Optimizing Contextonym Analysis for Terminological Definition Writing
Abstract
:1. Introduction
2. Co-Occurrence Analysis for Definition Writing
3. Materials and Methods
3.1. Agriculture Corpus
- Theoretical and practical documents on Agriculture published by the Food and Agriculture Organization (FAO) and various national and regional governments in English-speaking countries. These texts were manually extracted from the web to ensure their quality [29.6%].
- Specialized monographs and encyclopedias on Agriculture. These texts were manually extracted from the digital version of these resources [30.6%].
- Scientific articles from the open-access journals Frontiers in Agriculture, International Journal of Agronomy, and Agronomy. These texts were automatically scraped using a Python 3.13 script [30.9%].
- Articles from Wikipedia, manually selected to belong to the field of Agriculture. These texts were automatically scraped using a Python 3.13 script [8.8%].
3.2. Selection of Terms and Compilation of the Definition Corpus
3.3. Corpus Processing
3.4. Contextonymic Sketch Grammar
3.4.1. WS Generation in Sketch Engine
3.4.2. Parameters of the Contextonymic WS
3.4.3. Creation of the Contextonymic Sketch Grammar
3.4.4. Contextonym Extraction for Complex Nominals
3.5. Analysis Methods
4. Results
4.1. Frequency vs. logDice Score
4.2. Frequency-Ordered Results
4.2.1. Results According to Cosine Similarity
4.2.2. Results According to Precision
4.2.3. Combined Results of Cosine Similarity and Precision
4.3. Proposed Contextonymic Sketch Grammar
- Click on the “New corpus” button in the top right-hand corner of the Sketch Engine home page.
- Enter the corpus name, type and language (English). Then, click “Next”.
- Choose to create the corpus from web documents or local files. Click “Next” to proceed.
- Expand the “Expert settings” drop-down menu and select the “Sketch grammar” option.
- Click on the cross to add a sketch grammar.
- Enter a name for the sketch grammar.
- Paste the contents of the sketch grammar into the provided space. It is possible to paste the default English sketch grammar, as well as the ESSG sketch grammar, followed by the contextonymic one in order to create WSs that contain all three types on the same page.
- Click “Save and compile” to complete corpus creation.
- When using the WS function, the contextonymic WS column will be available.
4.4. Example of a Contextonymic Word Sketch
5. Discussion
6. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ESSG | EcoLexicon Semantic Sketch Grammar |
FTDA | Flexible Terminological Definition Approach |
WS | Word sketch |
References
- Suonuuti, H. Guide to Terminology; Tekniikan Sanastokeskus ry: Helsinki, Finland, 1997; ISBN 952-9794-14-2. [Google Scholar]
- Pavel, S.; Nolet, D. Précis de Terminologie; Bureau de la traduction: Gatineau, QC, Canada, 2001; ISBN 0-660-61616-5. [Google Scholar]
- Dubuc, R. Manuel pratique de Terminologie; Linguatech: Brossard, QC, Canada, 2002; ISBN 978-2-920342-42-2. [Google Scholar]
- Kockaert, H.J.; Steurs, F. (Eds.) Handbook of Terminology; John Benjamins: Amsterdam, The Netherlands; Philadelphia, PA, USA, 2015; ISBN 978-90-272-5777-2. [Google Scholar]
- ISO/TC 37/SC 1 ISO 704:2022; Terminology Work—Principles and Methods. ISO: Geneva, Switzerland, 2022.
