DFCNformer: A Transformer Framework for Non-Stationary Time-Series Forecasting Based on De-Stationary Fourier and Coefficient Network
Abstract
:1. Introduction
2. Related Work
2.1. Time-Series Prediction Model
2.2. Strategies for Addressing Non-Stationarity in LTSF
3. Proposed Method: DFCNformer
3.1. Problem Description
3.2. DFCNformer Framework
3.3. DSF Attention Fusion for Seasonal Composition
3.4. Dual-CONET for Trend Composition
3.5. Overall Forecasting Process
4. Experiment and Result Analysis
4.1. Datasets
- ETTh2 [26]: Records hourly power loads of six substations and one oil temperature feature in a county in China from July 2016 to July 2018.
- Exchange [39]: Covers daily exchange rates of eight different countries from 1990 to October 2010.
- Traffic [40]: Records hourly lane occupancy rates from 862 different sensors on the I-80 highway in the Bay Area, California, from July 2016 to July 2018.
- Weather [41]: It encompasses 21 meteorological indicators that were recorded every 10 min during the whole year of 2020 in Germany.
- ILI [42]: Contains weekly records of influenza patient numbers in the United States from 2002 to June 2020.
- Citypower [43]: Records weather conditions every 10 min and power consumption in three power distribution networks throughout 2017 in Dusseldorf.
4.2. Computational Resources and System Setup
4.3. Main Results
4.4. Ablation Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, H.; Li, J.; Chang, L. Predicting Time Series Energy Consumption Based on Transformer and LSTM. In International Conference on 6GN for Future Wireless Networks; Springer Nature: Cham, Switzerland, 2023; pp. 299–314. [Google Scholar]
- Chen, J.; Zheng, L.; Hu, Y.; Wang, W.; Zhang, H.; Hu, X. Traffic flow matrix-based graph neural network with attention mechanism for traffic flow prediction. Inf. Fusion 2024, 104, 102146. [Google Scholar] [CrossRef]
- Chen, K.; Liu, Y.; Ji, T.; Yang, G.; Chen, Y.; Yang, C.; Zheng, Y. TEST-Net: Transformer-enhanced Spatio-temporal network for infectious disease prediction. Multimedia Syst. 2024, 30, 312. [Google Scholar] [CrossRef]
- He, K.; Yang, Q.; Ji, L.; Pan, J.; Zou, Y. Financial time series forecasting with the deep learning ensemble model. Mathematics 2023, 11, 1054. [Google Scholar] [CrossRef]
- Hui, G.; Chen, S.; He, Y.; Wang, H.; Gu, F. Machine learning-based production forecast for shale gas in unconventional reservoirs via integration of geological and operational factors. J. Nat. Gas Sci. Eng. 2021, 94, 104045. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.; Kaiser; Polosukhin, I. Attention is all you need. In Proceedings of the 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA, 4–9 December 2017. [Google Scholar]
- Bandara, K.; Bergmeir, C.; Hewamalage, H. LSTM-MSNet: Leveraging forecasts on sets of related time series with multiple seasonal patterns. IEEE Trans. Neural Netw. Learn. Syst. 2020, 32, 1586–1599. [Google Scholar] [CrossRef]
- Wen, Q.; Zhang, Z.; Li, Y.; Sun, L. Fast RobustSTL: Efficient and robust seasonal-trend decomposition for time series with complex patterns. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Virtual Event, 6–10 July 2020; pp. 2203–2213. [Google Scholar]
- Wu, H.; Xu, J.; Wang, J.; Long, M. Autoformer: Decomposition transformers with auto-correlation for long-term series forecasting. Adv. Neural Inf. Process. Syst. 2021, 34, 22419–22430. [Google Scholar]
