Harnessing Large Language Models and Deep Neural Networks for Fake News Detection
Abstract
:1. Introduction
- It conducts a comprehensive comparison of BERT-based text representations in various popular datasets, to examine the generalization of the approach;
- It proposes a method for extracting factual segments from texts using LLMs, isolating the most verifiable and information-rich parts of news articles, and representing these segments using BERT-based features;
- It contributes two new datasets that are based on the ISOT fake news dataset [4], a dataset that was collected from real-world sources (truthful sources from Reuters.com and unreliable websites that were flagged by Politifact) but contains factual information extracted from its articles using LLMs;
- It explores the representation of texts as graphs using large language models (LLMs) to capture structural relationships within the content, enabling a deeper understanding of the connections between entities and concepts.
2. Related Work
2.1. Fake News Detection Using LLMs
2.2. Evolution of Large Language Models (LLMs)
3. Proposed Approaches
3.1. Text Representation Using BERT Embeddings
3.2. Extraction of Factual Data Using LLMs
Listing 1. The prompt for extracting factual sentences in JSON format. |
prompt:> ‘‘Extract all the factual sentences from this text: [text]. Return only text segments and do not generate additional text. Respond in a JSON object that contains sentences as a list of strings. The following is an acceptable JSON string: {{‘‘sentences’’: [‘‘sentence 1’’, ‘‘sentence 2’’, etc.]}}’’ |
3.3. Graph Extraction Using LLMs and Graph Classification
Listing 2. The prompt for extracting a graph from text in JSON format. |
prompt:> ‘‘Extract a graph (nodes & edges) from this text: [text]. Use JSON notation. Nodes must have attributes id (a number), label (the text that describes the node), and type (a string such as person, location, organization, etc). Edges must have attributes source, target, relation, and description. Source and target must use the node IDs as numbers. Avoid having null values for source and target. When you are not sure, use the same value for both source and target. Return only the JSON code that contains the list of nodes and the list of edges. The following is an acceptable JSON string: {‘‘nodes’’: [{‘‘id’’: 1, ‘‘label’’: ‘‘a text value’’, ‘‘type’’: ‘‘a short text value’’}, {‘‘id’’: 2, ‘‘label’’: ‘‘a text value’’, ‘‘type’’: ‘‘a short text value’’}], edges’’: [{‘‘source’’: 1, ‘‘target’’: 2, ‘‘relation’’: ‘‘a short text value’’, ‘‘description’’: ‘‘a text value’’}]} |
4. Experimental Evaluation
4.1. Datasets
4.1.1. LIAR Dataset
4.1.2. PolitiFact Fact-Check Data Dataset
- verdict: The verdict of fact check in one of six categories: true, mostly true, half-true, mostly false, false, and pants-fire.
- statement originator: The person who made the statement being fact checked.
- statement: The statement being fact checked.
- statement date: The date when the statement was made.
- statement source: The source where the statement was made, categorized as: speech, television, news, blog, social media, advertisement, campaign, meeting, radio, email, testimony, statement, or other.
- factchecker: The name of the person who fact checked the claim.
- factcheck date: The date when the fact-checked article was published.
- factcheck analysis link: The link to the fact-checked analysis article.
4.1.3. FakeNewsNet Dataset
- id—Unique identifier for each news;
- url—Url of the article from web that published that news;
- title—Title of the news article;
- tweet_ids—Tweet ids of tweets sharing the news. This field is a list of tweet ids separated by tab.