- Vézina, R.; Darras, X.; Bédard, J.; Lapointe-Giguère, M. La Rédaction de Définitions Terminologiques; Office québécois de la langue française: Montréal, QC, Canada, 2009; ISBN 978-2-550-55484-4. [Google Scholar]
- Fargas, F.X. La Definició Terminològica; Termcat, Ed.; Eumo: Barcelona, Spain, 2009; ISBN 978-84-9766-327-4. [Google Scholar]
- Temmerman, R. Towards New Ways of Terminology Description: The Sociocognitive Approach; John Benjamins: Amsterdam, The Netherlands; Philadelphia, PA, USA, 2000; ISBN 978-90-272-2326-5. [Google Scholar]
- San Martín, A. A Flexible Approach to Terminological Definitions: Representing Thematic Variation. Int. J. Lexicogr. 2022, 35, 53–74. [Google Scholar] [CrossRef]
- Seppälä, S. An Ontological Framework for Modeling the Contents of Definitions. Terminology 2015, 21, 23–50. [Google Scholar] [CrossRef]
- Evans, V. Cognitive Linguistics: A Complete Guide; Edinburgh University Press: Edinburgh, UK, 2019; ISBN 978-1-4744-0521-8. [Google Scholar]
- Kecskes, I. The Socio-Cognitive Approach to Communication and Pragmatics; Perspectives in Pragmatics, Philosophy & Psychology; Springer International Publishing: Cham, Switzerland, 2023; Volume 33, ISBN 978-3-031-30159-9. [Google Scholar]
- Evans, V. A Unified Account of Polysemy within LCCM Theory. Lingua 2015, 157, 100–123. [Google Scholar] [CrossRef]
- Hanks, P. How Context Determines Meaning. In Computational Phraseology; Corpas Pastor, G., Colson, J.-P., Eds.; John Benjamins: Amsterdam, The Netherlands, 2020; Volume 24, pp. 297–310. ISBN 978-90-272-0535-3. [Google Scholar]
- Faber, P.; León-Araúz, P. From Specialized Knowledge Frames to Linguistically Based Ontologies. Appl. Ontol. 2024, 19, 23–45. [Google Scholar] [CrossRef]
- San Martín, A. Contextual Constraints in Terminological Definitions. Front. Commun. 2022, 7, 885283. [Google Scholar] [CrossRef]
- Cruse, A. Meaning in Language; Oxford University Press: Oxford, UK, 2011; ISBN 978-0-19-955946-6. [Google Scholar]
- Freixa, J.; Fernández-Silva, S. Terminological Variation and the Unsaturability of Concepts. In Multiple Perspectives on Terminological Variation; Drouin, P., Francœur, A., Humbley, J., Picton, A., Eds.; John Benjamins: Amsterdam, The Netherlands; Philadelphia, PA, USA, 2017; pp. 155–180. ISBN 978-90-272-6543-2. [Google Scholar]
- San Martín, A. La Representación de la Variación Contextual Mediante Definiciones Terminológicas Flexibles. Ph.D. Thesis, University of Granada, Granada, Spain, 2016. [Google Scholar]
- Lenci, A. Distributional Models of Word Meaning. Annu. Rev. Linguist. 2018, 4, 1065975714. [Google Scholar] [CrossRef]
- Ji, H.; Ploux, S.; Wehrli, E. Lexical Knowledge Representation with Contexonyms. In Proceedings of the 9th MT summit Machine Translation, New Orleans, LA, USA, 23–27 September 2003; pp. 194–201. [Google Scholar]
- Ji, H.; Ploux, S. Automatic Contexonym Organizing Model (ACOM). In Proceedings of the 25th Annual Conference of the Cognitive Science Society; Alterman, R., Kirsch, D., Eds.; Psychology Press: Boston, MA, USA, 2003; pp. 622–627. [Google Scholar]
