless body area network. Secur. Priv. 2018, 1, e25. [Google Scholar] [CrossRef]
- Ashraf Ch, S.; Nizamudin; Sher, M. Public verifiable signcryption schemes with forward secrecy based on hyperelliptic curve cryptosystem. In Information Systems, Technology and Management, Proceedings of the 6th International Conference, ICISTM 2012, Grenoble, France, 28–30 March 2012; Springer: Berlin/Heidelberg, Germany, 2012; pp. 135–142. [Google Scholar]
- AVISPA. Automated Validation of Internet Security Protocols and Applications. Available online: http://www.avispaproject.org (accessed on 5 May 2022).
- Armando, A.; Basin, D.; Boichut, Y.; Chevalier, Y.; Compagna, L.; Cuéllar, J.; Drielsma, P.H.; Héam, P.C.; Kouchnarenko, O.; Mantovani, J.; et al. The AVISPA tool for the automated validation of internet security protocols and applications. In Computer Aided Verification, Proceedings of the 17th International Conference, CAV 2005, Edinburgh, Scotland, UK, 6–10 July 2005; Springer: Berlin/Heidelberg, Germany, 2005; pp. 281–285. [Google Scholar]
D | Divisor on Generalized Hyperelliptic Curve |
Private Key of IoT Node | |
Public Key of IoT Node | |
Control Center Public Key | |
Control Center Private Key | |
Hash Functions | |
C | Cipher Text |
Fresh Nonce | |
M′ | Encrypted Message |
, | Secret Keys |
Security Property | Ref. [49] | Ref. [50] | Proposed |
---|---|---|---|
Confidentiality | ✔ | ✔ | ✔ |
Integrity | ✔ | ✔ | ✔ |
Authenticity | × | ✔ | ✔ |
Replay Attack Resistance | × | ✔ | ✔ |
Unforgeability | ✔ | ✔ | ✔ |
Forward Secrecy | × | × | ✔ |
Public Verifiability | ✔ | × | ✔ |
Non-Repudiation | ✔ | ✔ | ✔ |
Lifetime Protection | × | × | ✔ |
DoS Protection | × | × | ✔ |
Scheme | Operands Utilized in Signcryption | Operands Utilized in Unsigncryption | Total Curve Operands Utilized | Time Consumed |
---|---|---|---|---|
Ref. [49] | 4 Elliptic Curve Point Multiplication | 5 Elliptic Curve Point Multiplication | 9 Elliptic Curve Point Multiplication | 19.8 m·s |
Ref. [50] | 2 Elliptic Curve Point Multiplication | 5 Elliptic Curve Point Multiplication | 7 Elliptic Curve Point Multiplication | 15.4 m·s |
Proposed | 4 Hyperelliptic Curve Divisor Multiplication | 4 Hyperelliptic Curve Divisor Multiplication | 8 Hyperelliptic Curve Divisor Multiplication | 8.8 m·s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, J.; Zhu, C.; Ali, W.; Asim, M.; Ahmad, S. Cost-Effective Signcryption for Securing IoT: A Novel Signcryption Algorithm Based on Hyperelliptic Curves. Information 2024, 15, 282. https://doi.org/10.3390/info15050282
Khan J, Zhu C, Ali W, Asim M, Ahmad S. Cost-Effective Signcryption for Securing IoT: A Novel Signcryption Algorithm Based on Hyperelliptic Curves. Information. 2024; 15(5):282. https://doi.org/10.3390/info15050282
Chicago/Turabian StyleKhan, Junaid, Congxu Zhu, Wajid Ali, Muhammad Asim, and Sadique Ahmad. 2024. "Cost-Effective Signcryption for Securing IoT: A Novel Signcryption Algorithm Based on Hyperelliptic Curves" Information 15, no. 5: 282. https://doi.org/10.3390/info15050282
APA StyleKhan, J., Zhu, C., Ali, W., Asim, M., & Ahmad, S. (2024). Cost-Effective Signcryption for Securing IoT: A Novel Signcryption Algorithm Based on Hyperelliptic Curves. Information, 15(5), 282. https://doi.org/10.3390/info15050282