Bridging Artificial Intelligence and Neurological Signals (BRAINS): A Novel Framework for Electroencephalogram-Based Image Generation
Abstract
:1. Introduction
2. Methods
2.1. EEG Configuration
2.2. Experiment Design and Data Collection
- Connecting the headset and ensuring high EEG connection quality.
- Data collection while the participant has closed eyes (baseline measurement).
- Data collection while the participant is observing stimuli (images of handwritten digits).
- Finalization of data collection.
2.3. Data Normalization and Preprocessing
2.4. Optimal Timestep for LSTM Network
- Hidden Size: 128.
- Number of LSTM Layers: 4.
- Batch Size: 128.
- Learning Rate: 0.0001.
- Number of Epochs: 30.
2.5. Integrated Gradients
2.6. Structural Similarity Index
2.7. Code Availability
2.8. Computational Requirements
3. Results
3.1. Investigating EEG Signals Using Integrated Gradients
3.2. Evaluating Latent Representation Size
- Hidden Size: 128.
- Number of LSTM Layers: 4.
- Batch Size: 2048.
- Learning Rate: 0.0001.
- Number of Epochs: 600.
- Contrastive temperature (negative pairs): 0.08.
- Contrastive temperature (positive pairs): 0.03.
3.3. Image Generation Process Using Simple Convolutional Network
3.4. Generative Adversarial Networks
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hassan, F.; Hussain, S.F. Review of EEG signals classification using machine learning and deep-learning techniques. In Advances in Non-Invasive Biomedical Signal Sensing and Processing with Machine Learning; Springer International Publishing: Cham, Switzerland, 2023; pp. 159–183. [Google Scholar]
- Mohammad, A.; Siddiqui, F.; Afshar Alam, M. Deep learning models in EEG signals: Comparative analysis. In Micro-Electronics and Telecommunication Engineering; Springer Nature: Singapore, 2023; pp. 421–430. [Google Scholar]
- Mohamudally, N.; Putteeraj, M.; Hosseini, S.A. New Frontiers in Brain: Computer Interfaces; BoD—Books on Demand; 2020. Available online: https://www.intechopen.com/books/8821 (accessed on 12 March 2024).
- Kang, F.; Shan, J.; Li, Z.; Liu, Y.; Ye, J.; Zhang, X.; Liu, C.; Wang, F. Development of Wireless Wearable Sleep Monitoring System Based on EEG Signal. Zhongguo Yi Liao Qi Xie Za Zhi 2024, 48, 173–178. [Google Scholar] [PubMed]
- Rehman, M.; Higdon, L.M.; Sperling, M.R. Long-Term Home EEG Recording: Wearable and Implantable Devices. J. Clin. Neurophysiol. 2024, 41, 200–206. [Google Scholar] [CrossRef] [PubMed]
- Arpaia, P.; Esposito, A.; Gargiulo, L.; Moccaldi, N. Wearable Brain-Computer Interfaces: Prototyping EEG-Based Instruments for Monitoring and Control; CRC Press: Boca Raton, FL, USA, 2023. [Google Scholar]
- Rémond, A. EEG Informatics: A Didactic Review of Methods and Applications of EEG Data Processing: Lectures for an International Course in EEG Data Processing; Elsevier Science & Technology: 1977. Available online: https://books.google.hr/books/about/EEG_Informatics.html?id=pWZJzwEACAAJ&redir_esc=y (accessed on 12 March 2024).
- Chaddad, A.; Wu, Y.; Kateb, R.; Bouridane, A. Electroencephalography Signal Processing: A Comprehensive Review and Analysis of Methods and Techniques. Sensors 2023, 23, 6434. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhou, Q.Q.; Chen, H.; Hu, X.Q.; Li, W.G.; Bai, Y.; Han, J.X.; Wang, Y.; Liang, Z.H.; Chen, D.; et al. The applied principles of EEG analysis methods in neuroscience and clinical neurology. Mil. Med. Res. 2023, 10, 67. [Google Scholar] [CrossRef]
- Akin, M. Comparison of wavelet transform and FFT methods in the analysis of EEG signals. J. Med. Syst. 2002, 26, 241–247. [Google Scholar] [CrossRef]
- Piho, L. Signal Processing and Machine Learning Methods with Applications in EEG-Based Emotion Recognition. 2019. Available online: https://wrap.warwick.ac.uk/id/eprint/151076/ (accessed on 12 March 2024).