- Ji, H.; Gaiffe, B.; Choo, H. Selecting Target Word Using Contexonym Comparison Method. In Human Interface and the Management of Information. Methods, Techniques and Tools in Information Design; Smith, M.J., Salvendy, G., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2007; Volume 4557, pp. 463–470. ISBN 978-3-540-73344-7. [Google Scholar]
- Evert, S. Corpora and Collocations. In Corpus Linguistics: An International Handbook (Volume 2); Lüdeling, A., Kytö, M., Eds.; De Gruyter: Berlin, Germany, 2009; pp. 1212–1248. ISBN 978-3-11-021388-1. [Google Scholar]
- Bartsch, S. Structural and Functional Properties of Collocations in English: A Corpus Study of Lexical and Pragmatic Constraints on Lexical Co-Occurrence; Gunter Narr Verlag: Tübingen, Germany, 2004; ISBN 978-3-8233-5893-0. [Google Scholar]
- Kilgarriff, A.; Baisa, V.; Bušta, J.; Jakubíček, M.; Kovář, V.; Michelfeit, J.; Rychlý, P.; Suchomel, V. The Sketch Engine: Ten Years On. Lexicography 2014, 1, 7–36. [Google Scholar] [CrossRef]
- Rychlý, P. A Lexicographer-Friendly Association Score. In Proceedings of the Second Workshop on Recent Advances in Slavonic Natural Language Processing, RASLAN 2008, Karlova Studánka, Czech Republic, 5–7 December 2008; Masaryk University: Brno, Czech Republic, 2008. [Google Scholar]
- San Martín, A.; Trekker, C. Adapting Word Sketches for Specialized Knowledge Extraction. In Proceedings of the 14th International Conference of the Asian Association for Lexicography (ASIALEX), Jakarta, Indonesia, 12–14 June 2021; ASIALEX: Jakarta, Indonesia, 2021; pp. 64–87. [Google Scholar]
- Marshman, E. Knowledge Patterns in Corpora. In Theoretical Perspectives on Terminology: Explaining Terms, Concepts and Specialized Knowledge; Faber, P., L’Homme, M.-C., Eds.; John Benjamins: Amsterdam, The Netherlands; Philadelphia, PA, USA, 2022; pp. 291–310. ISBN 978-90-272-5778-9. [Google Scholar]
- Meyer, I. Extracting Knowledge-Rich Contexts for Terminography. A Conceptual and Methodological Framework. In Recent Advances in Computational Terminology; Bourigault, D., Christian, C., L’Homme, M.-C., Eds.; John Benjamins: Amsterdam, The Netherlands, 2001; pp. 279–302. ISBN 978-1-58811-016-9. [Google Scholar]
- Bowker, L. Lexical Knowledge Patterns, Semantic Relations, and Language Varieties: Exploring the Possibilities for Refining Information Retrieval in an International Context. Cat. Classif. Q. 2003, 37, 153–171. [Google Scholar] [CrossRef]
- Condamines, A. How the Notion of “Knowledge Rich Context” Can Be Characterized Today. Front. Commun. 2022, 7, 824711. [Google Scholar] [CrossRef]
- Barrière, C.; Agbago, A. TerminoWeb: A Software Environment for Term Study in Rich Contexts. In Proceedings of the 3rd International Conference on Terminology, Standardization and Technology Transfer (TSTT 2006), Beijing, China, 25–26 August 2006; China National Institute of Standardization: Beijing, China, 2006. [Google Scholar]