- Zhou, T.; Ma, Z.; Wen, Q.; Wang, X.; Sun, L.; Jin, R. Fedformer: Frequency enhanced decomposed transformer for long-term series forecasting. Int. Conf. Mach. Learn. 2022, 162, 27268–27286. [Google Scholar]
- Kim, T.; Kim, J.; Tae, Y.; Park, C.; Choi, J.H.; Choo, J. Reversible instance normalization for accurate time-series forecasting against distribution shift. In Proceedings of the International Conference on Learning Representations, Virtual, 25–29 April 2022. [Google Scholar]
- Liu, Y.; Wu, H.; Wang, J.; Long, M. Non-stationary transformers: Exploring the stationarity in time series forecasting. Adv. Neural Inf. Process. Syst. 2022, 35, 9881–9893. [Google Scholar]
- Wang, S.; Li, C.; Lim, A. A model for non-stationary time series and its applications in filtering and anomaly detection. IEEE Trans. Instrum. Meas. 2021, 70, 1–11. [Google Scholar] [CrossRef]
- Ariyo, A.A.; Adewumi, A.O.; Ayo, C.K. Stock price prediction using the ARIMA model. In Proceedings of the 2014 UKSim-AMSS 16th International Conference on Computer Modelling and Simulation, Cambridge, UK, 26–28 March 2014; pp. 106–112. [Google Scholar]
- Yu, R.; Zheng, S.; Anandkumar, A.; Yue, Y. Long-term forecasting using tensor-train rnns. In Proceedings of the 6th International Conference on Learning Representations (ICLR 2018), Vancouver, BC, Canada, 30 Apri–3 May 2018. [Google Scholar]
- Salinas, D.; Flunkert, V.; Gasthaus, J.; Januschowski, T. DeepAR: Probabilistic forecasting with autoregressive recurrent networks. Int. J. Forecast. 2020, 36, 1181–1191. [Google Scholar] [CrossRef]
- Abbasimehr, H.; Paki, R. Improving time series forecasting using LSTM and attention models. J. Ambient. Intell. Humaniz. Comput. 2022, 13, 673–691. [Google Scholar] [CrossRef]
- Casolaro, A.; Capone, V.; Iannuzzo, G.; Camastra, F. Deep learning for time series forecasting: Advances and open problems. Information 2023, 14, 598. [Google Scholar] [CrossRef]
- Bai, S.; Kolter, J.Z.; Koltun, V. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv 2018, arXiv:1803.01271. [Google Scholar]
- Liu, M.; Zeng, A.; Chen, M.; Xu, Z.; Lai, Q.; Ma, L.; Xu, Q. Scinet: Time series modeling and forecasting with sample convolution and interaction. Adv. Neural Inf. Process. Syst. 2022, 35, 5816–5828. [Google Scholar]
- Wan, R.; Tian, C.; Zhang, W.; Deng, W.; Yang, F. A multivariate temporal convolutional attention network for time-series forecasting. Electronics 2022, 11, 1516. [Google Scholar] [CrossRef]
- Ubal, C.; Di-Giorgi, G.; Contreras-Reyes, J.E.; Salas, R. Predicting the long-term dependencies in time series using recurrent artificial neural networks. Mach. Learn. Knowl. Extr. 2023, 5, 1340–1358. [Google Scholar] [CrossRef]
- Zeng, A.; Chen, M.; Zhang, L.; Xu, Q. Are transformers effective for time series forecasting? Proc. AAAI Conf. Artif. Intell. 2023, 37, 11121–11128. [Google Scholar] [CrossRef]
- Kitaev, N.; Kaiser, Ł.; Levskaya, A. Reformer: The efficient transformer. arXiv 2020, arXiv:2001.04451. [Google Scholar]
- Zhou, H.; Zhang, S.; Peng, J.; Zhang, S.; Li, J.; Xiong, H.; Zhang, W. Informer: Beyond efficient transformer for long sequence time-series forecasting. Proc. AAAI Conf. Artif. Intell. 2021, 35, 11106–11115. [Google Scholar] [CrossRef]
- Zhang, Y.; Yan, J. Crossformer: Transformer utilizing cross-dimension dependency for multivariate time series forecasting. In Proceedings of the Eleventh International Conference on Learning Representations, Kigali, Rwanda, 1–5 May 2023. [Google Scholar]
