IKDD: A Keystroke Dynamics Dataset for User Classification
Abstract
:1. Introduction
2. Keystroke Dynamics Datasets
3. The IKDD Dataset
3.1. The Keylogger IRecU
3.2. Recruitment of Volunteers
3.3. Format of Raw Data
- 32,#2022-03-29#,72698762,“dn”
- 32,#2022-03-29#,72698856,“up”
- 90,#2022-03-29#,72699012,“dn”
- 65,#2022-03-29#,72699137,“dn”
- 90,#2022-03-29#,72699200,“up”
- 65,#2022-03-29#,72699247,“up”
3.4. The Final Dataset
- 48–0,62,65,74,64,60,45
- 49–0,95,91,82,108
- 50–0,98,88,87,103,104,59,87,65,60,48,83
- 69–82,272,316,671,391,96,928,550,74
- 69–83,125,193,170,142,235,168,310
- 69–84,180,604,362,409,171,147,190,158
4. Examples of Using IKDD
4.1. Recognizing the User’s Gender
4.2. Recognizing the User’s Age Group
5. Discussion
6. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ahmad, N.; Szymkowiak, A.; Campbell, P.A. Keystroke dynamics in the pre-touchscreen era. Front. Hum. Neurosci. 2013, 7, 835. [Google Scholar] [CrossRef] [PubMed]
- Raul, N.; Shankarmani, R.; Joshi, P. A Comprehensive Review of Keystroke Dynamics-Based Authentication Mechanism. In International Conference on Innovative Computing and Communications; Khanna, A., Gupta, D., Bhattacharyya, S., Snasel, V., Platos, J., Hassanien, A.E., Eds.; Advances in Intelligent Systems and Computing; Springer: Singapore, 2020; Volume 1059, pp. 149–162. [Google Scholar] [CrossRef]
- Buker, A.A.N.; Roffo, G.; Vinciarelli, A. Type Like a Man! Inferring Gender from Keystroke Dynamics in Live-Chats. IEEE Intell. Syst. 2019, 34, 53–59. [Google Scholar] [CrossRef]
- Pentel, A. Predicting User Age by Keystroke Dynamics. In Artificial Intelligence and Algorithms in Intelligent Systems; Silhavy, R., Ed.; Advances in Intelligent Systems and Computing; Springer International Publishing: Cham, Switzerland, 2019; Volume 764, pp. 336–343. [Google Scholar] [CrossRef]
- Monaro, M.; Spolaor, R.; Li, Q.; Conti, M.; Gamberini, L.; Sartori, G. Type Me the Truth! In Proceedings of the ARES’17: International Conference on Availability, Reliability and Security, Calabria, Italy, 29 August–1 September 2017; p. 60. [Google Scholar]
- Epp, C.; Lippold, M.; Mandryk, R.L. Identifying emotional states using keystroke dynamics. In Proceedings of the CHI ‘11: CHI Conference on Human Factors in Computing Systems, Montreal, QC, Canada, 21–26 April 2018; pp. 715–724. [Google Scholar]
- Marrone, S.; Sansone, C. Identifying Users’ Emotional States through Keystroke Dynamics. In Proceedings of the 3rd International Conference on Deep Learning Theory and Applications, Lisbon, Portugal, 2–14 July 2022; pp. 207–214. [Google Scholar]
- Kołakowska, A.; Landowska, A. Keystroke Dynamics Patterns While Writing Positive and Negative Opinions. Sensors 2021, 21, 5963. [Google Scholar] [CrossRef] [PubMed]
- Crawford, H. Keystroke dynamics: Characteristics and opportunities. In Proceedings of the 2010 Eighth Annual International Conference on Privacy, Security and Trust (PST), Ottawa, ON, Canada, 17–19 August 2010; pp. 205–212. [Google Scholar]
- Tsimperidis, I. User Classification Through Keystroke Dynamics, for Suspect Identification, Democritus University of Thrace, Xanthi, Greece. 2017. Available online: https://www.didaktorika.gr/eadd/handle/10442/40524 (accessed on 20 May 2024).