- Aussenac-Gilles, N.; Jacques, M.-P. Designing and Evaluating Patterns for Relation Acquisition from Texts with Caméléon. Terminology 2008, 14, 45–73. [Google Scholar] [CrossRef]
- Halskov, J.; Barrière, C. Web-Based Extraction of Semantic Relation Instances for Terminology Work. Terminology 2008, 14, 20–44. [Google Scholar] [CrossRef]
- Maia, B.; Matos, S. Corpógrafo V.4—Tools for Researchers and Teachers Using Comparable Corpora. In Proceedings of the LREC 2008 Workshop on Comparable Corpora; Zweigenbaum, P., Gaussier, É., Fung, P., Eds.; ELRA: Marrakesh, Morocco, 2008; pp. 79–82. [Google Scholar]
- León-Araúz, P.; San Martín, A. The EcoLexicon Semantic Sketch Grammar: From Knowledge Patterns to Word Sketches. In Proceedings of the LREC 2018 Workshop “Globalex 2018—Lexicography & WordNets”; Kerneman, I., Krek, S., Eds.; Globalex: Miyazaki, Japan, 2018; pp. 94–99. [Google Scholar]
- San Martín, A.; Trekker, C.; León-Araúz, P. Repérage automatisé de l’hyponymie dans des corpus spécialisés en français à l’aide de Sketch Engine. Terminology 2022, 28, 264–298. [Google Scholar] [CrossRef]
- San Martín, A. What Generative Artificial Intelligence Means for Terminological Definitions. In Proceedings of the 3rd International Conference on Multilingual Digital Terminology Today (MDTT 2024), Granada, Spain, 27–28 June 2024; CEUR-WS: Granada, Spain, 2024. [Google Scholar]
- San Martín, A. KWIC Corpora as a Source of Specialized Definitional Information: A Pilot Study. In Actes du CEC-TAL’2013; Zaghouani, W., Ed.; Université du Québec à Montréal: Montreal, QC, Canada, 2014. [Google Scholar]
- Drouin, P. Term Extraction Using Non-Technical Corpora as a Point of Leverage. Terminology 2003, 9, 99–115. [Google Scholar] [CrossRef]
- Jakubíček, M.; Kilgarriff, A.; McCarthy, D.; Rychlý, P. Fast Syntactic Searching in Very Large Corpora for Many Languages. In Proceedings of the 24th Pacific Asia Conference on Language, Information and Computation; Otoguro, R., Ishikawa, K., Umemoto, H., Yoshimoto, K., Harada, Y., Eds.; Institute of Digital Enhancement of Cognitive Processing, Waseda University: Sendai, Japan, 2010; pp. 741–747. [Google Scholar]
Term | Type | Definitions | Words |
---|---|---|---|
herbicide | simple entity | 36 | 872 |
cultivar | simple entity | 33 | 667 |
fertilizer | simple entity | 32 | 1028 |
legume | simple entity | 31 | 808 |
pasture | simple entity | 29 | 612 |
aquaculture | simple process | 24 | 698 |
agriculture | simple process | 22 | 956 |
agroforestry | simple process | 21 | 845 |
monoculture | simple process | 21 | 590 |
domestication | simple process | 17 | 504 |
cover crop | complex entity | 42 | 1220 |
green manure | complex entity | 35 | 703 |
organic matter | complex entity | 23 | 463 |
greenhouse gas | complex entity | 19 | 857 |
farming system | complex entity | 15 | 509 |
biological control | complex process | 29 | 976 |
crop rotation | complex process | 24 | 818 |
sustainable agriculture | complex process | 19 | 1027 |
land use | complex process | 17 | 526 |
organic farming | complex process | 15 | 891 |
TOTAL | 504 | 15,570 |