4.1.4. ISOT Fake News Dataset
4.2. ISOT Facts Datasets
Listing 3. JSON format of the extracting sentences. |
{ ‘‘sentences’’: [‘‘sentence 1’’, ‘‘sentence 2’’, ...]} |
Listing 4. JSON format of the extracted graph. |
{ ‘‘nodes’’: [ { ‘‘id’’: number, ‘‘label’’: ‘‘string’’, ‘‘type’’: ‘‘string’’}, ..., { ‘‘id’’: number, ‘‘label’’: ‘‘string’’, ‘‘type’’: ‘‘string’’} ], ‘‘edges’’: [ {‘‘source’’: number, ‘‘target’’: number, ‘‘relation’’: ‘‘string’’, ‘‘description’’: ‘‘string’’}, ..., {‘‘source’’: number, ‘‘target’’: number, ‘‘relation’’: ‘‘string’’, ‘‘description’’: ‘‘string’’} ] } |
4.3. Performance Metrics
4.4. Implementation Details
4.4.1. Generating BERT Embeddings
4.4.2. The Deep Neural Network Used for the ISOT Dataset
4.4.3. The Implementation of GCN Variations
5. Experimental Results
5.1. State of the Art Performance
5.2. BERT-Embedding Generalization
5.3. Combining LLMs and Deep NNs on the ISOT Dataset
6. Challenges and Limitations
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Papageorgiou, E.; Chronis, C.; Varlamis, I.; Himeur, Y. A survey on the use of large language models (LLMs) in fake news. Future Internet 2024, 16, 298. [Google Scholar] [CrossRef]
- Mallick, C.; Mishra, S.; Senapati, M.R. A cooperative deep learning model for fake news detection in online social networks. J. Ambient. Intell. Humaniz. Comput. 2023, 14, 4451–4460. [Google Scholar] [CrossRef] [PubMed]
- Phan, H.T.; Nguyen, N.T.; Hwang, D. Fake news detection: A survey of graph neural network methods. Appl. Soft Comput. 2023, 139, 110235. [Google Scholar] [PubMed]
- Ahmed, H.; Traore, I.; Saad, S. Detecting opinion spams and fake news using text classification. Secur. Priv. 2018, 1, e9. [Google Scholar]
- Khanam, Z.; Alwasel, B.; Sirafi, H.; Rashid, M. Fake news detection using machine learning approaches. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Sanya, China, 12–14 November 2021; IOP Publishing: Bristol, UK, 2021; Volume 1099, p. 012040. [Google Scholar]
- Yi, J.; Xu, Z.; Huang, T.; Yu, P. Challenges and Innovations in LLM-Powered Fake News Detection: A Synthesis of Approaches and Future Directions. arXiv 2025, arXiv:cs.CL/2502.00339. [Google Scholar]
- Jain, P.; Sharma, S.; Aggarwal, P.K. Classifying fake news detection using SVM, Naive Bayes and LSTM. In Proceedings of the 12th International Conference on Cloud Computing, Data Science & Engineering (Confluence), Virtual, 27–28 January 2022; IEEE: New York, NY, USA, 2022; pp. 460–464. [Google Scholar]
- Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), Minneapolis, MN, USA, 2–7 June 2019; pp. 4171–4186. [Google Scholar]
- Wu, J.; Guo, J.; Hooi, B. Fake News in Sheep’s Clothing: Robust Fake News Detection Against LLM-Empowered Style Attacks. In Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Barcelona, Spain, 25–29 August 2024; ACM: New York, NY, USA, 2024; pp. 3367–3378. [Google Scholar]
- Ma, X.; Zhang, Y.; Ding, K.; Yang, J.; Wu, J.; Fan, H. On Fake News Detection with LLM Enhanced Semantics Mining. In Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, Miami, FL, USA, 12–16 November 2024; pp. 508–521. [Google Scholar]
- Liu, Y.; Zhu, J.; Liu, X.; Tang, H.; Zhang, Y.; Zhang, K.; Zhou, X.; Chen, E. Detect, Investigate, Judge and Determine: A Knowledge-guided Framework for Few-shot Fake News Detection. arXiv 2025, arXiv:cs.CL/2407.08952. [Google Scholar]
- Pires, T.; Schlinger, E.; Garrette, D. How Multilingual is Multilingual BERT? In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, Florence, Italy, 28 July–2August 2019; pp. 4996–5001. [Google Scholar]
- Raffel, C.; Shazeer, N.; Roberts, A.; Lee, K.; Narang, S.; Matena, M.; Zhou, Y.; Li, W.; Liu, P.J. Exploring the limits of transfer learning with a unified text-to-text transformer. J. Mach. Learn. Res. 2020, 21, 1–67. [Google Scholar]
- Liu, Y.; Ott, M.; Goyal, N.; Du, J.; Joshi, M.; Chen, D.; Levy, O.; Lewis, M.; Zettlemoyer, L.; Stoyanov, V. RoBERTa: A Robustly Optimized BERT Pretraining Approach. arXiv 2019, arXiv:cs.CL/1907.11692. [Google Scholar]
- Fn-Bert. 2023. Available online: https://huggingface.co/ungjus/Fake_News_BERT_Classifier (accessed on 13 March 2025).
