Movement Compensation in Dual Continuous Wave Radar Using Deep Learning
Abstract
:1. Introduction
2. Architecture and Algorithms
- Loading the complex signals acquired from the radars;
- Apply a 5 kHz low-pass FIR filter to the signals to avoid interference;
- Decimate the signals;
- Synchronize the radar signals with the ground truth data;
- Identify and isolate the part of the signal where the movement was performed;
- DC offset removal;
- Apply arctangent demodulation.
3. Experiments and Results
- Synchronization protocol;
- Breathing while standing still for thirty seconds;
- Walk for five minutes at a speed of 2 km/h ( m/s);
- Breathing while standing still for thirty seconds.
3.1. Signal Addition for Movement Compensation
3.2. One Subject Acquisition and Training
3.3. Multiple Subject Acquisition and Training
3.3.1. 80-10-10 Data Split Method
3.3.2. Leave-One-Out Cross-Validation (LOOCV)
3.4. Results Outline
4. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mahomela, M.K.; Owolawi, P.A.; Mapayi, T.; Malele, V.; Aiyetoro, G. Self Diagnostic Vital Sign Monitoring System. In Proceedings of the 2021 International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME), Mauritius, Mauritius, 7–8 October 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Nicolò, A.; Massaroni, C.; Schena, E.; Sacchetti, M. The Importance of Respiratory Rate Monitoring: From Healthcare to Sport and Exercise. Sensors 2020, 20, 6396. [Google Scholar] [CrossRef] [PubMed]
- Paffenbarger, R.S.J.; Hyde, R.T.; Wing, A.L.; Hsieh, C.C. Physical activity, all-cause mortality, and longevity of college alumni. N. Engl. J. Med. 1986, 314, 605–613. [Google Scholar] [CrossRef] [PubMed]
- Kazemi, S.; Ghorbani, A.; Amindavar, H.; Morgan, D.R. Vital-Sign Extraction Using Bootstrap-Based Generalized Warblet Transform in Heart and Respiration Monitoring Radar System. IEEE Trans. Instrum. Meas. 2016, 65, 255–263. [Google Scholar] [CrossRef]
- Mostafanezhad, I.; Yavari, E.; Boric-Lubecke, O.; Lubecke, V.M.; Mandic, D.P. Cancellation of Unwanted Doppler Radar Sensor Motion Using Empirical Mode Decomposition. IEEE Sens. J. 2013, 13, 1897–1904. [Google Scholar] [CrossRef]
- Yang, Z.K.; Shi, H.; Zhao, S.; Huang, X.D. Vital Sign Detection during Large-Scale and Fast Body Movements Based on an Adaptive Noise Cancellation Algorithm Using a Single Doppler Radar Sensor. Sensors 2020, 20, 4183. [Google Scholar] [CrossRef] [PubMed]
- Lv, Q.; Chen, L.; An, K.; Wang, J.; Li, H.; Ye, D.; Huangfu, J.; Li, C.; Ran, L. Doppler Vital Signs Detection in the Presence of Large-Scale Random Body Movements. IEEE Trans. Microw. Theory Tech. 2018, 66, 4261–4270. [Google Scholar] [CrossRef]
- Pour Ebrahim, M.; Sarvi, M.; Yuce, M.R. A Doppler Radar System for Sensing Physiological Parameters in Walking and Standing Positions. Sensors 2017, 17, 485. [Google Scholar] [CrossRef]
- Khan, F.; Cho, S.H. A Detailed Algorithm for Vital Sign Monitoring of a Stationary/Non-Stationary Human through IR-UWB Radar. Sensors 2017, 17, 290. [Google Scholar] [CrossRef]
- Gong, J.; Zhang, X.; Lin, K.; Ren, J.; Zhang, Y.; Qiu, W. RF Vital Sign Sensing under Free Body Movement. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2021, 5, 1–22. [Google Scholar] [CrossRef]
- Chen, Z.; Zheng, T.; Cai, C.; Luo, J. MoVi-Fi: Motion-Robust Vital Signs Waveform Recovery via Deep Interpreted RF Sensing. In Proceedings of the 27th Annual International Conference on Mobile Computing and Networking, MobiCom ’21, New Orleans, LA, USA, 25–29 October 2021; pp. 392–405. [Google Scholar] [CrossRef]
