Private Firm Valuation Using Multiples: Can Artificial Intelligence Algorithms Learn Better Peer Groups?
Abstract
:1. Introduction
2. Literature Review
3. Materials and Methods
3.1. Sample Data
3.2. Linear Regression
Algorithm 1: OLS process. |
Input: Explanatory and dependent variables Output: estimated values in the OLS model Begin Algorithm For j in 1 to 5 for each dependent variable For i in 1 to sample size End For For i in 1 to sample size End For End For End Algorithm |
3.3. Feature Selection Using the F-Test
3.4. Feature Selection Using Neighbourhood Component Analysis
3.5. Self-Organizing Maps
4. Research Methodology
5. Results
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Grbenic, S.O. Private Firm Valuation in the Technology Sector: Illuminating the Interaction Between Multiple Performance and Peer Pool Setting. Int. J. Econ. Financ. Manag. Sci. 2021, 9, 77. [Google Scholar] [CrossRef]
- Asche, F.; Misund, B. Who’s a major? A novel approach to peer group selection: Empirical evidence from oil and gas companies. Cogent Econ. Financ. 2016, 4, 1264538. [Google Scholar] [CrossRef]
- Cooper, I.A.; Cordeiro, L. Optimal Equity Valuation Using Multiples: The Number of Comparable Firms. SSRN Electron. J. 2008, 29, 1025–1053. [Google Scholar] [CrossRef]
- Sommer, F.; Woehrmann, A. Triangulating the Accuracy of Comparable Company Valuations: A Multidimensional Analysis Considering Interaction Effects. SSRN Electron. J. 2013. [Google Scholar] [CrossRef]
- Plenborg, T.; Pimentel, R.C. Best practices in applying multiples for valuation purposes. J. Priv. Equity 2016, 19, 55–64. [Google Scholar] [CrossRef]
- Nel, W.S.; Bruwer, B.W.; Le Roux, N.J. Equity- and entity-based multiples in emerging markets: Evidence from the JSE Securities Exchange. J. Appl. Bus. Res. 2013, 29, 829–852. [Google Scholar] [CrossRef]
- Herrmann, V.; Richter, F. Pricing with Performance-Controlled Multiples. Schmalenbach Bus. Rev. 2003, 55, 194–219. [Google Scholar] [CrossRef]
- Miciuła, I.; Kadłubek, M.; Stepien, P. Modern methods of business valuation-case study and new concepts. Sustainability 2020, 12, 2699. [Google Scholar] [CrossRef]
- Kazlauskiene, V.; Christauskas, Č. Business Valuation Model Based on the Analysis of Business Value Drivers. 2008. Available online: https://www.ceeol.com/search/article-detail?id=952729 (accessed on 10 March 2024).
- Chan, L.K.C.; Lakonishok, J.; Swaminathan, B. Industry classifications and return comovement. Financ. Anal. J. 2007, 63, 56–70. [Google Scholar] [CrossRef]
- Liu, J.; Nissim, D.; Thomas, J. Equity valuation using multiples. J. Account. Res. 2002, 40, 135–172. [Google Scholar] [CrossRef]
- Kim, M.; Ritter, J.R. Valuing IPOs. J. Financ. Econ. 1999, 53, 409–437. [Google Scholar] [CrossRef]
- Kaplan, S.N.; Ruback, R.S. The Market Pricing of Cash Flow Forecasts: Discounted Cash Flow vs. the Method of “Comparables”. J. Appl. Corp. Financ. 1996, 8, 45–60. [Google Scholar] [CrossRef]
- Kaplan, S.N.; Ruback, R.S. The Valuation of Cash Flow Forecasts: An Empirical Analysis. J. Financ. 1995, 50, 1059–1093. [Google Scholar] [CrossRef]
- Boatsman, J.R.; Baskin, E.F. Asset Valuation with Incomplete Markets. Account. Rev. 1981, 56, 38–53. [Google Scholar]
- Agnes Cheng, C.S.; McNamara, R.A.Y. The valuation accuracy of the price-earnings and price-book benchmark valuation methods. Rev. Quant. Financ. Account. 2000, 15, 349–370. [Google Scholar] [CrossRef]