- Zhang, X.; Jin, X.; Gopalswamy, K.; Gupta, G.; Park, Y.; Shi, X.; Wang, H.; Maddix, D.C.; Wang, Y. First de-trend then attend: Rethinking attention for time-series forecasting. arXiv 2022, arXiv:2212.08151. [Google Scholar]
- Ogasawara, E.; Martinez, L.C.; de Oliveira, D.; Zimbrao, G.; Pappa, G.L.; Mattoso, M. Adaptive normalization: A novel data normalization approach for non-stationary time series. In Proceedings of the 2010 International Joint Conference on Neural Networks (IJCNN), Barcelona, Spain, 18–23 July 2010; pp. 1–8. [Google Scholar]
- Lim, B.; Zohren, S. Time-series forecasting with deep learning: A survey. Philos. Trans. R. Soc. 2021, 379, 20200209. [Google Scholar] [CrossRef]
- Koh, P.W.; Sagawa, S.; Marklund, H.; Xie, S.M.; Zhang, M.; Balsubramani, A.; Hu, W.; Yasunaga, M.; Phillips, R.L.; Gao, I.; et al. Wilds: A benchmark of in-the-wild distribution shifts. Int. Conf. Mach. Learn. 2021, 139, 5637–5664. [Google Scholar]
- Fan, W.; Wang, P.; Wang, D.; Wang, D.; Zhou, Y.; Fu, Y. Dish-ts: A general paradigm for alleviating distribution shift in time series forecasting. Proc. AAAI Conf. Artif. Intell. 2023, 37, 7522–7529. [Google Scholar] [CrossRef]
- Liu, Z.; Cheng, M.; Li, Z.; Huang, Z.; Liu, Q.; Xie, Y.; Chen, E. Adaptive normalization for non-stationary time series forecasting: A temporal slice perspective. Adv. Neural Inf. Process. Syst. 2024, 36, 14273–14292. [Google Scholar]
- Oreshkin, B.N.; Carpov, D.; Chapados, N.; Bengio, Y. N-BEATS: Neural basis expansion analysis for interpretable time series forecasting. arXiv 2019, arXiv:1905.10437. [Google Scholar]
- Passalis, N.; Tefas, A.; Kanniainen, J.; Gabbouj, M.; Iosifidis, A. Deep adaptive input normalization for time series forecasting. IEEE Trans. Neural Netw. Learn. Syst. 2019, 31, 3760–3765. [Google Scholar] [CrossRef]
- Wan, J.; Xia, N.; Yin, Y.; Pan, X.; Hu, J.; Yi, J. TCDformer: A transformer framework for non-stationary time series forecasting based on trend and change-point detection. Neural Netw. 2024, 173, 106196. [Google Scholar] [CrossRef]
- Yi, K.; Zhang, Q.; Cao, L.; Wang, S.; Long, G.; Hu, L.; He, H.; Niu, Z.; Fan, W.; Xiong, H. A survey on deep learning based time series analysis with frequency transformation. arXiv 2023, arXiv:2302.02173. [Google Scholar]
- Puech, T.; Boussard, M.; D’Amato, A.; Millerand, G. A fully automated periodicity detection in time series. In Advanced Analytics and Learning on Temporal Data: 4th ECML PKDD Workshop, AALTD 2019, Würzburg, Germany, 20 September 2019; Revised Selected Papers 4; Springer International Publishing: Berlin/Heidelberg, Germany, 2020; pp. 43–54. [Google Scholar]
- Tang, P.; Zhang, W. PDMLP: Patch-based Decomposed MLP for Long-Term Time Series Forecastin. arXiv 2024, arXiv:2405.13575. [Google Scholar]
- Lai, G.; Chang, W.C.; Yang, Y.; Liu, H. Modeling long-and short-term temporal patterns with deep neural networks. In Proceedings of the 41st International ACM SIGIR Conference on Research & Development in Information Retrieval, Ann Arbor, MI, USA, 8–12 July 2018; pp. 95–104. [Google Scholar]
- Traffic Dataset. Available online: http://pems.dot.ca.gov/ (accessed on 14 May 2024).
- Weather Dataset. Available online: https://www.bgc-jena.mpg.de/wetter/ (accessed on 14 May 2024).
- ILI Dataset. Available online: https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html (accessed on 14 May 2024).
- Citypower Dataset. Available online: https://kaggle.com/datasets/fedesoriano/electric-power-consumption (accessed on 14 May 2024).