- Li, K.L.; Lai, S.H.; Cheng, K.; Henrickson, L.; Chen, I.; Wu, V.; Chen, J. Exercise Vital Signs Detection Employing FMCW Radar and Artificial Neural Networks. In Proceedings of the 2021 Conference on Lasers and Electro-Optics (CLEO), Virtual, 9–14 May 2021; pp. 1–2. [Google Scholar]
- Li, C.; Lin, J. Random Body Movement Cancellation in Doppler Radar Vital Sign Detection. IEEE Trans. Microw. Theory Tech. 2008, 56, 3143–3152. [Google Scholar] [CrossRef]
- Rong, Y.; Dutta, A.; Chiriyath, A.; Bliss, D.W. Motion-Tolerant Non-Contact Heart-Rate Measurements from Radar Sensor Fusion. Sensors 2021, 21, 1774. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Yang, X.; Ding, Y.; Wang, Y.; Zhou, J.; Zhang, L. Contactless Simultaneous Breathing and Heart Rate Detections in Physical Activity Using IR-UWB Radars. Sensors 2021, 21, 5503. [Google Scholar] [CrossRef]
- Gu, C.; Wang, G.; Li, Y.; Inoue, T.; Li, C. A Hybrid Radar-Camera Sensing System with Phase Compensation for Random Body Movement Cancellation in Doppler Vital Sign Detection. IEEE Trans. Microw. Theory Tech. 2013, 61, 4678–4688. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Z.; Zhang, J.A.; Zhang, H.; Xu, M. Vital Sign Monitoring in Dynamic Environment via mmWave Radar and Camera Fusion. IEEE Trans. Mob. Comput. 2024, 23, 4163–4180. [Google Scholar] [CrossRef]
- Peng, K.C.; Sung, M.C.; Wang, F.K.; Horng, T.S. Noncontact Vital Sign Sensing Under Nonperiodic Body Movement Using a Novel Frequency-Locked-Loop Radar. IEEE Trans. Microw. Theory Tech. 2021, 69, 4762–4773. [Google Scholar] [CrossRef]
- Wang, F.K.; Horng, T.S.; Peng, K.C.; Jau, J.K.; Li, J.Y.; Chen, C.C. Single-Antenna Doppler Radars Using Self and Mutual Injection Locking for Vital Sign Detection with Random Body Movement Cancellation. IEEE Trans. Microw. Theory Tech. 2011, 59, 3577–3587. [Google Scholar] [CrossRef]
- Tiwari, G.; Gupta, S. An mmWave Radar Based Real-Time Contactless Fitness Tracker Using Deep CNNs. IEEE Sens. J. 2021, 21, 17262–17270. [Google Scholar] [CrossRef]
- Rodrigues, D.V.; Li, C. Noncontact Exercise Monitoring in Multi-Person Scenario with Frequency-Modulated Continuous-Wave Radar. In Proceedings of the 2020 IEEE MTT-S International Microwave Biomedical Conference (IMBioC), Toulouse, France, 14–17 December 2020; pp. 1–3. [Google Scholar] [CrossRef]
- Ettus Research Products. Available online: https://www.ettus.com/all-products/UB210-KIT/ (accessed on 1 May 2023).
- Inc. BIOPAC Systems. MP36R 4-Channel Systems. Available online: https://www.biopac.com/product-category/research/systems/mp36r-4-channel-systems/ (accessed on 12 May 2023).
- Verma, P.; Schafer, R. Frequency Estimation from Waveforms Using Multi-Layered Neural Networks. In Proceedings of the INTERSPEECH 2016, San Francisco, CA, USA, 8–12 September 2016; pp. 2165–2169. [Google Scholar] [CrossRef]
- Huang, B.; Lin, C.L.; Chen, W.; Juang, C.F.; Wu, X. Signal Frequency Estimation Based on RNN. In Proceedings of the 2020 Chinese Control And Decision Conference (CCDC), Hefei, China, 22–24 August 2020; pp. 2030–2034. [Google Scholar] [CrossRef]
- Human Health Monitoring Using Continuous Wave Radar and Deep Learning. Available online: https://www.mathworks.com/help/wavelet/ug/human-health-monitoring-using-continuous-wave-radar-and-deep-learning.html (accessed on 5 May 2023).