- Grbenic, S.O.; Zunk, B.M. The Formation of Peer Groups in the Pricing Process of Privately Held Businesses: Can Firm Size Serve as a Selection Criterion? Empirical Evidence from Europe. Int. J. Bus. Humanit. Technol. 2014, 4, 73–90. [Google Scholar]
- Schreiner, A. Equity Valuation Using Multiples: An Empirical Investigation; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Lie, E.; Lie, H.J. Multiples Used to Estimate Corporate Value. Financ. Anal. J. 2002, 58, 44–54. [Google Scholar] [CrossRef]
- Alford, A.W. The Effect of the Set of Comparable Firms on the Accuracy of the Price-Earnings Valuation Method. J. Account. Res. 1992, 30, 94. [Google Scholar] [CrossRef]
- Nel, W.S.; Le Roux, N.J. An Analyst’s Guide to Sector-Specific Optimal Peer Group Variables And Multiples in the South African Market. Econ. Manag. Financ. Mark. 2017, 12, 25–54. [Google Scholar]
- Dittmann, I.; Weiner, C. Selecting Comparables for the Valuation of European Firms. SSRN Electron. J. 2005. [Google Scholar] [CrossRef]
- Asness, C.S.; Porter, R.B.; Stevens, R.L. Predicting Stock Returns Using Industry-Relative Firm Characteristics. SSRN Electron. J. 2000. [Google Scholar] [CrossRef]
- Codau, C. Influencing Factors of Valuation Multiples of Companies. Ann. Univ. Apulensis Ser. Oeconomica 2013, 15, 391–401. [Google Scholar] [CrossRef]
- Henschke, S.; Homburg, C. Equity valuation using multiples: Controlling for differences amongst peers. SSRN 2009. [Google Scholar] [CrossRef]
- Cooper, E.W.; Barenbaum, L.; Schubert, W. Using Guideline Company Multiples for Small Firm Valuations. Valuat. Strateg. 2013, 16, 4–17. [Google Scholar]
- Paglia, J.K.; Harjoto, M. The discount for lack of marketability in privately owned companies: A multiples approach. J. Bus. Valuat. Econ. Loss Anal. 2010, 5. [Google Scholar] [CrossRef]
- Harvard Law School. Determining Control Premiums: A Better Approach. Valuat. Strateg. 2014, 17, 44–46. [Google Scholar]
- Alexandridis, G.; Fuller, K.P.; Terhaar, L.; Travlos, N.G. Deal size, acquisition premia and shareholder gains. J. Corp. Financ. 2013, 20, 1–13. [Google Scholar] [CrossRef]
- Hertzel, M.; Smith, R.L. Market Discounts and Shareholder Gains for Placing Equity Privately. J. Financ. 1993, 48, 459–485. [Google Scholar] [CrossRef]
- Madura, J.; Ngo, T.; Viale, A.M. Why do merger premiums vary across industries and over time? Q. Rev. Econ. Financ. 2012, 52, 49–62. [Google Scholar] [CrossRef]
- Bouwman, C.H.S.; Fuller, K.; Nain, A.S. Market valuation and acquisition quality: Empirical evidence. Rev. Financ. Stud. 2009, 22, 633–679. [Google Scholar] [CrossRef]
- Aggarwal, R.; Bhagat, S.; Rangan, S. The impact of fundamentals on IPO valuation. Financ. Manag. 2009, 38, 253–284. [Google Scholar] [CrossRef]
- Hrazdil, K.; Scott, T. The role of industry classification in estimating discretionary accruals. Rev. Quant. Financ. Account. 2013, 40, 15–39. [Google Scholar] [CrossRef]
- Arora, P.; Kweh, Q.L.; Mahajan, D. Performance comparison between domestic and international firms in the high-technology industry. Eurasian Bus. Rev. 2018, 8, 477–490. [Google Scholar] [CrossRef]
- Kahle, K.M.; Walkling, R.A. The Impact of Industry Classifications on Financial Research. J. Financ. Quant. Anal. 1996, 31, 309. [Google Scholar] [CrossRef]
- Harbula, P. Valuation Multiples: Accuracy and Drivers Evidence from the European Stock Market. Bus. Valuat. Rev. 2009, 28, 186–200. [Google Scholar] [CrossRef]