- Killourhy, K.S.; Maxion, R.A. Comparing anomaly-detection algorithms for keystroke dynamics. In Proceedings of the Networks (DSN), Lisbon, Portugal, 27–30 June 2023; pp. 125–134. [Google Scholar]
- Loy, C.C.; Lai, W.K.; Lim, C.P. Keystroke Patterns Classification Using the ARTMAP-FD Neural Network. In Proceedings of the Third International Conference on Intelligent Information Hiding and Multimedia Signal Processing, Kaohsiung, Taiwan, 26–28 November 2007; pp. 61–64. [Google Scholar]
- Dias, T.; Vitorino, J.; Maia, E.; Sousa, O.; Praça, I. KeyRecs: A keystroke dynamics and typing pattern recognition dataset. Data Brief 2023, 50, 109509. [Google Scholar] [CrossRef] [PubMed]
- Risto, H.N.; Graven, O.H. Collection and Statistical Analysis of a Fixed-Text Keystroke Dynamics Authentication Data Set. In Proceedings of the 2023 7th Cyber Security in Networking Conference (CSNet), Montreal, QC, Canada, 16–18 October 2023; pp. 67–73. [Google Scholar]
- Giot, R.; El-Abed, M.; Rosenberger, C. GREYC keystroke: A benchmark for keystroke dynamics biometric systems. In Proceedings of the 2009 IEEE 3rd International Conference on Biometrics: Theory, Applications, and Systems (BTAS), Washington, DC, USA, 28–30 September 2009; pp. 1–6. [Google Scholar]
- Sznur, S.; García, S. Advances in Keystroke Dynamics Techniques to Group Users Sessions. Int. J. Inf. Secur. Sci. 2015, 4, 26–38. [Google Scholar]
- Maalej, A.; Kallel, I. Does Keystroke Dynamics tell us about Emotions? A Systematic Literature Review and Dataset Construction. In Proceedings of the 2020 16th International Conference on Intelligent Environments (IE), Madrid, Spain, 20–23 July 2020; pp. 60–67. [Google Scholar] [CrossRef]
- Vural, E.; Huang, J.; Hou, D.; Schuckers, S. Shared research dataset to support development of keystroke authentication. In Proceedings of the 2014 IEEE International Joint Conference on Biometrics (IJCB), Clearwater, FL, USA, 29 September–2 October 2014; pp. 1–8. [Google Scholar]
- El-Abed, M.; Dafer, M.; El Khayat, R. RHU Keystroke: A mobile-based benchmark for keystroke dynamics systems. In Proceedings of the 2014 International Carnahan Conference on Security Technology (ICCST), Rome, Italy, 13–16 October 2014; pp. 1–4. [Google Scholar]
- Güntürkün, O.; Ströckens, F.; Ocklenburg, S. Brain Lateralization: A Comparative Perspective. Physiol. Rev. 2020, 100, 1019–1063. [Google Scholar] [CrossRef] [PubMed]
- Zyrianov, V.; Peterson, C.S.; Guarnera, D.T.; Behler, J.; Weston, P.; Sharif, B.; Maletic, J.I. Deja Vu: Semantics-aware recording and replay of high-speed eye tracking and interaction data to support cognitive studies of software engineering tasks—Methodology and analyses. Empir. Softw. Eng. 2022, 27, 1–39. [Google Scholar] [CrossRef] [PubMed]
- Tsimperidis, I.; Arampatzis, A. The Keyboard Knows About You: Revealing User Characteristics via Keystroke Dynamics. Int. J. Technoethics 2020, 11, 34–51. [Google Scholar] [CrossRef]
- IKDD (IRecU’s Keystroke Dynamics Dataset). Available online: https://github.com/MachineLearningVisionRG/IKDD (accessed on 21 July 2024).
- Alves, R.A.; Castro, S.L.; Olive, T. Execution and pauses in writing narratives: Processing time, cognitive effort and typing skill. Int. J. Psychol. 2008, 43, 969–979. [Google Scholar] [CrossRef] [PubMed]
- Alnuaim, A.A.; Zakariah, M.; Shukla, P.K.; Alhadlaq, A.; Hatamleh, W.A.; Tarazi, H.; Sureshbabu, R.; Ratna, R. Human-Computer Interaction for Recognizing Speech Emotions Using Multilayer Perceptron Classifier. J. Health Eng. 2022, 2022, 6005446. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Li, Y.; Gui, Y.; Zhou, J. Prediction of blasting induced air-overpressure using a radial basis function network with an additional hidden layer. Appl. Soft Comput. 2022, 127, 109343. [Google Scholar] [CrossRef]
