Hybrid U-Net Model with Visual Transformers for Enhanced Multi-Organ Medical Image Segmentation
Abstract
:1. Introduction
- For the encoder, we adopt the visual transformer with a large kernel attention, which effectively combines the benefits of self-attention and convolution. Additionally, it accounts for the spatial relationships between different positions.
- We utilize the RCAM after the up-sampling of the decoder, which can enable the model to concentrate on crucial channels and spatial locations. It can also improve the model’s capacity to refine feature maps and capture important spatial and channel information.
- After the encoder and decoder complete the information fusion process, we utilize the MFC to expand the receptive field. Each layer incorporates a convolutional layer with varying dilation rates, which facilitates the capture of more contextual information from the decoder.
2. Related Work
2.1. UNet-Based Methods
2.2. Transformer-Based Methods
2.3. Combining U-Net with Transformer-Based Methods
3. Methods
3.1. Architecture Overview
3.2. Transformer Layer
3.3. Residual Convolutional Attention Module
3.4. Multi-Scale Fusion Convolution
4. Experiments and Results
4.1. Datasets
4.2. Evaluation Metrics
4.3. Implementation Details
4.4. Experiment Results
4.5. Ablation Study
4.5.1. Effect of Different Modules
4.5.2. Effect of Input Image Size
4.5.3. Effect of Model Scale
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Moorthy, J.; Gandhi, U.D. A Survey on Medical Image Segmentation Based on Deep Learning Techniques. Big Data Cogn. Comput. 2022, 6, 117. [Google Scholar] [CrossRef]
- Aljuaid, H.; Alturki, N.; Alsubaie, N.; Cavallaro, L.; Liotta, A. Computer-aided diagnosis for breast cancer classification using deep neural networks and transfer learning. Comput. Methods Programs Biomed. 2022, 223, 106951. [Google Scholar] [CrossRef] [PubMed]
- Qureshi, I.; Yan, J.; Abbas, Q.; Shaheed, K.; Riaz, A.B.; Wahid, A.; Khan, M.W.J.; Szczuko, P. Medical image segmentation using deep semantic-based methods: A review of techniques, applications and emerging trends. Inf. Fusion 2023, 90, 316–352. [Google Scholar] [CrossRef]
- Yu-Qian, Z.; Wei-Hua, G.; Zhen-Cheng, C.; Jing-Tian, T.; Ling-Yun, L. Medical images edge detection based on mathematical morphology. In Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, Shanghai, China, 31 August–3 September 2005; pp. 6492–6495. [Google Scholar] [CrossRef]
- Mubarak, D.M.N.; Sathik, M.M.; Beevi, S.Z.; Revathy, K. A hybrid region growing algorithm for medical image segmentation. Int. J. Comput. Sci. Inf. Technol. 2012, 4, 61–70. [Google Scholar] [CrossRef]
- Jardim, S.; António, J.; Mora, C. Image thresholding approaches for medical image segmentation—Short literature review. Procedia Comput. Sci. 2023, 219, 1485–1492. [Google Scholar] [CrossRef]
- Liu, X.; Qu, L.; Xie, Z.; Zhao, J.; Shi, Y.; Song, Z. Towards more precise automatic analysis: A systematic review of deep learning-based multi-organ segmentation. Biomed. Eng. OnLine 2024, 23, 52. [Google Scholar] [CrossRef] [PubMed]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef]
- Xie, X.; Huang, M.; Sun, W.; Li, Y.; Liu, Y. Intelligent tool wear monitoring method using a convolutional neural network and an informer. Lubricants 2023, 11, 389. [Google Scholar] [CrossRef]
- Shelhamer, E.; Long, J.; Darrell, T. Fully convolutional networks for semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 640–651. [Google Scholar] [CrossRef]
