Synthetic User Generation in Games: Cloning Player Behavior with Transformer Models
Abstract
:1. Introduction
2. Related Work
3. Methodology
3.1. Participants
3.2. Materials
3.2.1. Video Game
3.2.2. Software Tools
3.3. Data Collection
Data Preprocessing
3.4. Model and Training Process
3.4.1. Transformer Architecture and Training
Model Design
Diffusion Regularization Mechanism
3.4.2. Training Regime
3.4.3. Model Evaluation
3.4.4. Quantitative Metrics
3.4.5. Observational Analysis
4. Results
4.1. Navigation
4.2. Platforming
4.3. Obstacle Detection
4.4. Combat
4.5. Areas of Opportunity
5. Discussion
6. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brathwaite, B.; Schreiber, I. Challenges for Game Designers; Charles River Media: Needham, MA, USA, 2009; pp. 1–2. [Google Scholar]
- Schell, J. The Art of Game Design: A Book of Lenses; CRC Press: Boca Raton, FL, USA, 2008; pp. 40–46. [Google Scholar]
- Zubek, R. Elements of Game Design; MIT Press: Cambridge, MA, USA, 2020; pp. 10–22. [Google Scholar]
- Abras, C.; Maloney-Krichmar, D.; Preece, J. User-Centered Design. Encycl. Hum.-Comput. Interact. 2004, 37, 445–456. [Google Scholar]
- Lowdermilk, T. User-Centered Design: A Developer’s Guide to Building User-Friendly Applications; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2013; pp. 5–13. [Google Scholar]
- Sanders, E.B.N.; Stappers, P.J. Co-Creation and the New Landscapes of Design. CoDesign 2008, 4, 5–18. [Google Scholar] [CrossRef]
- Suetake, H.; Fukusato, T.; Arzate Cruz, C.; Nealen, A.; Igarashi, T. Interactive design exploration of game stagesusing adjustable synthetic testers. In Proceedings of the International Conference on the Foundations of Digital Games, Bugibba, Malta, 15–18 September 2020; pp. 1–4. [Google Scholar] [CrossRef]
- Amatriain, X. Transformer Models: An Introduction and Catalog. arXiv 2023, arXiv:2302.07730. [Google Scholar]
- Merritt, R. What Is a Transformer Model? NVIDIA Blogs. 2024. Available online: https://blogs.nvidia.com/blog/what-is-a-transformer-model/ (accessed on 18 November 2024).
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention Is All You Need. arXiv 2017, arXiv:1706.03762. [Google Scholar]
- Giacaglia, G. How Transformers Work—Towards Data Science. Medium. 3 December 2024.
- Parmar, N.; Vaswani, A.; Uszkoreit, J.; Kaiser, Ł.; Shazeer, N.; Ku, A.; Tran, D. Image Transformer. arXiv 2018, arXiv:1802.05751. [Google Scholar]
- Khan, S.; Naseer, M.; Hayat, M.; Zamir, S.W.; Khan, F.S.; Shah, M. Transformers in Vision: A Survey. ACM Comput. Surv. 2022, 54, 1–41. [Google Scholar] [CrossRef]
- Radford, A.; Kim, J.W.; Xu, T.; Brockman, G.; McLeavey, C.; Sutskever, I. Robust Speech Recognition via Large-Scale Weak Supervision. arXiv 2022, arXiv:2212.04356. [Google Scholar]
- Brooks, R.A.; Breazeal, C.; Irie, R.; Kemp, C.C.; Marjanovic, M.; Scassellati, B.; Williamson, M.M. Alternative Essences of Intelligence. In Proceedings of the AAAI Conference on Artificial Intelligence 15, Madison, WI, USA, 26–30 July 1998. [Google Scholar] [CrossRef]
- Conroy, D.; Wyeth, P.; Johnson, D. Modeling player-like behavior for game AI design. In Proceedings of the 8th International Conference on Advances in Computer Entertainment Technology, Lisbon, Portugal, 8–11 November 2011; pp. 1–8. [Google Scholar]
- Filipović, A. The role of Artificial Intelligence in video game development. Kult. Polisa 2023, 20, 50–67. [Google Scholar] [CrossRef]
- Uludağlı, M.Ç.; Oğuz, K. Non-player character decision-making in Computer Games. Artif. Intell. Rev. 2023, 56, 14159–14191. [Google Scholar] [CrossRef]
- Ariyurek, S.; Betin-Can, A.; Surer, E. Automated video game testing using synthetic and humanlike agents. IEEE Trans. Games 2021, 13, 50–67. [Google Scholar] [CrossRef]
- Jouni, S.; Harri, H. Synthetic Players: A Quest for Artificial Intelligence in Computer Games. Hum. IT 2005, 7, 57–77. [Google Scholar]
- Arrabales, R.; Ledezma, A.; Sanchis, A. Towards conscious-like behavior in computer game characters. In Proceedings of the 2009 IEEE Symposium on Computational Intelligence and Games, Milano, Italy, 7–10 September 2009; pp. 217–224. [Google Scholar] [CrossRef]
- Antunes, A. Designing a digital twin for adaptive serious games-based therapy. In Proceedings of the 22nd International Conference on Mobile and Ubiquitous Multimedia, Vienna, Austria, 3–6 December 2023; pp. 574–576. [Google Scholar] [CrossRef]