divert(-1) define(`CONTEXTONYM',`[(tag="V.*|N.*|J.*") & !lemma="be|have|make|do|such|other|much|many|more|most|same|less|least|due|few|only|different" & !word="[[:digit:]]([[:digit:]]*[[:punct:]]*)*[[:digit:]]*"]') divert |
*STRUCTLIMIT doc | A contextonym needs to be found in the same document as the keyword |
=c5 | This gramrel is called “c5” |
*SYMMETRIC | This gramrel is also to be processed by swapping 1: and 2: |
2:CONTEXTONYM []{0,4} 1:CONTEXTONYM & 1.lempos != 2.lempos | The contextonyms (2:) of the search term (1:) can be separated by 0, 1, 2, 3, or 4 tokens. A lempos (token with the same lemma and POS tag) cannot be its own contextonym. This prevents a common issue, particularly in wide window contextonyms, where the search term is identified as its own contextonym (e.g., herbicide listed as a contextonym for herbicide). By requiring both the lemma and the POS tag to match, homographs from different word classes can still be recognized as contextonyms (e.g., crop as a noun can have crop as a verb as its contextonym). |
*STRUCTLIMIT s | A contextonym needs to be found in the same document as the keyword |
=cs | This gramrel is called “cs” |
*SYMMETRIC | This gramrel is also to be processed by swapping 1: and 2: |
2:CONTEXTONYM []{0,100} 1:CONTEXTONYM & 1.lempos != 2.lempos | The contextonyms (2:) of the search term (1:) can be separated optionally by up to 100 words (since it is highly unlikely that there will be a sentence of more than 100 words, this limit was set to avoid errors in the compilation of the corpus). A lempos (token with the same lemma and POS tag) cannot be its own contextonym. |
Contextonyms (5-Token Window) Ordered by Frequency | Number of Definitions | |
---|---|---|
crop-n | 134 | 3 |
land-n | 92 | 13 |
use-v | 82 | 13 |
grass-n | 80 | 12 |
grazing-n | 72 | 21 |
soil-n | 67 | 0 |
hay-n | 62 | 2 |
permanent-j | 56 | 2 |
quality-n | 56 | 0 |
graze-v | 50 | 4 |
management-n | 50 | 2 |
water-n | 47 | 0 |
legume-n | 46 | 0 |
forest-n | 45 | 0 |
livestock-n | 44 | 11 |
area-n | 43 | 13 |
system-n | 43 | 0 |
improve-v | 42 | 4 |
perennial-j | 40 | 0 |
production-n | 39 | 5 |
forage-n | 38 | 12 |
rangeland-n | 36 | 2 |
parameter-n | 36 | 0 |
tree-n | 35 | 0 |
feed-n | 34 | 0 |
grow-v | 33 | 5 |
specie-n | 32 | 0 |
include-v | 31 | 2 |
cropland-n | 31 | 0 |
grassland-n | 30 | 3 |
animal-n | 29 | 11 |
meadow-n | 29 | 2 |
use-n | 27 | 0 |
field-n | 26 | 3 |
manure-n | 26 | 0 |
weed-n | 25 | 0 |
plant-n | 23 | 10 |
availability-n | 23 | 0 |
provide-v | 23 | 0 |
reduce-v | 23 | 0 |
ha-n | 21 | 0 |
natural-j | 21 | 0 |
cs | c5 | c10 | c20 | c30 | c40 | c50 | c75 | c100 | c150 | c200 | c250 | c300 | c400 | c500 | c1000 | c2000 | c3000 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Frequency | 0.36 | 0.38 | 0.40 | 0.41 | 0.41 | 0.40 | 0.40 | 0.39 | 0.39 | 0.39 | 0.38 | 0.38 | 0.38 | 0.38 | 0.37 | 0.36 | 0.36 | 0.37 |
LogDice score | 0.29 | 0.31 | 0.35 | 0.35 | 0.35 | 0.34 | 0.35 | 0.34 | 0.34 | 0.34 | 0.33 | 0.33 | 0.33 | 0.32 | 0.32 | 0.31 | 0.30 | 0.30 |
