Assessment of Published Papers on the Use of Machine Learning in Diagnosis and Treatment of Mastitis
Abstract
:1. Introduction
1.1. Background: Mastitis
1.2. Background: Machine Learning
1.3. Background: Use of Machine Learning in Mastitis Research
1.4. Objectives of This Study
2. Materials and Methods
2.1. Search Procedure
2.2. Paper Evaluation
- Year of publication of paper.
- Country and scientific establishment (university or other institution) of origin of the paper were taken into account based on the first and last authors only. If multiple authors were listed as first or last authors in the papers, they were all considered.
- Type of paper: (i) original article or (ii) review. For original articles, the following details were further recorded:
- Mammalian species involved in the study described.
- Focus of study described in the paper: (i) individual patient, (ii) population.
- Mastitis aspect(s) described therein: (i) diagnosis, (ii) treatment.
- Type of study described therein: (i) experimental work (i.e., challenge-associated), (ii) field work or (iii) laboratory work.
- Specific feature associated with mastitis studied in the article: (i) presence of clinical mastitis and/or subclinical mastitis, (ii) presence of chronic mammary abnormalities, (iii) presence of bacteria in milk, (iv) increased somatic cell counts in milk, (v) findings of clinical pathology examination, (vi) findings of histopathology examination, (vii) outcome of mastitis treatment and (viii) isolation of antibiotic-resistant bacteria from milk.
- Methodological approaches related to machine learning employed in the study described.
- Journal in which the paper was published.
- Number of literature references included in the relevant list.
- Number and names of all co-authors in the paper.
- Total number of citations received by the paper until the end of 2023.
- Accessibility of paper, i.e., whether it was open access or subscription-only.
2.3. Data Management and Analysis
3. Results
3.1. Year of Publication
3.2. Origin of Papers
3.3. Content of Papers
3.3.1. Mammalian Species Referred to in Articles
3.3.2. Mastitis Aspect Described in Articles
3.3.3. Machine Learning Methodologies Employed
3.3.4. Detection of Antibiotic Resistance in Isolates from Cases of Mastitis by Using Machine Learning Techniques
3.3.5. Keywords
3.4. Journals in Which Papers Were Published
3.5. Cited References
3.6. Authors
3.7. Impact of Papers
3.8. Accessibility of Papers
4. Discussion
4.1. Year of Publication
4.2. Content
4.2.1. Mastitis
4.2.2. Machine Learning
4.2.3. Potential Limitations
4.3. Bibliometric Details
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pyorala, S.; Taponen, S. Coagulase-negative staphylococci—Emerging mastitis pathogens. Vet. Microbiol. 2009, 134, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Cheng, W.N.; Han, S.G. Bovine mastitis: Risk factors, therapeutic strategies, and alternative treatments—A review. Asian-Australas. J. Anim. Sci. 2020, 33, 1699–1713. [Google Scholar] [CrossRef] [PubMed]
- Bradley, A.J. Bovine mastitis: An evolving disease. Vet. J. 2002, 164, 116–128. [Google Scholar] [CrossRef] [PubMed]
- Bogni, C.; Odierno, L.; Raspanti, C.; Giraudo, J.; Larriestra, A.; Reinoso, E.; Lasagno, M.; Ferrari, M.; Ducrós, E.; Frigerio, C.; et al. War against mastitis: Current concepts on controlling bovine mastitis pathogens. In Science against Microbial Pathogens: Communicating Current Research and Technological Advances; Méndez-Vilas, A., Ed.; Formatex Research Center: Badajoz, Spain, 2011; pp. 483–494. [Google Scholar]
- Pal, M. Etiology, transmission, epidemiology, clinical spectrum, diagnosis and management of fungal mastitis in dairy animals: A mini review. Int. J. Food Sci. Agric. 2023, 7, 423–429. [Google Scholar] [CrossRef]
- Beinhauerova, M.; Moravkova, M.; Seydlova, R.; Crhanova, M. Eradication of bovine mastitis caused by the pathogenic microalga Prototheca bovis on a dairy cattle farm: A case report. Microbiol. Res. 2023, 14, 1343–1352. [Google Scholar] [CrossRef]
- Wellenberg, G.J.; van der Poel, W.H.M.; Van Oirschot, J.T. Viral infections and bovine mastitis: A review. Vet. Microbiol. 2002, 88, 27–45. [Google Scholar] [CrossRef] [PubMed]
- Lam, T.J.G.M.; Olde Riekerink, R.G.M.; Sampimon, O.C.; Smith, H. Mastitis diagnostics and performance monitoring: A practical approach. Ir. Vet. J. 2009, 62, S34–S39. [Google Scholar] [CrossRef] [PubMed]
- Petersson-Wolfe, C.S.; Leslie, K.E.; Swartz, T.H. An update on the effect of clinical mastitis on the welfare of dairy cows and potential therapies. Vet. Clin. N. Am. Food Anim. Pract. 2018, 34, 525–535. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. The Global Dairy Sector: Facts. 2016. Available online: https://www.fao.org/3/cb2992en/cb2992en.pdf?fbclid=IwAR22dOWHwI1BtpVS60zcMelHtMV_Lse_P_Uxbtecc7_I7p76VUSC0Gvu7MI (accessed on 25 February 2024).
