Bootstrapping Optimization Techniques for the FINAL Fully Homomorphic Encryption Scheme
Abstract
:1. Introduction
2. Related Work
3. Preliminaries
3.1. Symbols and Parameters
3.2. Gaussian Distribution and Sub-Gaussian Distribution
3.3. Digital Decomposition
3.4. NTRU Problems
3.5. LWE Problems
3.6. LWE-Based Encryption Scheme
3.7. FHE
3.8. Bootstrapping
3.9. Key Circular and Key Circular Security
3.10. NGS: NTRU-Based GSW-like Scheme
3.10.1. Algorithm Description
3.10.2. External Product
3.10.3. Noise Analysis
3.10.4. Modulus-Switching
3.10.5. Key-Switching from the NGS to the Base Scheme
- .
- output
3.11. Ellipsoidal Discrete Gaussian Sampling
4. Bootstrapping Optimization of FINAL Scheme
4.1. Bootstrapping
Algorithm 1 Bootstrapping Key Generation |
Input: Secret key of LWE basic encryption scheme Output: Bootstrapping key
|
Algorithm 2 Bootstrapping Algorithm |
Input: LWE ciphertext encrypting , bootstrapping keys and key-switching key . Output: LWE ciphertext encrypting the same m.
|
4.2. Bootstrapping Noise Analysis
4.3. Bootstrapping Optimization Technique Based on Ellipsoidal Gaussian
5. Parameter Optimization of FINAL Scheme
5.1. Computation Overhead
5.2. Memory Overhead
5.3. Optimization of Parameters
5.4. Result
6. Security Analysis
6.1. Key-Recovery Attacks
6.2. Dense, High-Rank Sublattice and Subfield Lattice Attacks
6.3. Algebraic Attacks
6.4. The Choice of Polynomial Rings
6.5. Security Comparisons with TFHE Bootstrapping
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
NTRU | Number theory research unit |
LWE | Learning with errors |
RLWE | Ring learning with errors |
FINAL | A faster fully homomorphic encryption instantiated with NTRU and LWE |
TFHE | A fully homomorphic encryption over the torus |
FHEW | A bootstrapping homomorphic encryption in less than a second |
BGV | A fully homomorphic encryption scheme proposed by Brakerski, Gentry |
and Vaikuntanathan | |
BFV | A fully homomorphic encryption scheme proposed by Brakerski, Fan and Vercauteren |
CKKS | A fully homomorphic encryption scheme proposed by Cheon, Kim, Kim and Song |
References
- Brakerski, Z.; Vaikuntanathan, V. Efficient fully homomorphic encryption from (standard) LWE. SIAM J. Comput. 2014, 43, 831–871. [Google Scholar] [CrossRef]
- Brakerski, Z.; Gentry, C.; Vaikuntanathan, V. (Leveled) fully homomorphic encryption without bootstrapping. ACM Trans. Comput. Theory (TOCT) 2014, 6, 1–36. [Google Scholar] [CrossRef]
- Brakerski, Z. Fully homomorphic encryption without modulus switching from classical GapSVP. In Annual Cryptology Conference; Springer: Berlin/Heidelberg, Germany, 2012; pp. 868–886. [Google Scholar]
- Fan, J.; Vercauteren, F. Somewhat Practical Fully Homomorphic Encryption. Cryptology ePrint Archive. 2012. Available online: https://eprint.iacr.org/2012/144 (accessed on 13 January 2025).
- Cheon, J.H.; Kim, A.; Kim, M.; Song, Y. Homomorphic encryption for arithmetic of approximate numbers. In Proceedings of the Advances in Cryptology–ASIACRYPT 2017: 23rd International Conference on the Theory and Applications of Cryptology and Information Security, Hong Kong, China, 3–7 December 2017; Proceedings, Part I 23. Springer: Berlin/Heidelberg, Germany, 2017; pp. 409–437. [Google Scholar]
- Ducas, L.; Micciancio, D. FHEW: Bootstrapping homomorphic encryption in less than a second. In Proceedings of the 34th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Sofia, Bulgaria, 26–30 April 2015; Springer: Berlin/Heidelberg, Germany, 2015; pp. 617–640. [Google Scholar]
- Chillotti, I.; Gama, N.; Georgieva, M.; Izabachene, M. Faster fully homomorphic encryption: Bootstrapping in less than 0.1 seconds. In Proceedings of the Advances in Cryptology–ASIACRYPT 2016: 22nd International Conference on the Theory and Application of Cryptology and Information Security, Hanoi, Vietnam, 4–8 December 2016; Proceedings, Part I 22. Springer: Berlin/Heidelberg, Germany, 2016; pp. 3–33. [Google Scholar]