cs | c5 | c10 | c20 | c30 | c40 | c50 | c75 | c100 | c150 | c200 | c250 | c300 | c400 | c500 | c1000 | c2000 | c3000 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Frequency | 0.57 | 0.53 | 0.58 | 0.62 | 0.62 | 0.64 | 0.64 | 0.64 | 0.64 | 0.64 | 0.64 | 0.63 | 0.63 | 0.63 | 0.63 | 0.62 | 0.62 | 0.61 |
LogDice score | 0.44 | 0.46 | 0.49 | 0.49 | 0.49 | 0.49 | 0.49 | 0.49 | 0.49 | 0.48 | 0.48 | 0.48 | 0.48 | 0.47 | 0.47 | 0.46 | 0.46 | 0.45 |
cs | c5 | c10 | c20 | c30 | c40 | c50 | c75 | c100 | c150 | c200 | c250 | c300 | c400 | c500 | c1000 | c2000 | c3000 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
agroforestry | 0.713 | 0.761 | 0.804 | 0.818 | 0.818 | 0.810 | 0.809 | 0.803 | 0.796 | 0.788 | 0.776 | 0.779 | 0.774 | 0.765 | 0.760 | 0.747 | 0.738 | 0.734 |
biological control | 0.779 | 0.592 | 0.725 | 0.796 | 0.801 | 0.851 | 0.852 | 0.850 | 0.844 | 0.833 | 0.823 | 0.821 | 0.818 | 0.812 | 0.807 | 0.786 | 0.770 | 0.757 |
cover crop | 0.714 | 0.622 | 0.672 | 0.695 | 0.689 | 0.676 | 0.676 | 0.671 | 0.672 | 0.662 | 0.655 | 0.654 | 0.654 | 0.650 | 0.654 | 0.660 | 0.669 | 0.670 |
cultivar | 0.367 | 0.249 | 0.287 | 0.312 | 0.343 | 0.346 | 0.354 | 0.364 | 0.365 | 0.364 | 0.368 | 0.367 | 0.370 | 0.374 | 0.378 | 0.388 | 0.397 | 0.405 |
domestication | 0.581 | 0.753 | 0.773 | 0.793 | 0.788 | 0.786 | 0.793 | 0.783 | 0.782 | 0.775 | 0.775 | 0.769 | 0.770 | 0.768 | 0.766 | 0.761 | 0.754 | 0.751 |
fertilizer | 0.582 | 0.519 | 0.595 | 0.634 | 0.641 | 0.650 | 0.653 | 0.662 | 0.665 | 0.669 | 0.669 | 0.671 | 0.671 | 0.674 | 0.675 | 0.680 | 0.697 | 0.703 |
greenhouse gas | 0.110 | 0.040 | 0.075 | 0.112 | 0.128 | 0.149 | 0.176 | 0.184 | 0.188 | 0.202 | 0.210 | 0.217 | 0.223 | 0.232 | 0.237 | 0.229 | 0.207 | 0.210 |
land use | 0.477 | 0.291 | 0.373 | 0.436 | 0.467 | 0.478 | 0.477 | 0.482 | 0.478 | 0.482 | 0.482 | 0.480 | 0.480 | 0.477 | 0.478 | 0.469 | 0.468 | 0.467 |
green manure | 0.777 | 0.642 | 0.702 | 0.780 | 0.793 | 0.815 | 0.820 | 0.826 | 0.830 | 0.827 | 0.822 | 0.817 | 0.817 | 0.814 | 0.812 | 0.807 | 0.814 | 0.812 |
legume | 0.509 | 0.519 | 0.559 | 0.583 | 0.594 | 0.603 | 0.597 | 0.599 | 0.595 | 0.596 | 0.597 | 0.594 | 0.595 | 0.593 | 0.596 | 0.571 | 0.556 | 0.555 |
monoculture | 0.700 | 0.745 | 0.711 | 0.710 | 0.703 | 0.743 | 0.738 | 0.735 | 0.742 | 0.728 | 0.722 | 0.721 | 0.717 | 0.714 | 0.706 | 0.693 | 0.671 | 0.684 |
organic matter | 0.656 | 0.645 | 0.690 | 0.649 | 0.663 | 0.665 | 0.669 | 0.676 | 0.677 | 0.676 | 0.678 | 0.680 | 0.682 | 0.683 | 0.685 | 0.682 | 0.673 | 0.672 |
pasture | 0.401 | 0.658 | 0.699 | 0.702 | 0.691 | 0.685 | 0.681 | 0.673 | 0.661 | 0.647 | 0.634 | 0.622 | 0.613 | 0.603 | 0.595 | 0.553 | 0.513 | 0.496 |
sustainable agriculture | 0.713 | 0.555 | 0.621 | 0.690 | 0.719 | 0.744 | 0.763 | 0.780 | 0.786 | 0.775 | 0.760 | 0.748 | 0.742 | 0.727 | 0.718 | 0.705 | 0.684 | 0.673 |
herbicide | 0.503 | 0.489 | 0.551 | 0.580 | 0.581 | 0.617 | 0.620 | 0.623 | 0.626 | 0.626 | 0.628 | 0.628 | 0.628 | 0.628 | 0.628 | 0.631 | 0.639 | 0.647 |