- Halasa, T.; Huijps, K.; Østerås, O.; Hogeveen, H. Economic effects of bovine mastitis and mastitis management: A review. Vet. Q. 2007, 29, 18–31. [Google Scholar] [CrossRef]
- Phys Org. Potential Biomarkers of Mastitis in Dairy Cattle Milk Identified. 2016. Available online: https://phys.org/news/2016-07-potential-biomarkers-mastitis-dairy-cattle.html (accessed on 24 March 2024).
- The Cattle Site. Mastitis, Where Are We at Now? 2023. Available online: https://www.thecattlesite.com/articles/mastitis-where-are-we-at-now (accessed on 24 March 2024).
- Chakraborty, S.; Dhama, K.; Tiwari, R.; Yatoo, M.I.; Khurana, S.K.; Khandia, R.; Munjal, A.; Munuswamy, P.; Kumar, M.A.; Singh, M.; et al. Technological interventions and advances in the diagnosis of intramammary infections in animals with emphasis on bovine population—A review. Vet. Q. 2019, 39, 76–94. [Google Scholar] [CrossRef]
- Schabauer, L.; Wenning, M.; Huber, I.; Ehling-Schulz, M. Novel physico-chemical diagnostic tools for high throughput identification of bovine mastitis associated gram-positive, catalase-negative cocci. BMC Vet. Res. 2014, 10, 156. [Google Scholar] [CrossRef] [PubMed]
- Nyman, A.K.; Emanuelson, U.; Waller, K.P. Diagnostic test performance of somatic cell count, lactate dehydrogenase, and N-acetyl-β-D-glucosaminidase for detecting dairy cows with intramammary infection. J. Dairy Sci. 2016, 99, 1440–1448. [Google Scholar] [CrossRef] [PubMed]
- Kandeel, S.A.; Megahed, A.A.; Ebeid, M.H.; Constable, P.D. Ability of milk pH to predict subclinical mastitis and intramammary infection in quarters from lactating dairy cattle. J. Dairy Sci. 2018, 102, 1417–1427. [Google Scholar] [CrossRef] [PubMed]
- Nyman, A.K.; Waller, K.P.; Emanuelson, U.; Frössling, J. Sensitivity and specificity of PCR analysis and bacteriological culture of milk samples for identification of intramammary infections in dairy cows using latent class analysis. Prev. Vet. Med. 2016, 135, 123–131. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, A.; Imran, M. Diagnosis of bovine mastitis: From laboratory to farm. Trop. Anim. Health Prod. 2018, 50, 1193–1202. [Google Scholar] [CrossRef] [PubMed]
- Wilm, J.; Svennesen, L.; Kirkeby, C.; Krömker, V. Treatment of clinically severe bovine mastitis—A scoping review. Front. Vet. Sci. 2024, 11, 1286461. [Google Scholar] [CrossRef] [PubMed]
- Gomes, F.; Henriques, M. Control of bovine mastitis: Old and recent therapeutic approaches. Curr. Microbiol. 2016, 72, 377–382. [Google Scholar] [CrossRef] [PubMed]
- Krömker, V.; Leimbach, S. Mastitis treatment-reduction in antibiotic usage in dairy cows. Reprod. Domest. Anim. 2017, 52, 21–29. [Google Scholar] [CrossRef]
- Koza, J.R.; Bennett, F.H.; Andre, D.; Keane, M.A. Automated design of both the topology and sizing of analog electrical circuits using genetic programming. In Artificial Intelligence in Design’96; Gero, J.S., Sudweeks, F., Eds.; Springer: Dordrecht, Germany, 1996; pp. 151–170. [Google Scholar]
- Kersting, K. Machine learning and artificial intelligence: Two fellow travelers on the quest for intelligent behavior in machines. Front. Big Data 2018, 1, 6. [Google Scholar] [CrossRef]
- Zhou, V. Machine Learning for Beginners: An Introduction to Neural Networks. 2019. Available online: https://towardsdatascience.com/machine-learning-for-beginners-an-introduction-to-neural-networks-d49f22d238f9 (accessed on 20 February 2024).