- Chillotti, I.; Gama, N.; Georgieva, M.; Izabachène, M. Faster packed homomorphic operations and efficient circuit bootstrapping for TFHE. In Proceedings of the 23rd International Conference on the Theory and Applications of Cryptology and Information Security, Hong Kong, China, 3–7 December 2017; Springer: Berlin/Heidelberg, Germany, 2017; pp. 377–408. [Google Scholar]
- Bonte, C.; Iliashenko, I.; Park, J.; Pereira, H.V.; Smart, N.P. Final: Faster fhe instantiated with ntru and lwe. In Proceedings of the 28th International Conference on the Theory and Application of Cryptology and Information Security, Taipei, Taiwan, 5–9 December 2022; Springer: Berlin/Heidelberg, Germany, 2022; pp. 188–215. [Google Scholar]
- Gentry, C.; Sahai, A.; Waters, B. Homomorphic encryption from learning with errors: Conceptually-simpler, asymptotically-faster, attribute-based. In Proceedings of the Advances in Cryptology–CRYPTO 2013: 33rd Annual Cryptology Conference, Santa Barbara, CA, USA, 18–22 August 2013; Proceedings, Part I. Springer: Berlin/Heidelberg, Germany, 2013; pp. 75–92. [Google Scholar]
- Alperin-Sheriff, J.; Peikert, C. Faster bootstrapping with polynomial error. In Proceedings of the Advances in Cryptology–CRYPTO 2014: 34th Annual Cryptology Conference, Santa Barbara, CA, USA, 17–21 August 2014; Proceedings, Part I 34. Springer: Berlin/Heidelberg, Germany, 2014; pp. 297–314. [Google Scholar]
- Gentry, C. A Fully Homomorphic Encryption Scheme; Stanford University: Stanford, CA, USA, 2009. [Google Scholar]
- Folláth, J. Gaussian sampling in lattice based cryptography. Tatra Mt. Math. Publ. 2014, 60, 1–23. [Google Scholar] [CrossRef]
- Genise, N.; Micciancio, D.; Polyakov, Y. Building an efficient lattice gadget toolkit: Subgaussian sampling and more. In Proceedings of the Advances in Cryptology–EUROCRYPT 2019: 38th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Darmstadt, Germany, 19–23 May 2019; Proceedings, Part II 38. Springer: Berlin/Heidelberg, Germany, 2019; pp. 655–684. [Google Scholar]
- Jeon, S.; Lee, H.S.; Park, J. Efficient lattice gadget decomposition algorithm with bounded uniform distribution. IEEE Access 2021, 9, 17429–17437. [Google Scholar] [CrossRef]
- Stehlé, D.; Steinfeld, R. Making NTRU as secure as worst-case problems over ideal lattices. In Proceedings of the Advances in Cryptology–EUROCRYPT 2011: 30th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Tallinn, Estonia, 15–19 May 2011; Proceedings 30. Springer: Berlin/Heidelberg, Germany, 2011; pp. 27–47. [Google Scholar]
- Pellet-Mary, A.; Stehlé, D. On the hardness of the NTRU problem. In Proceedings of the Advances in Cryptology–ASIACRYPT 2021: 27th International Conference on the Theory and Application of Cryptology and Information Security, Singapore, 6–10 December 2021; Proceedings, Part I 27. Springer: Berlin/Heidelberg, Germany, 2021; pp. 3–35. [Google Scholar]
- Peikert, C. A decade of lattice cryptography. Found. Trends® Theor. Comput. Sci. 2016, 10, 283–424. [Google Scholar] [CrossRef]
- Chillotti, I.; Ligier, D.; Orfila, J.B.; Tap, S. Improved Programmable Bootstrapping with Larger Precision and Efficient Arithmetic Circuits for TFHE. In Proceedings of the Advances in Cryptology–ASIACRYPT 2021: 27th International Conference on the Theory and Application of Cryptology and Information Security, Singapore, 6–10 December 2021; Proceedings, Part III 27. Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- Hiromasa, R.; Abe, M.; Okamoto, T. Packing messages and optimizing bootstrapping in GSW-FHE. IEICE TRANSACTIONS Fundam. Electron. Commun. Comput. Sci. 2016, 99, 73–82. [Google Scholar] [CrossRef]
- Xiufeng, Z.; Yu, F.; Weitao, S. Research on circular secure homomorphic encryption scheme. J. Comput. Res. Dev. 2020, 57, 2117–2124. (In Chinese) [Google Scholar]
- Espitau, T.; Tibouchi, M.; Wallet, A.; Yu, Y. Shorter hash-and-sign lattice-based signatures. In Annual International Cryptology Conference; Springer: Berlin/Heidelberg, Germany, 2022; pp. 245–275. [Google Scholar]
- Wang, D.; Wang, P. Two birds with one stone: Two-factor authentication with security beyond conventional bound. IEEE Trans. Dependable Secur. Comput. 2016, 15, 708–722. [Google Scholar] [CrossRef]