- Zellers, R.; Holtzman, A.; Rashkin, H.; Bisk, Y.; Farhadi, A.; Roesner, F.; Choi, Y. Defending against neural fake news. Adv. Neural Inf. Process. Syst. 2019, 32, 9054–9065. [Google Scholar]
- Touvron, H.; Martin, L.; Stone, K.; Albert, P.; Almahairi, A.; Babaei, Y.; Bashlykov, N.; Batra, S.; Bhargava, P.; Bhosale, S.; et al. Llama 2: Open Foundation and Fine-Tuned Chat Models. arXiv 2023, arXiv:cs.CL/2307.09288. [Google Scholar]
- Abdin, M.; Aneja, J.; Awadalla, H.; Awadallah, A.; Awan, A.A.; Bach, N.; Bahree, A.; Bakhtiari, A.; Bao, J.; Behl, H.; et al. Phi-3 Technical Report: A Highly Capable Language Model Locally on Your Phone. arXiv 2024, arXiv:cs.CL/2404.14219. [Google Scholar]
- OpenAI. Chatgpt 3.5. Available online: https://chat.openai.com/chat (accessed on 13 March 2025).
- OpenAI; Achiam, J.; Adler, S.; Agarwal, S.; Ahmad, L.; Akkaya, I.; Aleman, F.L.; Almeida, D.; Altenschmidt, J.; Altman, S.; et al. GPT-4 Technical Report. arXiv 2024, arXiv:cs.CL/2303.08774. [Google Scholar]
- Yang, A.; Yang, B.; Hui, B.; Zheng, B.; Yu, B.; Zhou, C.; Li, C.; Li, C.; Liu, D.; Huang, F.; et al. Qwen2 Technical Report. arXiv 2024, arXiv:cs.CL/2407.10671. [Google Scholar]
- Jiang, A.Q.; Sablayrolles, A.; Mensch, A.; Bamford, C.; Chaplot, D.S.; de las Casas, D.; Bressand, F.; Lengyel, G.; Lample, G.; Saulnier, L.; et al. Mistral 7B. arXiv 2023, arXiv:cs.CL/2310.06825. [Google Scholar]
- Team, G.; Anil, R.; Borgeaud, S.; Alayrac, J.B.; Yu, J.; Soricut, R.; Schalkwyk, J.; Dai, A.M.; Hauth, A.; Millican, K.; et al. Gemini: A Family of Highly Capable Multimodal Models. arXiv 2024, arXiv:cs.CL/2312.11805. [Google Scholar]
- Sundriyal, M.; Chakraborty, T.; Nakov, P. From Chaos to Clarity: Claim Normalization to Empower Fact-Checking. In Proceedings of the Findings of the Association for Computational Linguistics: EMNLP 2023, Singapore, 6–10 December 2023; pp. 6594–6609. [Google Scholar]
- Bhatnagar, V.; Kanojia, D.; Chebrolu, K. Harnessing Abstractive Summarization for Fact-Checked Claim Detection. In Proceedings of the 29th International Conference on Computational Linguistics, Gyeongju, Republic of Korea, 12–17 October 2022; pp. 2934–2945. [Google Scholar]
- Wang, W.Y. “Liar, Liar Pants on Fire”: A New Benchmark Dataset for Fake News Detection. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), Vancouver, BC, Canada, 30 July–4 August 2017; pp. 422–426. [Google Scholar]
- LIAR Dataset. Available online: https://paperswithcode.com/dataset/liar (accessed on 2 March 2025).
- Ganesh, S.K. Politifact Factcheck Data Dataset. Available online: https://www.kaggle.com/datasets/shivkumarganesh/politifact-factcheck-data/data (accessed on 2 March 2025).
- Misra, R.; Grover, J. Do not ‘fake it till you make it’! synopsis of trending fake news detection methodologies using deep learning. In Deep Learning for Social Media Data Analytics; Springer: Berlin/Heidelberg, Germany, 2022; pp. 213–235. [Google Scholar]
- Shu, K.; Mahudeswaran, D.; Wang, S.; Lee, D.; Liu, H. FakeNewsNet: A Data Repository with News Content, Social Context and Spatiotemporal Information for Studying Fake News on Social Media. J. Big Data 2020, 8, 171–188. [Google Scholar] [CrossRef] [PubMed]
- Shu, K.; Sliva, A.; Wang, S.; Tang, J.; Liu, H. Fake news detection on social media: A data mining perspective. ACM SIGKDD Explor. Newsl. 2017, 19, 22–36. [Google Scholar]
- Shu, K.; Wang, S.; Liu, H. Beyond News Contents: The Role of Social Context for Fake News Detection. arXiv 2018, arXiv:cs.SI/1712.07709. [Google Scholar]
- FakeNewsNet. Available online: https://github.com/KaiDMML/FakeNewsNet (accessed on 2 March 2025).