crop rotation | 0.706 | 0.629 | 0.684 | 0.706 | 0.708 | 0.741 | 0.710 | 0.711 | 0.748 | 0.714 | 0.707 | 0.703 | 0.703 | 0.702 | 0.695 | 0.683 | 0.704 | 0.686 |
aquaculture | 0.251 | 0.264 | 0.365 | 0.449 | 0.470 | 0.473 | 0.491 | 0.496 | 0.501 | 0.507 | 0.511 | 0.511 | 0.513 | 0.503 | 0.503 | 0.491 | 0.483 | 0.472 |
agriculture | 0.525 | 0.505 | 0.556 | 0.606 | 0.610 | 0.623 | 0.630 | 0.641 | 0.644 | 0.649 | 0.652 | 0.658 | 0.659 | 0.660 | 0.660 | 0.659 | 0.655 | 0.650 |
organic farming | 0.711 | 0.615 | 0.680 | 0.758 | 0.747 | 0.760 | 0.765 | 0.777 | 0.774 | 0.767 | 0.759 | 0.756 | 0.761 | 0.765 | 0.772 | 0.757 | 0.748 | 0.751 |
farming system | 0.542 | 0.444 | 0.524 | 0.533 | 0.511 | 0.506 | 0.498 | 0.488 | 0.495 | 0.494 | 0.496 | 0.490 | 0.487 | 0.482 | 0.480 | 0.468 | 0.465 | 0.461 |
MEAN AVERAGE | 0.566 | 0.527 | 0.582 | 0.617 | 0.623 | 0.636 | 0.639 | 0.641 | 0.644 | 0.639 | 0.636 | 0.634 | 0.634 | 0.631 | 0.630 | 0.621 | 0.615 | 0.613 |
cs | c5 | c10 | c20 | c30 | c40 | c50 | c75 | c100 | c150 | c200 | c250 | c300 | c400 | c500 | c1000 | c2000 | c3000 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
agroforestry | 0.429 | 0.429 | 0.429 | 0.476 | 0.500 | 0.476 | 0.476 | 0.476 | 0.452 | 0.452 | 0.429 | 0.452 | 0.429 | 0.405 | 0.405 | 0.429 | 0.429 | 0.429 |
biological control | 0.595 | 0.595 | 0.595 | 0.595 | 0.571 | 0.571 | 0.571 | 0.548 | 0.548 | 0.524 | 0.524 | 0.524 | 0.524 | 0.524 | 0.500 | 0.476 | 0.476 | 0.476 |
cover crop | 0.548 | 0.476 | 0.524 | 0.524 | 0.524 | 0.476 | 0.500 | 0.452 | 0.500 | 0.476 | 0.452 | 0.452 | 0.452 | 0.452 | 0.476 | 0.452 | 0.452 | 0.476 |
cultivar | 0.143 | 0.190 | 0.190 | 0.143 | 0.167 | 0.143 | 0.143 | 0.143 | 0.143 | 0.119 | 0.119 | 0.095 | 0.095 | 0.095 | 0.095 | 0.095 | 0.095 | 0.143 |
domestication | 0.333 | 0.262 | 0.310 | 0.333 | 0.381 | 0.381 | 0.405 | 0.381 | 0.381 | 0.405 | 0.429 | 0.429 | 0.429 | 0.429 | 0.429 | 0.429 | 0.429 | 0.429 |
fertilizer | 0.452 | 0.500 | 0.476 | 0.476 | 0.476 | 0.500 | 0.476 | 0.500 | 0.500 | 0.476 | 0.452 | 0.452 | 0.452 | 0.452 | 0.452 | 0.452 | 0.500 | 0.500 |
greenhouse gas | 0.190 | 0.167 | 0.262 | 0.190 | 0.190 | 0.190 | 0.238 | 0.190 | 0.167 | 0.167 | 0.167 | 0.167 | 0.167 | 0.143 | 0.119 | 0.119 | 0.119 | 0.143 |
land use | 0.310 | 0.286 | 0.333 | 0.333 | 0.333 | 0.310 | 0.310 | 0.310 | 0.310 | 0.333 | 0.333 | 0.333 | 0.310 | 0.310 | 0.310 | 0.310 | 0.310 | 0.286 |
green manure | 0.452 | 0.405 | 0.429 | 0.452 | 0.452 | 0.405 | 0.405 | 0.381 | 0.381 | 0.381 | 0.357 | 0.357 | 0.357 | 0.333 | 0.333 | 0.357 | 0.357 | 0.357 |
legume | 0.357 | 0.548 | 0.524 | 0.524 | 0.524 | 0.524 | 0.476 | 0.476 | 0.452 | 0.429 | 0.429 | 0.429 | 0.429 | 0.429 | 0.405 | 0.333 | 0.333 | 0.333 |
monoculture | 0.452 | 0.452 | 0.476 | 0.548 | 0.524 | 0.524 | 0.524 | 0.571 | 0.571 | 0.595 | 0.571 | 0.571 | 0.571 | 0.548 | 0.524 | 0.524 | 0.524 | 0.571 |
organic matter | 0.214 | 0.262 | 0.214 | 0.286 | 0.238 | 0.238 | 0.238 | 0.214 | 0.214 | 0.214 | 0.214 | 0.214 | 0.214 | 0.214 | 0.214 | 0.190 | 0.167 | 0.143 |
pasture | 0.286 | 0.524 | 0.524 | 0.500 | 0.452 | 0.452 | 0.452 | 0.452 | 0.429 | 0.429 | 0.429 | 0.405 | 0.405 | 0.405 | 0.405 | 0.381 | 0.381 | 0.357 |