- Wieczorek, J.; Guerin, C.; McMahon, T. K-fold cross-validation for complex sample surveys. Stat 2022, 11, e454. [Google Scholar] [CrossRef]
- Hao, S.; Xu, H.; Ji, H.; Wang, Z.; Zhao, L.; Ji, Z.; Ganchev, I. G2-ResNeXt: A Novel Model for ECG Signal Classification. IEEE Access 2023, 11, 34808–34820. [Google Scholar] [CrossRef]
Dataset | Number of Participants | Type of Recorded Text | Demographics | Software Used | Acquisition Period | Amount of Acquired Data |
---|---|---|---|---|---|---|
Killourhy and Maxion | 51 | Fixed | 21 Females–30 Males 8 Left-Handed–43 Right-Handed 18–70 Age Range | Windows Application | N/A | 400 Acquisitions |
Keystroke100 | 100 | Fixed | N/A | Developed Program | N/A | N/A |
KeyRecs | 99 | Fixed and Free | 39 Females–60 Males 8 Left-Handed–91 Right-Handed 18–51 Age Range 20 Nationalities | Online Platform | N/A | 1.6 Million Keystrokes |
Risto and Graven | 103 | Fixed | Mostly University Students | Keylogger | N/A | N/A |
GREYC | 133 | Fixed | 32 Females–68 Males 18–50+ Age Range | GREYC-Keystroke Application | 18 March 2009–5 July 2009 | 7555 Acquisitions |
KEasyLogger | 17 | Free | N/A | KEasyLogger Application | N/A | 379 Acquisitions |
EmoSury | N/A | Fixed and Free | N/A | Dynamic Web Application | N/A | N/A |
Clarkson University Keystroke | 39 | Fixed and Free | N/A | JavaScript Keylogger | August 2011–June 2012 | N/A |
RHU | 53 | Fixed | 24 Females–29 Males 7–65 Age Range | Touch Mobile Phones Application | N/A | 985 Acquisitions |
Characteristic | Class | Number of Volunteers |
---|---|---|
Gender | Female | 88 |
Male | 76 | |
Age Group | 18–25 | 49 |
26–35 | 44 | |
36–45 | 40 | |
46+ | 31 | |
Handedness | Left-Handed | 14 |
Right-Handed | 146 | |
Ambidextrous | 4 | |
Mother Tongue | Albanian | 17 |
Bulgarian | 18 | |
English | 15 | |
Greek | 106 | |
Turkish | 8 | |
Educational Level | ISCED-3 | 33 |
ISCED-4 | 7 | |
ISCED-5 | 33 | |
ISCED-6 | 51 | |
ISCED-7–8 | 40 |
Characteristic | Class | Number of Logfiles |
---|---|---|
Gender | Female | 279 |
Male | 254 | |
Age Group | 18–25 | 151 |
26–35 | 149 | |
36–45 | 125 | |
46+ | 108 | |
Handedness | Left-Handed | 50 |
Right-Handed | 471 | |
Ambidextrous | 12 | |
Mother Tongue | Albanian | 51 |
Bulgarian | 54 | |
English | 58 | |
Greek | 345 | |
Turkish | 25 | |
Educational Level | ISCED-3 | 100 |
ISCED-4 | 23 | |
ISCED-5 | 110 | |
ISCED-6 | 173 | |
ISCED-7–8 | 127 |
Model | Acc. (%) | TBM (s) | F1 | AUC |
---|---|---|---|---|
MLP | 77.1 | 38.57 | 0.771 | 0.831 |
RBFN | 81.2 | 1.14 | 0.812 | 0.851 |
Classified As | ||
---|---|---|
Male | Female | |
Male | 207 | 47 |
Female | 53 | 226 |
Model | Acc. (%) | TBM (s) | F1 | AUC |
---|---|---|---|---|
SVM | 70.5 | 0.96 | 0.705 | 0.838 |
RF | 60.8 | 15.29 | 0.599 | 0.822 |
Classified As | ||||
---|---|---|---|---|
18–25 | 26–35 | 36–45 | 46+ | |
18–25 | 116 | 17 | 12 | 6 |
26–35 | 20 | 97 | 21 | 11 |
36–45 | 12 | 20 | 82 | 11 |
46+ | 8 | 12 | 7 | 81 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsimperidis, I.; Asvesta, O.-D.; Vrochidou, E.; Papakostas, G.A. IKDD: A Keystroke Dynamics Dataset for User Classification. Information 2024, 15, 511. https://doi.org/10.3390/info15090511
Tsimperidis I, Asvesta O-D, Vrochidou E, Papakostas GA. IKDD: A Keystroke Dynamics Dataset for User Classification. Information. 2024; 15(9):511. https://doi.org/10.3390/info15090511
Chicago/Turabian StyleTsimperidis, Ioannis, Olga-Dimitra Asvesta, Eleni Vrochidou, and George A. Papakostas. 2024. "IKDD: A Keystroke Dynamics Dataset for User Classification" Information 15, no. 9: 511. https://doi.org/10.3390/info15090511
APA StyleTsimperidis, I., Asvesta, O. -D., Vrochidou, E., & Papakostas, G. A. (2024). IKDD: A Keystroke Dynamics Dataset for User Classification. Information, 15(9), 511. https://doi.org/10.3390/info15090511