- Bozkus, E. ISOT Fake News Dataset. 2024. Available online: https://www.kaggle.com/datasets/emineyetm/fake-news-detection-datasets/data/ (accessed on 2 March 2025).
- Ollama. Available online: https://ollama.com/ (accessed on 2 March 2025).
- Boissonneault, D.; Hensen, E. Fake News Detection with Large Language Models on the LIAR Dataset. Res. Sq. 2024. [Google Scholar] [CrossRef]
- Sophie, B. Predicting PolitiFact’s Verdict. 2023. Available online: https://www.kaggle.com/code/sophieb/predicting-politifact-s-verdict (accessed on 2 March 2025).
- Chrysidis, Z.; Papadopoulos, S.I.; Papadopoulos, S.; Petrantonakis, P. Credible, unreliable or leaked?: Evidence verification for enhanced automated fact-checking. In Proceedings of the 3rd ACM International Workshop on Multimedia AI against Disinformation, Phuket, Thailand, 10 June 2024; pp. 73–81. [Google Scholar]
- Li, Y.; Zhai, C. An exploration of large language models for verification of news headlines. In Proceedings of the 2023 IEEE International Conference on Data Mining Workshops (ICDMW), Shanghai, China, 1–4 December 2023; IEEE: Shanghai, China, 2023; pp. 197–206. [Google Scholar]
- Shu, K.; Zheng, G.; Li, Y.; Mukherjee, S.; Awadallah, A.H.; Ruston, S.; Liu, H. Leveraging Multi-Source Weak Social Supervision for Early Detection of Fake News. arXiv 2020, arXiv:cs.LG/2004.01732. [Google Scholar]
Model | Tokens | Parameters | Training Corpus Size | Architecture | Reference |
---|---|---|---|---|---|
BERT | 3.3 B | BERT-BASE: 110 M, BERT-LARGE: 340 M | BooksCorpus (800 M words), English Wikipedia (2.5 B words) | Transformer (12/24 layers) | [8] |
M-BERT | 300 M | 110 M | Wikipedia pages of 104 languages | Transformer (12 layers) | [12] |
T5 | 500 M | 220 M | C4 (750 GB) | Encoder–Decoder (12 blocks) | [13] |
RoBERTa | 500 M | 355 M | CC-NEWS, Web texts (160 GB) | Enhanced BERT | [14] |
FN-BERT | 300 M | 66 M | Fake news dataset | Fine-tuned DistilBERT | [15] |
Grover | 400 M | Grover-Base: 117 M, Grover-Large: 345 M, Grover-Mega: 1.5 B | RealNews dataset (120 GB) | GAN-based Transformer | [16] |
Llama2 | 2 T | Llama2-7B, Llama2-13B, Llama2-70B | Various datasets | Transformer | [17] |
Llama3 | 15 T | 8 B, 70 B | Massive dataset (incl. Common Crawl, code, data, books) | Improved Transformer | - |
Phi3 | 3.3 M | Small 3.8 B, Medium 14 B | Large-scale dataset | Improved Transformer | [18] |
GPT-3 | 500 B | 175 B | Diverse datasets (web, books, Wikipedia) | Multimodal Transformer | [20] |
GPT-4 | 10 T | 1.7 T | Diverse datasets (web, books, Wikipedia) | Multimodal Transformer | [20] |
Qwen2 | 500 B | 200 B | Massive dataset | Transformer | [21] |
Mistral | 500 B | 175 B | Large-scale dataset | Transformer | [22] |
Gemini | 1 T | 1.4 T | Massive dataset | Advanced Transformer | [23] |
Dataset | Source | Number of Total Articles | Labels | Source | URL |
---|---|---|---|---|---|
LIAR benchmark | Articles | 12,800 | pants-fire, false, barely true, half-true, mostly true, and true | Politifact.com | https://paperswithcode.com/dataset/liar (accessed on 12 March 2025) |
Politifact fact-check data | Claims | 19,423 | full-flop, half-flip, no-flip, true, mostly true, half-true, barely true, false, pants-fire | Politifact.com | https://www.kaggle.com/datasets/rmisra/politifact-fact-check-dataset/data (accessed on 12 March 2025) |
FakeNewsNet (GossipCop, Politifact) | Social Media Posts | 23,202 | fake, real | https://github.com/KaiDMML/FakeNewsNet (accessed on 12 March 2025) | |
ISOT Fake News Dataset | Articles | 44,898 | fake, real | real-world sources, Reuters.com | https://www.kaggle.com/datasets/emineyetm/fake-news-detection-datasets (accessed on 12 March 2025) |