Dataset | Sampling Frequency | Dimensions | Timesteps |
---|---|---|---|
ETTh2 | Hourly | 7 | 17,420 |
Exchange | Daily | 8 | 7588 |
Traffic | Hourly | 862 | 17,544 |
Weather | 10 min | 21 | 52,696 |
ILI | Weekly | 7 | 966 |
Citypower | 10 min | 8 | 52,416 |
Dataset | DFCNformer | TDformer | FEDformer | Autoformer | Informer | DLinear | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | ||
Traffic | 96 | 0.559 | 0.327 | 0.575 | 0.335 | 0.572 | 0.358 | 0.671 | 0.429 | 0.741 | 0.414 | 0.649 | 0.396 |
192 | 0.571 | 0.328 | 0.602 | 0.358 | 0.618 | 0.390 | 0.615 | 0.388 | 0.764 | 0.427 | 0.598 | 0.370 | |
336 | 0.583 | 0.332 | 0.616 | 0.348 | 0.622 | 0.384 | 0.607 | 0.375 | 0.847 | 0.473 | 0.605 | 0.373 | |
720 | 0.612 | 0.341 | 0.627 | 0.351 | 0.643 | 0.396 | 0.706 | 0.418 | 0.966 | 0.541 | 0.646 | 0.395 | |
Exchange | 96 | 0.087 | 0.206 | 0.091 | 0.210 | 0.151 | 0.281 | 0.147 | 0.278 | 0.908 | 0.774 | 0.098 | 0.217 |
192 | 0.176 | 0.298 | 0.184 | 0.305 | 0.276 | 0.382 | 0.597 | 0.559 | 1.101 | 0.834 | 0.217 | 0.338 | |
336 | 0.325 | 0.413 | 0.356 | 0.431 | 0.445 | 0.490 | 0.462 | 0.508 | 1.618 | 1.017 | 0.420 | 0.469 | |
720 | 0.829 | 0.685 | 0.881 | 0.706 | 1.133 | 0.819 | 1.099 | 0.814 | 2.920 | 1.410 | 0.742 | 0.651 | |
Weather | 96 | 0.176 | 0.219 | 0.186 | 0.225 | 0.244 | 0.332 | 0.262 | 0.330 | 0.389 | 0.447 | 0.201 | 0.266 |
192 | 0.219 | 0.259 | 0.233 | 0.267 | 0.308 | 0.368 | 0.311 | 0.371 | 0.443 | 0.458 | 0.236 | 0.293 | |
336 | 0.261 | 0.301 | 0.291 | 0.304 | 0.602 | 0.552 | 0.350 | 0.385 | 0.575 | 0.534 | 0.283 | 0.335 | |
720 | 0.357 | 0.351 | 0.367 | 0.353 | 0.407 | 0.418 | 0.422 | 0.432 | 1.095 | 0.776 | 0.348 | 0.383 | |
ILI | 24 | 2.211 | 0.983 | 2.889 | 1.124 | 2.849 | 1.180 | 3.380 | 1.290 | 5.257 | 1.616 | 2.403 | 1.097 |
36 | 2.087 | 0.960 | 2.922 | 1.075 | 2.746 | 1.149 | 3.460 | 1.310 | 5.530 | 1.677 | 2.385 | 1.095 | |
48 | 2.129 | 0.992 | 2.843 | 1.068 | 2.731 | 1.128 | 3.130 | 1.200 | 5.537 | 1.646 | 2.349 | 1.089 | |
60 | 2.360 | 1.056 | 2.999 | 1.106 | 2.802 | 1.136 | 2.860 | 1.470 | 5.704 | 1.685 | 2.405 | 1.109 | |
ETTh2 | 96 | 0.207 | 0.314 | 0.312 | 0.361 | 0.344 | 0.383 | 0.356 | 0.401 | 2.845 | 1.335 | 0.329 | 0.380 |
192 | 0.250 | 0.353 | 0.430 | 0.429 | 0.435 | 0.442 | 0.533 | 0.505 | 6.197 | 2.070 | 0.431 | 0.443 | |
336 | 0.279 | 0.368 | 0.444 | 0.447 | 0.485 | 0.479 | 0.461 | 0.472 | 5.225 | 1.934 | 0.459 | 0.462 | |
720 | 0.321 | 0.396 | 0.458 | 0.470 | 0.468 | 0.479 | 0.459 | 0.476 | 3.689 | 1.622 | 0.774 | 0.631 | |
Citypower | 96 | 0.205 | 0.279 | 0.244 | 0.311 | 0.278 | 0.374 | 0.312 | 0.395 | 0.404 | 0.494 | 0.239 | 0.311 |