- Gomes, G.; Gouveia, C.; Albuquerque, D.; Brás, S.; Pinho, P. Dual-Radar Integration for Vital Signs Acquisition under Heavy Body Movement using Machine Learning. In Proceedings of the 2024 IEEE 22nd Mediterranean Electrotechnical Conference (MELECON), Porto, Portugal, 25–27 June 2024; pp. 367–371. [Google Scholar] [CrossRef]
- Sriram, S.; Dwivedi, A.K.; Chitra, P.; Sankar, V.V.; Abirami, S.; Durai, S.J.R.; Pandey, D.; Khare, M.K. DeepComp: A Hybrid Framework for Data Compression Using Attention Coupled Autoencoder. Arab. J. Sci. Eng. 2022, 47, 10395–10410. [Google Scholar] [CrossRef]
- Lai, Y.H.; Chen, F.; Wang, S.S.; Lu, X.; Tsao, Y.; Lee, C.H. A Deep Denoising Autoencoder Approach to Improving the Intelligibility of Vocoded Speech in Cochlear Implant Simulation. IEEE Trans. Biomed. Eng. 2017, 64, 1568–1578. [Google Scholar] [CrossRef]
- Gondara, L. Medical Image Denoising Using Convolutional Denoising Autoencoders. In Proceedings of the 2016 IEEE 16th International Conference on Data Mining Workshops (ICDMW), Barcelona, Spain, 12–15 December 2016; pp. 241–246. [Google Scholar] [CrossRef]
- Chiang, H.T.; Hsieh, Y.Y.; Fu, S.W.; Hung, K.H.; Tsao, Y.; Chien, S.Y. Noise Reduction in ECG Signals Using Fully Convolutional Denoising Autoencoders. IEEE Access 2019, 7, 60806–60813. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, T.; Shao, Y.; Ding, B. LSTM-convolutional-BLSTM encoder-decoder network for minimum mean-square error approach to speech enhancement. Appl. Acoust. 2021, 172, 107647. [Google Scholar] [CrossRef]
- Das Chakladar, D.; Dey, S.; Roy, P.P.; Dogra, D.P. EEG-based mental workload estimation using deep BLSTM-LSTM network and evolutionary algorithm. Biomed. Signal Process. Control 2020, 60, 101989. [Google Scholar] [CrossRef]
- Brueckner, R.; Schulter, B. Social signal classification using deep blstm recurrent neural networks. In Proceedings of the 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Florence, Italy, 4–9 May 2014; pp. 4823–4827. [Google Scholar] [CrossRef]
- A Healthy Lifestyle—WHO Recommendations. Available online: https://www.who.int/europe/news-room/fact-sheets/item/a-healthy-lifestyle---who-recommendations (accessed on 13 December 2023).