- De Franco, G.; Hope, O.K.; Larocque, S. Analysts’ choice of peer companies. Rev. Account. Stud. 2015, 20, 82–109. [Google Scholar] [CrossRef]
- Bhojraj, S.; Lee, C.M.C. Who is my peer? A valuation-based approach to the selection of comparable firms. J. Account. Res. 2002, 40, 407–439. [Google Scholar] [CrossRef]
- Albuquerque, A.M.; De Franco, G.; Verdi, R.S. Peer choice in CEO compensation. J. Financ. Econ. 2013, 108, 160–181. [Google Scholar] [CrossRef]
- Abbott, A.B. Estimating the Discount for Lack of Marketability: A Best fit Model. Valuat. Strateg. 2012, 15, 20–25. [Google Scholar]
- Da Silva Rosa, R.; Limmack, R.; Woodliff, D. The Equity Wealth Effects of Method of Payment in Takeover Bids for Privately Held Firms. Aust. J. Manag. 2004, 29, 93–110. [Google Scholar] [CrossRef]
- Yin, Y.; Peasnell, K.; Lubberink, M.; Hunt, H.G. Determinants of Analysts’ Target P/E Multiples. J. Investig. 2014, 23, 35–42. [Google Scholar] [CrossRef]
- Bonacchi, M.; Marra, A.; Zarowin, P. Earnings Quality of Private and Public Firms: Business Groups versus Stand-Alone Firms; Social Sciences Research Network (SSRN): New York, NY, USA, 2017. [Google Scholar]
- Ding, K.; Peng, X.; Wang, Y. A machine learning-based peer selection method with financial ratios. Account. Horiz. 2019, 33, 75–87. [Google Scholar] [CrossRef]
- Husmann, S.; Shivarova, A.; Steinert, R. Company classification using machine learning. Expert Syst. Appl. 2022, 195, 116598. [Google Scholar] [CrossRef]
- Van der Maarten, L.; Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605. [Google Scholar]
- Hoberg, G.; Phillips, G. Text-based network industries and endogenous product differentiation. J. Polit. Econ. 2016, 124, 1423–1465. [Google Scholar] [CrossRef]
- Geertsema, P.; Lu, H. Relative Valuation with Machine Learning. J. Account. Res. 2023, 61, 329–376. [Google Scholar] [CrossRef]
- Guryanova, L.; Panasenko, O.; Gvozditskyi, V.; Ugryumov, M.; Strilets, V.; Chernysh, S. Methods and Models of Machine Learning in Managing the Market Value of the Company. 2021. Available online: https://ceur-ws.org/Vol-2927/paper5.pdf (accessed on 3 May 2024).
- Sommer, F.; Rose, C.; Wöhrmann, A. Negative value indicators in relative valuation-An empirical perspective. J. Bus. Valuat. Econ. Loss Anal. 2014, 9, 23–54. [Google Scholar] [CrossRef]
- Benninga, S.Z.; Sarig, O.H. Corporate Finance: A Valuation Approach; McGraw-Hill: New York, NY, USA, 1996. [Google Scholar]
- Gujarati, D.N.; Porter, D.C. Basic Econometrics; McGraw-Hill: New York, NY, USA, 2009. [Google Scholar]
- Goldberger, J.; Roweis, S.; Hinton, G.; Salakhutdinov, R. Neighbourhood components analysis. Proc. Adv. Neural Inf. Process. Syst. 2004, 17, 4. [Google Scholar]
- Kohonen, T. Self-organized formation of topologically correct feature maps. Biol. Cybern. 1982, 43, 59–69. [Google Scholar] [CrossRef]
- Kohonen, T. Learning Vector Quantization. In Self-Organizing Maps; Springer: Berlin/Heidelberg, Germany, 1995; pp. 175–189. [Google Scholar] [CrossRef]
- Ezugwu, A.E.; Ikotun, A.M.; Oyelade, O.O.; Abualigah, L.; Agushaka, J.O.; Eke, C.I.; Akinyelu, A.A. A comprehensive survey of clustering algorithms: State-of-the-art machine learning applications, taxonomy, challenges, and future research prospects. Eng. Appl. Artif. Intell. 2022, 110, 104743. [Google Scholar] [CrossRef]
- Vesanto, J. Neural Network Tool for Data Mining: SOM Toolbox. 2000. Available online: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=0e9bee375e885c4740ba0dab007167c485fa1e48 (accessed on 18 March 2024).