192 | 0.251 | 0.304 | 0.271 | 0.323 | 0.279 | 0.360 | 0.446 | 0.489 | 0.528 | 0.571 | 0.273 | 0.346 | |
336 | 0.302 | 0.336 | 0.324 | 0.355 | 0.319 | 0.389 | 0.453 | 0.487 | 0.644 | 0.627 | 0.308 | 0.380 | |
720 | 0.349 | 0.365 | 0.373 | 0.382 | 0.459 | 0.499 | 0.504 | 0.523 | 0.817 | 0.701 | 0.350 | 0.426 |
Method | Metric | Traffic | Average | Weather | Average | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
96 | 192 | 336 | 720 | Increase | 96 | 192 | 336 | 720 | Increase | ||
DFCNformer | MSE | 0.559 | 0.571 | 0.583 | 0.612 | - | 0.176 | 0.219 | 0.261 | 0.357 | - |
MAE | 0.327 | 0.328 | 0.332 | 0.341 | - | 0.219 | 0.259 | 0.301 | 0.351 | - | |
DFCNformer-FA | MSE | 0.659 | 0.666 | 0.679 | 0.707 | 16.70% | 0.301 | 0.372 | 0.412 | 0.517 | 58.50% |
MAE | 0.348 | 0.359 | 0.371 | 0.413 | 12.35% | 0.332 | 0.384 | 0.420 | 0.515 | 45.94% | |
DFCNformer-FA-DSFA | MSE | 0.603 | 0.612 | 0.609 | 0.607 | 4.65% | 0.181 | 0.223 | 0.265 | 0.361 | 1.98% |
MAE | 0.333 | 0.346 | 0.343 | 0.342 | 2.71% | 0.234 | 0.271 | 0.332 | 0.358 | 5.65% | |
DFCNformer-MLP-FA | MSE | 0.577 | 0.600 | 0.619 | 0.632 | 4.48% | 0.182 | 0.234 | 0.288 | 0.374 | 6.72% |
MAE | 0.339 | 0.350 | 0.355 | 0.356 | 5.42% | 0.243 | 0.297 | 0.338 | 0.398 | 12.72% | |
DFCNformer w/o Dual-CONET | MSE | 0.565 | 0.576 | 0.586 | 0.613 | 0.69% | 0.193 | 0.242 | 0.301 | 0.378 | 10.28% |
MAE | 0.330 | 0.339 | 0.344 | 0.345 | 2.41% | 0.231 | 0.274 | 0.307 | 0.630 | 27.56% | |
DFCNformer w/o Norm. | MSE | 0.589 | 0.612 | 0.621 | 0.644 | 6.20% | 0.197 | 0.248 | 0.306 | 0.379 | 11.86% |
MAE | 0.337 | 0.342 | 0.351 | 0.355 | 4.22% | 0.253 | 0.303 | 0.341 | 0.404 | 14.84% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, Y.; Mao, Y.; Chen, G. DFCNformer: A Transformer Framework for Non-Stationary Time-Series Forecasting Based on De-Stationary Fourier and Coefficient Network. Information 2025, 16, 62. https://doi.org/10.3390/info16010062
Jin Y, Mao Y, Chen G. DFCNformer: A Transformer Framework for Non-Stationary Time-Series Forecasting Based on De-Stationary Fourier and Coefficient Network. Information. 2025; 16(1):62. https://doi.org/10.3390/info16010062
Chicago/Turabian StyleJin, Yuxin, Yuhan Mao, and Genlang Chen. 2025. "DFCNformer: A Transformer Framework for Non-Stationary Time-Series Forecasting Based on De-Stationary Fourier and Coefficient Network" Information 16, no. 1: 62. https://doi.org/10.3390/info16010062
APA StyleJin, Y., Mao, Y., & Chen, G. (2025). DFCNformer: A Transformer Framework for Non-Stationary Time-Series Forecasting Based on De-Stationary Fourier and Coefficient Network. Information, 16(1), 62. https://doi.org/10.3390/info16010062