Dataset Statistics | |
---|---|
Training set size | 10,269 |
Validation set size | 1284 |
Testing set size | 1283 |
Dataset | Number of Articles | Number of Fake News Articles | Number of Real News Articles |
---|---|---|---|
Gossipcop | 22,144 | 5325 | 16,819 |
Politifact | 1058 | 433 | 625 |
News Type | Size (Number of Articles) | Subjects | |
---|---|---|---|
Real news | 21,417 | Domain | #articles |
World | 10,145 | ||
Politics | 11,272 | ||
Fake news | 23,481 | Domain | #articles |
Government | 1570 | ||
Middle East | 778 | ||
US | 783 | ||
Left news | 4459 | ||
Politics | 6841 | ||
General news | 9050 |
Metric | Description |
---|---|
Accuracy | The proportion of correctly classified statements, providing a general measure of the models’ performance. |
Precision | The ratio of true positive predictions to the total positive predictions, measuring the models’ ability to correctly identify true statements without generating false positives. |
Recall | The ratio of true positive predictions to the total actual positives, assessing the models’ ability to detect all true statements, capturing their sensitivity to true information. |
F1-Score | The harmonic mean of precision and recall, offering a balanced measure of the models’ performance, considering both false positives and false negatives. |
Dataset | Model | Feature Extraction | Accuracy | F1 | Feature Size | Citation |
---|---|---|---|---|---|---|
LIAR | Hybrid CNN Models (Text + All Metadata) | Randomly initialized embeddings for metadata, concatenated the max-pooled text representations | 0.27 | - | N/A | [26] |
Politifact fact check data | Multilayer Perceptron | BoW for Text and Metadata | 0.65 | 0.59 | 18,000 | [37] |
Fake News Net | RoBERTa-MWSS (Clean + Weak) | weak social supervision signals | 0.80 | 0.80 | N/A | [30] |
ISOT Fake News | LSVM | TF-IDF feature extraction | 0.92 | - | 50,000 | [4] |
Dataset | Matthews Corr. Coefficient | Precision | Recall | F1-Score | Accuracy |
---|---|---|---|---|---|
LIAR | 0.28 | 0.48 | 0.69 | 0.64 | 0.63 |
Politifact fact check data (overall metrics) | 0.14 | 0.31 | 0.28 | 0.28 | 0.28 |
FakeNewsNet | 0.50 | 0.91 | 0.80 | 0.80 | 0.79 |
ISOT Fake News | 0.98 | 0.99 | 0.99 | 0.99 | 0.99 |
Method | Accuracy | Precision | Recall | F-Measure | Math. Corr. Coef. |
---|---|---|---|---|---|
BERT-full | 0.9993 | 0.9993 | 0.9993 | 0.9993 | 0.9987 |
BERT-fact | 0.9708 | 0.9709 | 0.9708 | 0.9708 | 0.9415 |
GCN-node | 0.8174 | 0.818 | 0.8174 | 0.8168 | 0.6332 |
GCN-node-edge | 0.8082 | 0.8086 | 0.8082 | 0.8077 | 0.6147 |
GCN-node-edge-deeper | 0.816 | 0.8166 | 0.816 | 0.8155 | 0.6305 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papageorgiou, E.; Varlamis, I.; Chronis, C. Harnessing Large Language Models and Deep Neural Networks for Fake News Detection. Information 2025, 16, 297. https://doi.org/10.3390/info16040297
Papageorgiou E, Varlamis I, Chronis C. Harnessing Large Language Models and Deep Neural Networks for Fake News Detection. Information. 2025; 16(4):297. https://doi.org/10.3390/info16040297
Chicago/Turabian StylePapageorgiou, Eleftheria, Iraklis Varlamis, and Christos Chronis. 2025. "Harnessing Large Language Models and Deep Neural Networks for Fake News Detection" Information 16, no. 4: 297. https://doi.org/10.3390/info16040297
APA StylePapageorgiou, E., Varlamis, I., & Chronis, C. (2025). Harnessing Large Language Models and Deep Neural Networks for Fake News Detection. Information, 16(4), 297. https://doi.org/10.3390/info16040297