Category | Configurations | Values |
---|---|---|
Mini Batch Size | 600 | |
Number of epochs | 600 | |
Filter Size (CAE) | 64, 32, 32, 64 | |
Number of filters (CAE) | 8 | |
Stride (CAE) | 8, 4, 4, 8 | |
Activation function (CAE) | tanh | |
Number of layers (BLSTM) | 8 | |
Neurons (FC) | 8, 4, 1 | |
Model | Dropout | 0.2, 0.2 |
Loss | MSE | |
Model Compile | Optimizer | adam |
One Radar | Two Radars | |||||
---|---|---|---|---|---|---|
Avg Error (RPM) | RMSE (RPM) | Error STD (RPM) | Avg Error (RPM) | RMSE (RPM) | Error STD (RPM) | |
CAE Network | 0.74 | 1.07 | 0.79 | 0.29 | 0.47 | 0.37 |
MODWT Network | 1.07 | 1.30 | 0.77 | 1.10 | 2.99 | 2.87 |
Subject | Gender | Age Range [Years] | BMI [kg/m2] |
---|---|---|---|
S01 | M | 25–30 | 22.79 |
S02 | F | 25–30 | 21.48 |
S03 | M | 25–30 | 24.83 |
S04 | F | 25–30 | 23.34 |
S05 | M | 25–30 | 26.12 |
S06 | F | 25–30 | 22.00 |
S07 | F | 25–30 | 28.40 |
S08 | M | 25–30 | 22.00 |
S09 | F | 25–30 | 18.70 |
S10 | M | 40–45 | 30.00 |
S11 | F | 40–45 | 20.82 |
S12 | M | 50–55 | 23.90 |
S13 | M | 20–25 | 20.48 |
S14 | F | 20–25 | 21.60 |
S15 | M | 20–25 | 24.84 |
One Radar | Two Radars | |||||||
---|---|---|---|---|---|---|---|---|
Avg Error (%) | Avg Error (RPM) | RMSE (RPM) | Error STD (RPM) | Avg Error (%) | Avg Error (RPM) | RMSE (RPM) | Error STD (RPM) | |
CAE Network | 23.82 | 4.71 | 5.96 | 3.72 | 24.09 | 4.59 | 5.54 | 3.16 |
MODWT Network | 25.54 | 4.87 | 6.23 | 3.96 | 21.46 | 4.42 | 6.05 | 4.20 |
Subject | Avg BioPac Rate (RPM) | Avg CAE Network Rate (Relative Deviation) | Avg 4CAE Network Rate (Relative Deviation) |
---|---|---|---|
S01 | 10.80 | 14.37 (33.06) | 14.83 (37.31) |
S02 | 20.82 | 18.49 (15.18) | 17.49 (18.68) |
S03 | 18.95 | 18.40 (41.53) | 17.12 (29.45) |
S04 | 23.99 | 18.31 (23.68) | 18.59 (22.51) |
S05 | 20.97 | 18.63 (17.02) | 17.39 (17.02) |
S06 | 17.12 | 17.81 (28.62) | 19.41 (24.59) |
S07 | 24.86 | 20.69 (16.77) | 15.98 (35.72) |
S08 | 9.70 | 16.71 (72.16) | 15.38 (58.56) |
S09 | 19.04 | 19.36 (9.40) | 17.90 (10.82) |
S10 | 29.71 | 20.46 (31.13) | 17.99 (39.45) |
S11 | 19.82 | 20.32 (9.03) | 19.00 (4.74) |
S12 | 24.90 | 16.71 (7.59) | 25.22 (8.27) |
S13 | 18.40 | 19.68 (7.04) | 19.27 (10.61) |
S14 | 19.18 | 18.95 (1.20) | 19.13 (2.40) |
S15 | 18.22 | 18.08 (0.77) | 18.17 (2.52) |
One Radar | Two Radars | |||||||
---|---|---|---|---|---|---|---|---|
Avg Error (%) | Avg Error (RPM) | RMSE (RPM) | Error STD (RPM) | Avg Error (%) | Avg Error (RPM) | RMSE (RPM) | Error STD (RPM) | |
CAE Network | 43.32 | 5.84 | 8.65 | 6.90 | 41.51 | 5.83 | 7.67 | 6.90 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gomes, G.; Brás, S.; Gouveia, C.; Albuquerque, D.; Pinho, P. Movement Compensation in Dual Continuous Wave Radar Using Deep Learning. Information 2025, 16, 99. https://doi.org/10.3390/info16020099
Gomes G, Brás S, Gouveia C, Albuquerque D, Pinho P. Movement Compensation in Dual Continuous Wave Radar Using Deep Learning. Information. 2025; 16(2):99. https://doi.org/10.3390/info16020099
Chicago/Turabian StyleGomes, Gonçalo, Susana Brás, Carolina Gouveia, Daniel Albuquerque, and Pedro Pinho. 2025. "Movement Compensation in Dual Continuous Wave Radar Using Deep Learning" Information 16, no. 2: 99. https://doi.org/10.3390/info16020099
APA StyleGomes, G., Brás, S., Gouveia, C., Albuquerque, D., & Pinho, P. (2025). Movement Compensation in Dual Continuous Wave Radar Using Deep Learning. Information, 16(2), 99. https://doi.org/10.3390/info16020099