- Villmann, T.; Bauer, H.U. Applications of the growing self-organizing map. Neurocomputing 1998, 21, 91–100. [Google Scholar] [CrossRef]
- Grbenic, S.O. Private Firm Valuation using Enterprise Value Multiples: An Examination of Relative Performance on Minority and Majority Share Transactions. SSRN Electron. J. 2021. [Google Scholar] [CrossRef]
- Chullen, A.; Kaltenbrunner, H.; Schwetzler, B. Does consistency improve accuracy in multiple—Based valuation? J. Bus. Econ. 2015, 85, 635–662. [Google Scholar] [CrossRef]
- LeClair, M.S. Valuing the Closely-Held Corporation: The Validity and Performance of Established Valuation Procedures. Account. Horiz. 1990, 4, 31–42. [Google Scholar]
Fundamental Characteristics (Target) | Industry Sector (Target) | Country and Continent (Target) | Period of Transaction | Total | |
---|---|---|---|---|---|
Number of input variables | 42 | 20 ** | 35+4 *,** | 3 | 104 |
Number of input dummy variables | 22 | 20 ** | 35+4 *,** | 3 | 84 |
FM1 EPV/Sales | FM2 EPV/EBITDA | FM3 EPV/EBIT | FM4 EPV/Total Assets | FM5 EQV/EBT | |
---|---|---|---|---|---|
Number of samples | 41,427 | 28,465 | 28,441 | 41,427 | 30,498 |
Number of missing data | 0 | 12,962 | 12,986 | 0 | 10,929 |
Mean | 9826.5 | 915.5 | 2519.3 | 5151.9 | 869.7 |
Standard deviation | 1.5 × 106 | 1.1 × 105 | 3.8 × 105 | 9.8 × 105 | 9.3 × 104 |
Skewness | 1.9 × 102 | 1.7 × 102 | 1.7 × 102 | 2.0 × 102 | 1.5 × 102 |
Kurtosis | 3.8 × 104 | 2.8 × 104 | 2.8 × 104 | 4.1 × 104 | 2.3 × 104 |
Parameter | Value |
---|---|
Input data dimension | |
Number of epochs | * |
SOM dimensions | |
Topology function | Grid |
Initial neighbourhood size | 10 |
Distance function | Euclidean |
Sample size | 20,713 |
Mean | Median | Std.dev | CV | |
---|---|---|---|---|
RAPE_5 | 4.938 | 0.838 | 242.800 | 49.166 |
RLAPE_5 | 1.664 | 1.222 | 1.554 | 0.934 |
RSPE_5 | 6.645 × 106 | 0.820 | 8.663 × 108 | 130.371 |
RAPE_6 | 4.675 | 0.834 | 252.560 | 54.025 |
RLAPE_6 | 1.654 | 1.220 | 1.518 | 0.918 |
RSPE_6 | 5.942 × 106 | 0.845 | 7.808 × 108 | 131.398 |
RAPE | RLAPE | RSPE | ||||
---|---|---|---|---|---|---|
Mean | 44.533 | 1.758 | 1.091 | 1.211 | 1.599 × 107 | 5.365 × 104 |
Median | 0.592 | 0.720 | 0.617 | 0.814 | 0.318 | 0.504 |
Std.dev | 3.997 × 103 | 58.464 | 1.338 | 1.282 | 2.048 × 109 | 7.339 × 106 |
CV | 89.301 | 33.247 | 1.226 | 1.059 | 128.017 | 136.798 |
All LR Variables Included | LR Variables Selected by F-Test | LR Variables Selected by NCA | ||||
---|---|---|---|---|---|---|
EPV/Sales | 18,147 | 2566 | 18,515 | 2198 | 17,086 | 3627 |
EPV/EBITDA | 11,885 | 2347 | 11,859 | 2373 | 11,763 | 2469 |
EPV/EBIT | 11,300 | 2920 | 11,250 | 2970 | 10,962 | 3258 |
EPV/Total assets | 18,371 | 2342 | 18,366 | 2347 | 18,299 | 2414 |
EQV/EBT | 12,768 | 2481 | 12,802 | 2447 | 12,733 | 2516 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jagrič, T.; Fister, D.; Grbenic, S.O.; Herman, A. Private Firm Valuation Using Multiples: Can Artificial Intelligence Algorithms Learn Better Peer Groups? Information 2024, 15, 305. https://doi.org/10.3390/info15060305
Jagrič T, Fister D, Grbenic SO, Herman A. Private Firm Valuation Using Multiples: Can Artificial Intelligence Algorithms Learn Better Peer Groups? Information. 2024; 15(6):305. https://doi.org/10.3390/info15060305
Chicago/Turabian StyleJagrič, Timotej, Dušan Fister, Stefan Otto Grbenic, and Aljaž Herman. 2024. "Private Firm Valuation Using Multiples: Can Artificial Intelligence Algorithms Learn Better Peer Groups?" Information 15, no. 6: 305. https://doi.org/10.3390/info15060305
APA StyleJagrič, T., Fister, D., Grbenic, S. O., & Herman, A. (2024). Private Firm Valuation Using Multiples: Can Artificial Intelligence Algorithms Learn Better Peer Groups? Information, 15(6), 305. https://doi.org/10.3390/info15060305