- Li, Z.; Ma, C.; Wang, D. Leakage Resilient Leveled FHE on Multiple Bits Message. IEEE Trans. Big Data 2017, 7, 845–858. [Google Scholar] [CrossRef]
- Yu, Y.; Xu, G.; Wang, X. Provably secure NTRU instances over prime cyclotomic rings. In Proceedings of the 20th IACR International Conference on Practice and Theory in Public-Key Cryptography, Amsterdam, The Netherlands, 28–31 March 2017; Springer: Berlin/Heidelberg, Germany, 2017; pp. 409–434. [Google Scholar]
- Fouque, P.A.; Hoffstein, J.; Kirchner, P.; Lyubashevsky, V.; Pornin, T.; Prest, T.; Ricosset, T.; Seiler, G.; Whyte, W.; Zhang, Z.; et al. Falcon: Fast-Fourier lattice-based compact signatures over NTRU. Submiss. NIST S Post-Quantum Cryptogr. Stand. Process 2018, 36, 1–75. [Google Scholar]
- Ducas, L.; Lyubashevsky, V.; Prest, T. Efficient identity-based encryption over NTRU lattices. In Proceedings of the Advances in Cryptology–ASIACRYPT 2014: 20th International Conference on the Theory and Application of Cryptology and Information Security, Kaoshiung, Taiwan, 7–11 December 2014; Proceedings, Part II 20. Springer: Berlin/Heidelberg, Germany, 2014; pp. 22–41. [Google Scholar]
- Micciancio, D.; Walter, M. Practical, predictable lattice basis reduction. In Proceedings of the Advances in Cryptology–EUROCRYPT 2016: 35th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Vienna, Austria, 8–12 May 2016; Proceedings, Part I 35. Springer: Berlin/Heidelberg, Germany, 2016; pp. 820–849. [Google Scholar]
- Ducas, L.; van Woerden, W. NTRU fatigue: How stretched is overstretched? In Proceedings of the Advances in Cryptology–ASIACRYPT 2021: 27th International Conference on the Theory and Application of Cryptology and Information Security, Singapore, 6–10 December 2021; Proceedings, Part IV 27. Springer: Berlin/Heidelberg, Germany, 2021; pp. 3–32. [Google Scholar]
Notation | Description |
---|---|
Lowercase bold letters represent vectors | |
Capital bold letters represent matrices | |
Ring of integers | |
The set of natural numbers | |
The set of real numbers | |
N | A power of two |
Zero vector | |
The rounding error, | |
The -th column of a matrix | |
The -th row of a matrix | |
The inner product of and | |
The external product of and | |
The infinite norm of | |
R | |
The matrix reverse circulation of f | |
f of the coefficient vector |
Scheme | n | q | N | Q | ||||
---|---|---|---|---|---|---|---|---|
FINAL | 610 | 92,683 | 1024 | 912,829 | 3 |
Scheme | Variance of Bootstrapping Noise | Reduction Ratio | |
---|---|---|---|
FINAL | 1 | 0 | |
Ours | 2 | 61.7% | |
Ours | 3 | 72.7% | |
Ours | 4 | 76% | |
Ours | 5 | 77% |
Scheme | Mult. on | Run. Time | Faster | |||
---|---|---|---|---|---|---|
FINAL | 1 | 3330 | 41.4 ms | 0 | ||
Ours | 1 | 2860 | 38.3 ms | 7.5% | ||
Ours | 2 | 2860 | 38.1 ms | 8% | ||
Ours | 2 | 2390 | 33.1 ms | 20% | ||
Ours | 2 | 1825 | 27.9 ms | 32.6% | ||
Ours | 3 | 1810 | 27.8 ms | 32.9% | ||
Ours | 4 | 1770 | 27.6 ms | 33.3% |
Scheme | k | Q | N | b | Security | |
---|---|---|---|---|---|---|
FINAL | 1 | – | 92,683 | 1024 | 559 | 163 |
Ours | 2 | 40/60 | 92,683 | 1024 | 546/539 | 159/157 |
Ours | 3 | 40/60 | 92,683 | 1024 | 545/537 | 159/156 |
Ours | 4 | 40/60 | 92,683 | 1024 | 544/537 | 158/156 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, M.; Zhao, X.; Song, W. Bootstrapping Optimization Techniques for the FINAL Fully Homomorphic Encryption Scheme. Information 2025, 16, 200. https://doi.org/10.3390/info16030200
Wu M, Zhao X, Song W. Bootstrapping Optimization Techniques for the FINAL Fully Homomorphic Encryption Scheme. Information. 2025; 16(3):200. https://doi.org/10.3390/info16030200
Chicago/Turabian StyleWu, Meng, Xiufeng Zhao, and Weitao Song. 2025. "Bootstrapping Optimization Techniques for the FINAL Fully Homomorphic Encryption Scheme" Information 16, no. 3: 200. https://doi.org/10.3390/info16030200
APA StyleWu, M., Zhao, X., & Song, W. (2025). Bootstrapping Optimization Techniques for the FINAL Fully Homomorphic Encryption Scheme. Information, 16(3), 200. https://doi.org/10.3390/info16030200