- Sun, S.; Cao, Z.; Zhu, H.; Zhao, J. A survey of optimization methods from a machine learning perspective. IEEE Trans. Cybernet. 2020, 50, 3668–3681. [Google Scholar] [CrossRef]
- Liakos, K.G.; Busato, P.; Moshou, D.; Pearson, S.; Bochtis, D. Machine learning in agriculture: A review. Sensors 2018, 18, 2674. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Niu, H.; Carrasco, J.; Lennox, B.; Arvin, F. Voronoi-based multi-robot autonomous exploration in unknown environments via deep reinforcement learning. IEEE Trans. Vehic. Technol. 2020, 69, 14413–14423. [Google Scholar] [CrossRef]
- Yoosefzadeh-Najafabadi, M.; Hugh, E.; Tulpan, D.; Sulik, J.; Eskandari, M. Application of machine learning algorithms in plant breeding: Predicting yield from hyperspectral reflectance in soybean? Front. Plant Sci. 2021, 11, 624273. [Google Scholar] [CrossRef] [PubMed]
- Jordan, M.I.; Mitchell, T.M. Machine learning: Trends, perspectives, and prospects. Science 2015, 349, 255–260. [Google Scholar] [CrossRef] [PubMed]
- Okolie, J.A.; Savage, S.; Ogbaga, C.C.; Gunes, B. Assessing the potential of machine learning methods to study the removal of pharmaceuticals from wastewater using biochar or activated carbon. Total Environ. Res. Themes 2022, 1, 100001. [Google Scholar] [CrossRef]
- Ebrahimie, E.; Ebrahimi, F.; Ebrahimi, M.; Tomlinson, S.; Petrovski, K.R. Hierarchical pattern recognition in milking parameters predicts mastitis prevalence. Comp. Electron. Agric. 2018, 147, 6–11. [Google Scholar] [CrossRef]
- Pakrashi, A.; Ryan, C.; Gueret, C.; Berry, D.P.; Corcoran, M.; Keane, M.T.; Mac Namee, B. Early detection of subclinical mastitis in lactating dairy cows using cow-level features. J. Dairy Sci. 2023, 106, 4978–4990. [Google Scholar] [CrossRef]
- Lubowitz, J.H.; Brand, J.C.; Rossi, M.J. Search methods for systematic reviews and bibliographic articles can improve: Responsibilities of authorship are vast. Arthroscopy 2023, 39, 1367–1368. [Google Scholar] [CrossRef]
- Montazeri, A.; Mohammadi, S.; Hesari, P.M.; Ghaemi, M.; Riazi, H.; Sheikhi-Mobarakeh, Z. Preliminary guideline for reporting bibliometric reviews of the biomedical literature (BIBLIO): A minimum requirements. Syst. Rev. 2023, 12, 239. [Google Scholar] [CrossRef]
- Szomszor, M.; Adams, J.; Fry, R.; Gebert, C.; Pendlebury, D.A.; Potter, R.W.; Rogers, G. Interpreting bibliometric data. Front. Res. Metr. Anal. 2021, 5, 628703. [Google Scholar] [CrossRef]
- Donthu, N.; Kumar, S.; Pandey, N.; Lim, W.M. Research constituents, intellectual structure, and collaboration patterns in journal of international marketing: An analytical retrospective. J. Int. Mark. 2021, 29, 1–25. [Google Scholar] [CrossRef]
- Wallin, J.A. Bibliometric methods: Pitfalls and possibilities. Basic Clin. Pharmacol. Toxicol. 2005, 97, 261–275. [Google Scholar] [CrossRef] [PubMed]
- Samuel, A. Some studies in machine learning using the game of checkers. IBM J. Res. Dev. 1959, 3, 210–229. [Google Scholar] [CrossRef]
- Shalev-Shwartz, S.; Ben-David, S. Understanding Machine Learning: From Theory to Algorithms; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Ray, S. A quick review of machine learning algorithms. In Proceedings of the 2019 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon), Faridabad, India, 14–16 February 2019; pp. 35–39. [Google Scholar]
- Grieger, A.S.; Zoche-Golob, V.; Paduch, J.H.; Hoedemaker, M.; Krömker, V. Recurrent clinical mastitis in dairy cattle—Importance and causes. Tierarztl. Prax. Ausg. G Grosstiere Nutztiere 2014, 42, 156–162. [Google Scholar] [CrossRef] [PubMed]
- Wente, N.; Grieger, A.S.; Klocke, D.; Paduch, J.H.; Zhang, Y.; Leimbach, S.; Seeth, M.; Mansion-De Vries, E.M.; Mohr, E.; Krömker, V. Recurrent mastitis-persistent or new infections? Vet. Microbiol. 2020, 244, 108682. [Google Scholar] [CrossRef] [PubMed]
- Bobbo, T.; Biffani, S.; Taccioli, C.; Penasa, M.; Cassandro, M. Comparison of machine learning methods to predict udder health status based on somatic cell counts in dairy cows. Sci. Rep. 2021, 11, 13642. [Google Scholar] [CrossRef] [PubMed]