- Valanarasu, J.M.J.; Patel, V.M. Unext: Mlp-based rapid medical image segmentation network. In Proceedings of the MICCAI, Singapore, 18–22 September 2022; pp. 23–33. [Google Scholar] [CrossRef]
- Chen, L.; Bentley, P.; Mori, K.; Misawa, K.; Fujiwara, M.; Rueckert, D. DRINet for medical image segmentation. IEEE Trans. Med. Imaging 2018, 37, 2453–2462. [Google Scholar] [CrossRef] [PubMed]
- Milletari, F.; Navab, N.; Ahmadi, S.-A. V-net: Fully convolutional neural networks for volumetric medical image segmentation. In Proceedings of the 2016 Fourth International Conference on 3D Vision (3DV), Stanford, CA, USA, 25–28 October 2016; pp. 565–571. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional networks for biomedical image segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015, Munich, Germany, 5–9 October 2015. [Google Scholar] [CrossRef]
- Wang, Y.; Gu, L.; Jiang, T.; Gao, F. MDE-UNet: A Multitask Deformable UNet Combined Enhancement Network for Farmland Boundary Segmentation. IEEE Geosci. Remote Sens. Lett. 2023, 20, 3001305. [Google Scholar] [CrossRef]
- Ahmad, P.; Jin, H.; Alroobaea, R.; Qamar, S.; Zheng, R.; Alnajjar, F.; Aboudi, F. MH UNet: A multi-scale hierarchical based architecture for medical image segmentation. IEEE Access 2021, 9, 148384–148408. [Google Scholar] [CrossRef]
- Zhang, H.; Dana, K.; Shi, J.; Zhang, Z.; Wang, X.; Tyagi, A.; Agrawal, A. Context encoding for semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 7151–7160. [Google Scholar] [CrossRef]
- Li, Z.; Liu, F.; Yang, W.; Peng, S.; Zhou, J. A survey of convolutional neural networks: Analysis, applications, and prospects. IEEE Trans. Neural Netw. Learn. Syst. 2021, 33, 6999–7019. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. In Proceedings of the 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA, 4–9 December 2017. [Google Scholar]
- Parmar, N.; Vaswani, A.; Uszkoreit, J.; Kaiser, L.; Shazeer, N.; Ku, A.; Tran, D. Image transformer. In Proceedings of the International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018; pp. 4055–4064. [Google Scholar]
- Wolf, T.; Debut, L.; Sanh, V.; Chaumond, J.; Delangue, C.; Moi, A.; Cistac, P.; Rault, T.; Louf, R.; Funtowicz, M. Transformers: State-of-the-art natural language processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, Online, 16–20 November 2020; pp. 38–45. [Google Scholar] [CrossRef]
- Chen, J.; Lu, Y.; Yu, Q.; Luo, X.; Adeli, E.; Wang, Y.; Lu, L.; Yuille, A.L.; Zhou, Y. Transunet: Transformers make strong encoders for medical image segmentation. arXiv 2021, arXiv:2102.04306. [Google Scholar] [CrossRef]
- Guo, M.-H.; Lu, C.-Z.; Liu, Z.-N.; Cheng, M.-M.; Hu, S.-M. Visual attention network. Comput. Vis. Media 2023, 9, 733–752. [Google Scholar] [CrossRef]
- Kayalibay, B.; Jensen, G.; van der Smagt, P. CNN-based segmentation of medical imaging data. arXiv 2017, arXiv:1701.03056. [Google Scholar] [CrossRef]
- Mortazi, A.; Bagci, U. Automatically designing CNN architectures for medical image segmentation. In Proceedings of the Machine Learning in Medical Imaging: 9th International Workshop, MLMI 2018, Granada, Spain, 16 September 2018; pp. 98–106. [Google Scholar] [CrossRef]
- Xiao, X.; Lian, S.; Luo, Z.; Li, S. Weighted res-unet for high-quality retina vessel segmentation. In Proceedings of the 2018 9th International Conference on Information Technology in Medicine and Education (ITME), Hangzhou, China, 19–21 October 2018; pp. 327–331. [Google Scholar] [CrossRef]