sustainable agriculture | 0.476 | 0.500 | 0.476 | 0.452 | 0.500 | 0.476 | 0.524 | 0.476 | 0.476 | 0.476 | 0.476 | 0.476 | 0.476 | 0.476 | 0.452 | 0.429 | 0.429 | 0.429 |
herbicide | 0.262 | 0.357 | 0.333 | 0.310 | 0.310 | 0.286 | 0.286 | 0.286 | 0.286 | 0.286 | 0.286 | 0.286 | 0.286 | 0.286 | 0.286 | 0.286 | 0.286 | 0.286 |
crop rotation | 0.452 | 0.429 | 0.476 | 0.476 | 0.452 | 0.452 | 0.452 | 0.476 | 0.452 | 0.476 | 0.452 | 0.452 | 0.452 | 0.476 | 0.452 | 0.452 | 0.452 | 0.429 |
aquaculture | 0.167 | 0.310 | 0.286 | 0.286 | 0.286 | 0.310 | 0.262 | 0.262 | 0.262 | 0.262 | 0.262 | 0.262 | 0.262 | 0.238 | 0.238 | 0.238 | 0.286 | 0.262 |
agriculture | 0.286 | 0.286 | 0.357 | 0.333 | 0.357 | 0.357 | 0.357 | 0.357 | 0.357 | 0.357 | 0.357 | 0.381 | 0.381 | 0.381 | 0.381 | 0.381 | 0.381 | 0.381 |
organic farming | 0.595 | 0.452 | 0.595 | 0.643 | 0.667 | 0.667 | 0.667 | 0.667 | 0.667 | 0.643 | 0.667 | 0.643 | 0.667 | 0.667 | 0.714 | 0.667 | 0.595 | 0.643 |
farming system | 0.262 | 0.167 | 0.238 | 0.262 | 0.262 | 0.262 | 0.286 | 0.262 | 0.286 | 0.238 | 0.262 | 0.262 | 0.262 | 0.238 | 0.238 | 0.262 | 0.238 | 0.238 |
MEAN AVERAGE | 0.363 | 0.380 | 0.402 | 0.407 | 0.408 | 0.400 | 0.402 | 0.394 | 0.392 | 0.387 | 0.383 | 0.382 | 0.381 | 0.375 | 0.371 | 0.363 | 0.362 | 0.365 |
cs | c5 | c10 | c20 | c30 | c40 | c50 | c75 | c100 | c150 | c200 | c250 | c300 | c400 | c500 | c1000 | c2000 | c3000 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
cosine norm. | 0.334 | 0.000 | 0.476 | 0.773 | 0.827 | 0.936 | 0.957 | 0.980 | 1.000 | 0.961 | 0.937 | 0.921 | 0.918 | 0.895 | 0.885 | 0.807 | 0.757 | 0.736 |
precision norm. | 0.026 | 0.385 | 0.872 | 0.974 | 1.000 | 0.821 | 0.872 | 0.692 | 0.641 | 0.538 | 0.462 | 0.436 | 0.410 | 0.282 | 0.205 | 0.026 | 0.000 | 0.077 |
MEAN AVERAGE | 0.180 | 0.192 | 0.674 | 0.874 | 0.913 | 0.878 | 0.914 | 0.836 | 0.821 | 0.750 | 0.699 | 0.678 | 0.664 | 0.589 | 0.545 | 0.416 | 0.379 | 0.407 |
divert(−1) define(`CONTEXTONYM',`[(tag="V.*|N.*|J.*") & !lemma="be|have|make|do|such|other|much|many|more|most|same|less|least|due|few|only|different" & !word="[[:digit:]]([[:digit:]]*[[:punct:]]*)*[[:digit:]]*"]') divert *STRUCTLIMIT doc =contextonyms *SYMMETRIC 2:CONTEXTONYM []{0,49} 1:CONTEXTONYM & 1.lempos != 2.lempos |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
San Martín, A. Optimizing Contextonym Analysis for Terminological Definition Writing. Information 2025, 16, 257. https://doi.org/10.3390/info16040257
San Martín A. Optimizing Contextonym Analysis for Terminological Definition Writing. Information. 2025; 16(4):257. https://doi.org/10.3390/info16040257
Chicago/Turabian StyleSan Martín, Antonio. 2025. "Optimizing Contextonym Analysis for Terminological Definition Writing" Information 16, no. 4: 257. https://doi.org/10.3390/info16040257
APA StyleSan Martín, A. (2025). Optimizing Contextonym Analysis for Terminological Definition Writing. Information, 16(4), 257. https://doi.org/10.3390/info16040257