- Luo, W.K.; Dong, Q.; Feng, Y. Risk prediction model of clinical mastitis in lactating dairy cows based on machine learning algorithms. Prev. Vet. Med. 2023, 221, 106059. [Google Scholar] [CrossRef] [PubMed]
- Thompson, J.; Nunn, S.L.E.; Sarkar, S.; Clayton, B. Diagnostic screening of bovine mastitis using MALDI-TOF MS direct-spotting of milk and machine learning. Vet. Sci. 2023, 10, 101. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.J.; Xu, C.; Wang, H.; Xu, W.; Zhao, Z.X.; Chen, M.X.; Jia, B.; Huang, B.Y. The early prediction of common disorders in dairy cows monitored by automatic systems with machine learning algorithms. Animals 2022, 12, 1251. [Google Scholar] [CrossRef]
- Chu, M.Y.; Li, Q.; Wang, Y.C.; Zeng, X.T.; Si, Y.S.; Liu, G. Fusion of udder temperature and size features for the automatic detection of dairy cow mastitis using deep learning. Comp. Electron. Agric. 2023, 212, 108131. [Google Scholar] [CrossRef]
- Lianou, D.T.; Michael, C.K.; Fthenakis, G.C. Data on mapping 444 dairy small ruminant farms during a countrywide investigation performed in Greece. Animals 2023, 13, 2044. [Google Scholar] [CrossRef] [PubMed]
- Wilm, J.; Krömker, V.; Kirkeby, C.; Gussmann, M. Lactational treatment of bovine mastitis—Development over time and factors influencing cytological cure. J. Dairy Sci. 2023, 106, 5740–5752. [Google Scholar] [CrossRef] [PubMed]
- Barkema, H.W.; Schukken, Y.H.; Zadoks, R.N. The role of cow, pathogen, and treatment regimen in the therapeutic success of bovine Staphylococcus aureus mastitis. J. Dairy Sci. 2006, 89, 1877–1895. [Google Scholar] [CrossRef] [PubMed]
- Vasileiou, N.G.C.; Fthenakis, G.C.; Mavrogianni, V.S. Comparison of the efficacy of intramammary or injectable antibiotic administration against staphylococcal mastitis in ewes. Pathogens 2022, 11, 1164. [Google Scholar] [CrossRef] [PubMed]
- Zecconi, A.; Zaghen, F.; Meroni, G.; Sora, V.; Martino, P.A.; Laterza, G.; Zanini, L. Early milk total and differential cell counts as a diagnostic tool to improve antimicrobial therapy protocols. Animals 2023, 13, 1143. [Google Scholar] [CrossRef] [PubMed]
- Hoischen-Taubner, S.; Habel, J.; Uhlig, V.; Schwabenbauer, E.M.; Rumphorst, T.; Ebert, L.; Moller, D.; Sundrum, A. The whole and the parts-A new perspective on production diseases and economic sustainability in dairy farming. Sustainability 2021, 13, 9044. [Google Scholar] [CrossRef]
- Zecconi, A.; Piccinini, R.; Fox, K.L. Epidemiologic study of intramammary infections with Staphylococcus aureus during a control program in nine commercial dairy herds. J. Am. Vet. Med. Assoc. 2003, 223, 684–688. [Google Scholar] [CrossRef] [PubMed]
- Ruegg, P.L. New perspectives in udder health management. Vet. Clin. N. Am. Food Anim. Pract. 2012, 28, 149–163. [Google Scholar] [CrossRef] [PubMed]
- De Vliegher, S.; Ohnstad, I.; Piepers, S. Management and prevention of mastitis: A multifactorial approach with a focus on milking, bedding and data-management. J. Integr. Agric. 2018, 17, 1214–1233. [Google Scholar] [CrossRef]
- Bitten, A.M. The role of diagnostic microbiology in mastitis control programs. Vet. Clin. N. Am. Food Anim. Pract. 2012, 28, 187–202. [Google Scholar] [CrossRef]
- Robertson, J.R. Treatment of clinical mastitis. Vet. Clin. N. Am. Food Anim. Pract. 2012, 28, 271–288. [Google Scholar] [CrossRef] [PubMed]
- Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd ed.; Springer Science & Business Media: New York, NY, USA, 2009. [Google Scholar]
- Steinwart, I.; Christmann, A. Support Vector Machines; Springer Science & Business Media: New York, NY, USA, 2008. [Google Scholar]
- Adomavicius, G.; Tuzhilin, A. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Trans. Knowl. Data Eng. 2005, 17, 734–749. [Google Scholar] [CrossRef]
- Ricci, F.; Rokach, L.; Shapira, B. (Eds.) Recommender systems: Introduction and challenges. In Recommender Systems Handbook; Springer Science & Business Media: New York, NY, USA, 2015; pp. 1–34. [Google Scholar]
- Eurostat. Farmers and the Agricultural Labour Force—Statistics. 2022. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Farmers_and_the_agricultural_labour_force_-_statistics#Very_few_farm_managers_in_the_EU_have_full_agricultural_training (accessed on 24 March 2024).