- Zhou, Z.; Rahman Siddiquee, M.M.; Tajbakhsh, N.; Liang, J. Unet++: A nested u-net architecture for medical image segmentation. In Proceedings of the Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support: 4th International Workshop, DLMIA 2018, and 8th International Workshop, ML-CDS 2018, Granada, Spain, 20 September 2018; pp. 3–11. [Google Scholar] [CrossRef]
- Huang, H.; Lin, L.; Tong, R.; Hu, H.; Zhang, Q.; Iwamoto, Y.; Han, X.; Chen, Y.-W.; Wu, J. Unet 3+: A full-scale connected unet for medical image segmentation. In Proceedings of the ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain, 4–8 May 2020; pp. 1055–1059. [Google Scholar] [CrossRef]
- Lou, A.; Guan, S.; Loew, M. DC-UNet: Rethinking the U-Net architecture with dual channel efficient CNN for medical image segmentation. In Proceedings of the Medical Imaging 2021: Image Processing, Online, 15–19 February 2021; pp. 758–768. [Google Scholar] [CrossRef]
- Kawamoto, M.; Kamiya, N.; Zhou, X.; Kato, H.; Hara, T.; Fujita, H. Simultaneous Learning of Erector Spinae Muscles for Automatic Segmentation of Site-Specific Skeletal Muscles in Body CT Images. IEEE Access 2024, 12, 15468–15476. [Google Scholar] [CrossRef]
- Ashino, K.; Kamiya, N.; Zhou, X.; Kato, H.; Hara, T.; Fujita, H. Joint segmentation of sternocleidomastoid and skeletal muscles in computed tomography images using a multiclass learning approach. Radiol. Phys. Technol. 2024, 17, 854–861. [Google Scholar] [CrossRef]
- Devlin, J.; Chang, M.-W.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv 2018, arXiv:1810.04805. [Google Scholar] [CrossRef]
- Brown, T.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.D.; Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell, A. Language models are few-shot learners. Adv. Neural Inf. Process. Syst. 2020, 33, 1877–1901. [Google Scholar]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv 2020, arXiv:2010.11929. [Google Scholar] [CrossRef]
- Wang, W.; Xie, E.; Li, X.; Fan, D.-P.; Song, K.; Liang, D.; Lu, T.; Luo, P.; Shao, L. Pyramid vision transformer: A versatile backbone for dense prediction without convolutions. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 568–578. [Google Scholar] [CrossRef]
- Wu, H.; Xiao, B.; Codella, N.; Liu, M.; Dai, X.; Yuan, L.; Zhang, L. Cvt: Introducing convolutions to vision transformers. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 22–31. [Google Scholar] [CrossRef]
- Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 10012–10022. [Google Scholar] [CrossRef]
- Li, J.; Ye, J.; Zhang, R.; Wu, Y.; Berhane, G.S.; Deng, H.; Shi, H. CPFTransformer: Transformer fusion context pyramid medical image segmentation network. Front. Neurosci. 2023, 17, 1288366. [Google Scholar] [CrossRef] [PubMed]
- Yao, T.; Li, Y.; Pan, Y.; Wang, Y.; Zhang, X.P.; Mei, T. Dual Vision Transformer. IEEE Trans. Pattern Anal. Mach. Intell. 2023, 45, 10870–10882. [Google Scholar] [CrossRef]
- Wang, H.; Xie, S.; Lin, L.; Iwamoto, Y.; Han, X.H.; Chen, Y.W.; Tong, R. Mixed transformer U-Net for medical image segmentation. In Proceedings of the ICASSP 2022—2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Singapore, 23–27 May 2022; pp. 2390–2394. [Google Scholar] [CrossRef]
- Jiang, T.; Xu, T.; Li, X. VA-TransUNet: A u-shaped medical image segmentation network with visual attention. In Proceedings of the 2022 11th International Conference on Computing and Pattern Recognition, Beijing, China, 17–19 November 2022; pp. 128–135. [Google Scholar] [CrossRef]
- Lin, A.; Chen, B.; Xu, J.; Zhang, Z.; Lu, G.; Zhang, D. Ds-transunet: Dual swin transformer u-net for medical image segmentation. IEEE Trans. Instrum. Meas. 2022, 71, 4005615. [Google Scholar] [CrossRef]