- Malik, A.S.; Mumtaz, W. EEG-Based Experiment Design for Major Depressive Disorder: Machine Learning and Psychiatric Diagnosis; Academic Press: Cambridge, MA, USA, 2019. [Google Scholar]
- Al-Fahoum, A.S.; Al-Fraihat, A.A. Methods of EEG signal features extraction using linear analysis in frequency and time-frequency domains. ISRN Neurosci. 2014, 2014, 730218. [Google Scholar] [CrossRef] [PubMed]
- Klonowski, W. Everything you wanted to ask about EEG but were afraid to get the right answer. Nonlinear Biomed. Phys. 2009, 3, 2. [Google Scholar] [CrossRef] [PubMed]
- Arabian, H.; Battistel, A.; Chase, J.G.; Moeller, K. Attention-Guided Network Model for Image-Based Emotion Recognition. Appl. Sci. 2023, 13, 10179. [Google Scholar] [CrossRef]
- Abgeena, A.; Garg, S. S-LSTM-ATT: A hybrid deep learning approach with optimized features for emotion recognition in electroencephalogram. Health Inf. Sci. Syst. 2023, 11, 40. [Google Scholar] [CrossRef] [PubMed]
- Nagabushanam, P.; Thomas George, S.; Radha, S. EEG signal classification using LSTM and improved neural network algorithms. Soft Comput. 2019, 24, 9981–10003. [Google Scholar] [CrossRef]
- Iyer, A.; Das, S.S.; Teotia, R.; Maheshwari, S.; Sharma, R.R. CNN and LSTM based ensemble learning for human emotion recognition using EEG recordings. Multimed. Tools Appl. 2022, 82, 4883–4896. [Google Scholar] [CrossRef]
- Sundararajan, M.; Taly, A.; Yan, Q. Axiomatic Attribution for Deep Networks. In Proceedings of the 34th International Conference on Machine Learning, Sydney, NSW, Australia, 6–11 August 2017; pp. 3319–3328. [Google Scholar]
- Shrikumar, A.; Greenside, P.; Kundaje, A. Learning Important Features through Propagating Activation Differences. arXiv 2017, arXiv:1704.02685. [Google Scholar]
- Shrikumar, A.; Greenside, P.; Shcherbina, A.; Kundaje, A. Not Just a Black Box: Learning Important Features Through Propagating Activation Differences. arXiv 2016, arXiv:1605.01713. [Google Scholar]
- Sokač, M.; Kjær, A.; Dyrskjøt, L.; Haibe-Kains, B.; Jwl Aerts, H.; Birkbak, N.J. Spatial transformation of multi-omics data unlocks novel insights into cancer biology. eLife 2023, 12, RP87133. [Google Scholar] [CrossRef] [PubMed]
- EMOTIV. In: EMOTIV [Internet]. Available online: https://www.emotiv.com/ (accessed on 8 May 2024).
- Värbu, K.; Muhammad, N.; Muhammad, Y. Past, Present, and Future of EEG-Based BCI Applications. Sensors 2022, 22, 3331. [Google Scholar] [CrossRef] [PubMed]
- LaRocco, J.; Le, M.D.; Paeng, D.-G. A Systemic Review of Available Low-Cost EEG Headsets Used for Drowsiness Detection. Front. Neuroinform. 2020, 14, 553352. [Google Scholar] [CrossRef] [PubMed]
- Deng, L. The MNIST Database of Handwritten Digit Images for Machine Learning Research [Best of the Web]. IEEE Signal Process. Mag. 2012, 29, 141–142. Available online: https://ieeexplore.ieee.org/document/6296535 (accessed on 18 April 2024). [CrossRef]
- Recording EEG Data with an EMOTIV Headset. Available online: https://emotiv.gitbook.io/emotivpro-builder/data-collection-during-your-experiment/recording-eeg-data-with-an-emotiv-headset (accessed on 18 April 2024).
- Khosla, P.; Teterwak, P.; Wang, C.; Sarna, A.; Tian, Y.; Isola, P.; Maschinot, A.; Liu, C.; Krishnan, D. Supervised contrastive learning. In Proceedings of the 34th International Conference on Neural Information Processing Systems (NIPS ‘20), Vancouver, BC, Canada, 6–12 December 2020; Curran Associates Inc.: Red Hook, NY, USA, 2020. Article 1567. pp. 18661–18673. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sokač, M.; Mršić, L.; Balković, M.; Brkljačić, M. Bridging Artificial Intelligence and Neurological Signals (BRAINS): A Novel Framework for Electroencephalogram-Based Image Generation. Information 2024, 15, 405. https://doi.org/10.3390/info15070405
Sokač M, Mršić L, Balković M, Brkljačić M. Bridging Artificial Intelligence and Neurological Signals (BRAINS): A Novel Framework for Electroencephalogram-Based Image Generation. Information. 2024; 15(7):405. https://doi.org/10.3390/info15070405
Chicago/Turabian StyleSokač, Mateo, Leo Mršić, Mislav Balković, and Maja Brkljačić. 2024. "Bridging Artificial Intelligence and Neurological Signals (BRAINS): A Novel Framework for Electroencephalogram-Based Image Generation" Information 15, no. 7: 405. https://doi.org/10.3390/info15070405
APA StyleSokač, M., Mršić, L., Balković, M., & Brkljačić, M. (2024). Bridging Artificial Intelligence and Neurological Signals (BRAINS): A Novel Framework for Electroencephalogram-Based Image Generation. Information, 15(7), 405. https://doi.org/10.3390/info15070405