- Taherdoost, H.; Madanchian, M. AI advancements: Comparison of innovative techniques. AI 2023, 5, 38–54. [Google Scholar] [CrossRef]
- Auger, C.P. Use of Reports Literature; Butterworth: London, UK, 1975. [Google Scholar]
- European Commission. Open Access. 2022. Available online: https://research-and-innovation.ec.europa.eu/strategy/strategy-2020-2024/our-digital-future/open-science/open-access_en (accessed on 20 February 2024).
- Morrison, H.; Borges, L.; Zhao, X.; Kakou, T.L.; Shanbhoug, A.N. Change and growth in open access journal publishing and charging trends 2011–2021. J. Assoc. Inf. Sci. Technol. 2022, 73, 1793–1805. [Google Scholar] [CrossRef]
- Pampel, H. Promoting open access in research-performing organizations: Spheres of activity, challenges, and future action areas. Publications 2023, 11, 44. [Google Scholar] [CrossRef]
Machine Learning Methodology | Number of Original Articles (n = 60) |
---|---|
Decision trees | 41 (68.3%) |
Support vector machines | 17 (28.3%) |
Artificial neural networks | 16 (26.7%) |
Logistic regression | 9 (15.0%) |
k-nearest neighbors algorithm | 7 (11.7%) |
Naïve Bayes classifiers | 6 (10.0%) |
Generalized linear models | 4 (6.7%) |
Linear regression | 4 (5.0%) |
k-means | 1 (1.7%) |
(not mentioned) | 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bourganou, M.V.; Kiouvrekis, Y.; Chatzopoulos, D.C.; Zikas, S.; Katsafadou, A.I.; Liagka, D.V.; Vasileiou, N.G.C.; Fthenakis, G.C.; Lianou, D.T. Assessment of Published Papers on the Use of Machine Learning in Diagnosis and Treatment of Mastitis. Information 2024, 15, 428. https://doi.org/10.3390/info15080428
Bourganou MV, Kiouvrekis Y, Chatzopoulos DC, Zikas S, Katsafadou AI, Liagka DV, Vasileiou NGC, Fthenakis GC, Lianou DT. Assessment of Published Papers on the Use of Machine Learning in Diagnosis and Treatment of Mastitis. Information. 2024; 15(8):428. https://doi.org/10.3390/info15080428
Chicago/Turabian StyleBourganou, Maria V., Yiannis Kiouvrekis, Dimitrios C. Chatzopoulos, Sotiris Zikas, Angeliki I. Katsafadou, Dimitra V. Liagka, Natalia G. C. Vasileiou, George C. Fthenakis, and Daphne T. Lianou. 2024. "Assessment of Published Papers on the Use of Machine Learning in Diagnosis and Treatment of Mastitis" Information 15, no. 8: 428. https://doi.org/10.3390/info15080428
APA StyleBourganou, M. V., Kiouvrekis, Y., Chatzopoulos, D. C., Zikas, S., Katsafadou, A. I., Liagka, D. V., Vasileiou, N. G. C., Fthenakis, G. C., & Lianou, D. T. (2024). Assessment of Published Papers on the Use of Machine Learning in Diagnosis and Treatment of Mastitis. Information, 15(8), 428. https://doi.org/10.3390/info15080428