- Peng, B.; Alcaide, E.; Anthony, Q.; Albalak, A.; Arcadinho, S.; Biderman, S.; Cao, H.; Cheng, X.; Chung, M.; Grella, M. Rwkv: Reinventing rnns for the transformer era. arXiv 2023, arXiv:2305.13048. [Google Scholar]
- Cao, H.; Wang, Y.; Chen, J.; Jiang, D.; Zhang, X.; Tian, Q.; Wang, M. Swin-unet: Unet-like pure transformer for medical image segmentation. In Proceedings of the European Conference on Computer Vision, Tel Aviv, Israel, 23–27 October 2022; pp. 205–218. [Google Scholar] [CrossRef]
- Fu, S.; Lu, Y.; Wang, Y.; Zhou, Y.; Shen, W.; Fishman, E.; Yuille, A. Domain Adaptive Relational Reasoning for 3D Multi-Organ Segmentation; Springer: Cham, Switzerland, 2020; pp. 656–666. [Google Scholar] [CrossRef]
- Oktay, O.; Schlemper, J.; Folgoc, L.L.; Lee, M.; Heinrich, M.; Misawa, K.; Mori, K.; McDonagh, S.; Hammerla, N.Y.; Kainz, B. Attention u-net: Learning where to look for the pancreas. arXiv 2018, arXiv:1804.03999. [Google Scholar] [CrossRef]
- Azad, R.; Al-Antary, M.T.; Heidari, M.; Merhof, D. TransNorm: Transformer provides a strong spatial normalization mechanism for a deep segmentation model. IEEE Access 2022, 10, 108205–108215. [Google Scholar] [CrossRef]
- Jiang, X.; Ding, Y.; Liu, M.; Wang, Y.; Li, Y.; Wu, Z. BiFTransNet: A unified and simultaneous segmentation network for gastrointestinal images of CT & MRI. Comput. Biol. Med. 2023, 165, 107326. [Google Scholar] [CrossRef]
- Zhong, X.; Xu, L.; Li, C.; An, L.; Wang, L. RFE-UNet: Remote feature exploration with local learning for medical image segmentation. Sensors 2023, 23, 6228. [Google Scholar] [CrossRef] [PubMed]
- Peng, B.; Fan, C. IEA-Net: Internal and external dual-attention medical segmentation network with high-performance convolutional blocks. J. Imaging Inform. Med. 2024. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Yuan, B. CCFNet: Collaborative cross-fusion network for medical image segmentation. Algorithms 2024, 17, 168. [Google Scholar] [CrossRef]
Architectures | Layers | Proposed Model | Feature Size |
---|---|---|---|
- | input | - | 224 × 224 × 3 |
convolution | 7 × 7 conv, padding 3, stride 2 | 112 × 112 × 64 | |
pooling | 3 × 3 max pooling, stride 2 | 55 × 55 × 64 | |
encoder | resnet50 block 1 | 56 × 56 × 256 | |
transition layer1 | 1 × 1 conv | 56 × 56 × 256 | |
resnet50 block 2 | 28 × 28 × 512 | ||
transition layer2 | 1 × 1 conv | 28×28 × 512 | |
resnet50 block 3 | 14 × 14 × 1024 | ||
transition layer3 | 1 × 1 conv | 14 × 14 × 1024 | |
embedding layer | 1 × 1 conv, stride 1; flatten | 196 × 768 | |
transformer layer | 196 × 768 | ||
- | reshape layer | expand; 3 × 3 conv, padding 1 | 14 × 14 × 512 |
decoder | up-sampling layer 1 | 2 × 2 up-sampling − [resnet50 block 1], conv | 28 × 28 × 512 |
up-sampling layer 2 | 2 × 2 up-sampling − [resnet50 block 2], conv | 56 × 56 × 256 | |
up-sampling layer 3 | 2 × 2 up-sampling − [resnet50 block 3], conv | 112 × 112 × 64 | |
up-sampling layer 4 | 2 × 2 up-sampling, conv | 224 × 224 × 16 | |
- | segmentation head layer | 3 × 3 conv, padding 1 | 224 × 224 × 2 |
Methods | DSC | HD | Aorta | Gallbladder | Kidney(R) | Kidney(L) | Pancreas | Liver | Spleen | Stomach |
---|---|---|---|---|---|---|---|---|---|---|
V-Net [14] | 68.81 | - | 75.34 | 51.87 | 80.75 | 77.10 | 40.50 | 87.74 | 80.56 | 56.98 |
U-Net [15] | 76.85 | 39.70 | 89.07 | 69.72 | 68.60 | 77.77 | 53.98 | 93.43 | 86.67 | 75.58 |
Att-UNet [47] | 77.77 | 36.02 | 89.55 | 68.88 | 71.11 | 77.98 | 58.04 | 93.57 | 87.30 | 75.75 |
TransUNet [23] | 77.48 | 31.69 | 87.23 | 63.13 | 77.02 | 81.87 | 55.86 | 94.08 | 85.08 | 75.62 |
TransNorm [48] | 78.40 | 30.25 | 86.23 | 65.10 | 78.63 | 82.18 | 55.34 | 94.22 | 89.50 | 76.01 |
MT-UNet [41] | 78.59 | 26.59 | 87.92 | 64.99 | 77.29 | 81.47 | 59.46 | 93.06 | 87.75 | 76.82 |
SwinUNet [45] | 79.13 | 21.55 | 85.47 | 66.53 | 79.61 | 83.28 | 56.58 | 94.29 | 90.66 | 76.60 |
BiFTransNet [49] | 78.77 | 27.94 | 87.67 | 67.09 | 75.68 | 82.04 | 60.93 | 93.84 | 87.13 | 75.80 |
RFE-UNet [50] | 79.77 | 21.75 | 87.32 | 65.40 | 81.92 | 84.18 | 59.02 | 94.34 | 89.56 | 76.45 |
CPFTransformer [39] | 79.87 | 20.83 | 87.71 | 68.78 | 79.15 | 83.19 | 58.47 | 94.37 | 90.35 | 76.93 |
IEA-Net [51] | 78.56 | 27.21 | 85.71 | 70.32 | 75.41 | 78.45 | 59.41 | 94.02 | 85.06 | 76.38 |
CCFNet [52] | 81.59 | 14.47 | 88.35 | 72.49 | 87.42 | 83.50 | 56.89 | 95.37 | 88.19 | 80.47 |
Ours | 81.77 | 18.02 | 88.93 | 71.84 | 82.95 | 85.19 | 60.48 | 95.41 | 89.81 | 79.56 |
Methods | DSC | Myo | RV | LV |
---|---|---|---|---|
U-Net [15] | 87.55 | 80.63 | 87.10 | 94.92 |
Att-UNet [47] | 86.75 | 79.20 | 87.58 | 93.47 |
TransUNet [23] | 89.71 | 84.53 | 88.86 | 95.73 |
MT-UNet [41] | 90.43 | 89.04 | 86.64 | 95.62 |
SwinUnet [45] | 90.00 | 85.62 | 88.55 | 95.83 |
IEA-Net [51] | 91.38 | 89.51 | 88.91 | 95.72 |
CCFNet [52] | 91.07 | 89.30 | 89.78 | 94.11 |
Ours | 91.83 | 90.23 | 89.35 | 95.90 |
Methods | Parameters (million) | FLOPs (G) | Inference Time (minute) | GPU Memory Usage (GB) |
---|---|---|---|---|
U-Net [15] | 0.29 | 5.18 | 0.32 | 0.81 |
Att-UNet [47] | 31.38 | 32.40 | 1.38 | 1.54 |
TransUNet [23] | 105.28 | 24.73 | 2.61 | 2.20 |
SwinUNet [45] | 27.17 | 5.95 | 1.29 | 1.93 |
CCFNet [52] | 137.36 | 76.18 | 3.85 | 5.08 |
Ours | 82.10 | 19.58 | 2.23 | 2.06 |
Methods | DSC | HD |
---|---|---|
Baseline | 76.85 | 39.70 |
Baseline + visual transformer | 79.49 | 28.23 |
Baseline + visual transformer + RCAM | 80.98 | 22.02 |
Baseline + visual transformer + MFC | 80.46 | 26.89 |
Proposed method | 81.77 | 18.02 |
Input Size | DSC | HD | Aorta | Gallbladder | Kidney(R) | Kidney(L) | Pancreas | Liver | Spleen | Stomach |
---|---|---|---|---|---|---|---|---|---|---|
224 × 224 | 81.77 | 18.02 | 88.93 | 71.84 | 82.95 | 85.19 | 60.48 | 95.41 | 89.81 | 79.56 |
384 × 384 | 83.13 | 21.90 | 91.31 | 72.52 | 80.39 | 84.73 | 68.40 | 96.19 | 90.27 | 81.25 |
Model Scale | DSC | HD | Aorta | Gallbladder | Kidney(R) | Kidney(L) | Pancreas | Liver | Spleen | Stomach |
---|---|---|---|---|---|---|---|---|---|---|
Small | 81.77 | 18.02 | 88.93 | 71.84 | 82.95 | 85.19 | 60.48 | 95.41 | 89.81 | 79.56 |
Large | 82.69 | 23.58 | 90.92 | 72.05 | 82.73 | 84.26 | 65.28 | 95.62 | 89.15 | 81.49 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, P.; Liu, W.; Wang, F.; Wei, R. Hybrid U-Net Model with Visual Transformers for Enhanced Multi-Organ Medical Image Segmentation. Information 2025, 16, 111. https://doi.org/10.3390/info16020111
Jiang P, Liu W, Wang F, Wei R. Hybrid U-Net Model with Visual Transformers for Enhanced Multi-Organ Medical Image Segmentation. Information. 2025; 16(2):111. https://doi.org/10.3390/info16020111
Chicago/Turabian StyleJiang, Pengsong, Wufeng Liu, Feihu Wang, and Renjie Wei. 2025. "Hybrid U-Net Model with Visual Transformers for Enhanced Multi-Organ Medical Image Segmentation" Information 16, no. 2: 111. https://doi.org/10.3390/info16020111
APA StyleJiang, P., Liu, W., Wang, F., & Wei, R. (2025). Hybrid U-Net Model with Visual Transformers for Enhanced Multi-Organ Medical Image Segmentation. Information, 16(2), 111. https://doi.org/10.3390/info16020111