- Alexander, K.; McArthur, J.J.; Lachapelle, G.; El Mokhtari, K.; Damm, M. Applying video game design to Building Digital Twin Creation. In Proceedings of the Computing in Construction, Crete, Greece, 10–12 July 2023. [Google Scholar] [CrossRef]
- Tanberk, S.; Bilgin Tukel, D.; Acar, K. The Design of a 3D Character Animation System for Digital Twins in the Metaverse. arXiv 2024, arXiv:2407.18934. [Google Scholar] [CrossRef]
- Yannakakis, G.N.; Togelius, J. Modeling players. In Artificial Intelligence and Games; Springer: Berlin/Heidelberg, Germany, 2018; pp. 203–255. [Google Scholar] [CrossRef]
- Bakkes, S.C.J.; Spronck, P.H.M.; van Lankveld, G. Player behavioural modelling for video games. Entertain. Comput. 2012, 3, 71–79. [Google Scholar] [CrossRef]
- Hooshyar, D.; Yousefi, M.; Lim, H. Data-driven approaches to game player modeling. ACM Comput. Surv. 2018, 50, 1–19. [Google Scholar] [CrossRef]
- Amadori, P.V.; Bradley, T.; Spick, R.; Moss, G. Robust Imitation Learning for Automated Game Testing. arXiv 2024, arXiv:2401.04572. [Google Scholar] [CrossRef]
- Hernández Bécares, J.; Costero Valero, L.; Gómez Martín, P.P. An approach to automated videogame beta testing. Entertain. Comput. 2017, 18, 79–92. [Google Scholar] [CrossRef]
- Mastain, V.; Petrillo, F. A behavior-driven development and reinforcement learning approach for Videogame Automated Testing. In Proceedings of the ACM/IEEE 8th International Workshop on Games and Software Engineering, Lisbon, Portugal, 14 April 2024; pp. 1–8. [Google Scholar] [CrossRef]
- Ferdous, R.; Kifetew, F.; Prandi, D.; Susi, A. Curiosity Driven Multi-agent Reinforcement Learning for 3D Game Testing. arXiv 2025, arXiv:2502.14606. [Google Scholar] [CrossRef]
- Agarwal, S.; Herrmann, C.; Wallner, G.; Beck, F. Visualizing AI playtesting data of 2D side-scrolling games. In Proceedings of the 2020 IEEE Conference on Games (CoG), Osaka, Japan, 24–27 August 2020; pp. 572–575. [Google Scholar] [CrossRef]
- Bain, M.; Sammut, C. A framework for Behavioural Cloning. In Machine Intelligence 15; Oxford University Press: Oxford, UK, 2000; pp. 103–129. [Google Scholar] [CrossRef]
- Kanervisto, A.; Pussinen, J.; Hautamaki, V. Benchmarking end-to-end behavioural cloning on video games. In Proceedings of the 2020 IEEE Conference on Games (CoG), Osaka, Japan, 24–27 August 2020; pp. 558–565. [Google Scholar] [CrossRef]
- Gharbi, H.X.; Fennan, A.; Lotfi, E. Replicating video game players’ behavior through deep reinforcement learning algorithms. J. Theor. Appl. Inf. Technol. 2024, 102, 5735. [Google Scholar]
- Pearce, T.; Rashid, T.; Kanervisto, A.; Bignell, D.; Sun, M.; Georgescu, R.; Valcarcel Macua, S.; Tan, S.Z.; Momennejad, I.; Hofmann, K.; et al. Imitating human behaviour with diffusion models. arXiv 2023, arXiv:2301.10677. [Google Scholar] [CrossRef]
- Sharma, S.; Tewolde, G.; Kwon, J. Behavioral cloning for lateral motion control of autonomous vehicles using Deep Learning. In Proceedings of the 2018 IEEE International Conference on Electro/Information Technology (EIT), Rochester, MI, USA, 3–5 May 2018. [Google Scholar]
- Chen, B.; Tandon, S.; Gorsich, D.; Gorodetsky, A.; Veerapaneni, S. Behavioral cloning in Atari games using a combined variational Autoencoder and predictor model. In Proceedings of the 2021 IEEE Congress on Evolutionary Computation (CEC), Krakow, Poland, 28 June–1 July 2021; pp. 2077–2084. [Google Scholar]
- Codevilla, F.; Santana, E.; Lopez, A.; Gaidon, A. Exploring the limitations of behavior cloning for autonomous driving. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 2019; pp. 9328–9337. [Google Scholar]
- Yang, L.; Zhang, Z.; Song, Y.; Hong, S.; Xu, R.; Zhao, Y.; Zhang, W.; Cui, B.; Yang, M.H. Diffusion models: A comprehensive survey of methods and applications. ACM Comput. Surv. 2023, 56, 1–39. [Google Scholar] [CrossRef]
- Chen, S.F.; Wang, H.C.; Hsu, M.H.; Lai, C.M.; Sun, S.H. Diffusion Model-Augmented Behavioral Cloning. In Proceedings of the 41st International Conference on Machine Learning, Vienna, Austria, 21–27 July 2024. [Google Scholar] [CrossRef]
- Pearce, T.; Zhu, J. Counter-strike deathmatch with large-scale behavioural cloning. 2022 IEEE Conference on Games (CoG). 2022, 104–111. [Google Scholar]
- Morningstar Game Studios. A Robot Named Fight! On Steam. 2017. Available online: https://store.steampowered.com/app/603530/A_Robot_Named_Fight/ (accessed on 9 November 2024).
- Bitner, M. I’m Making the A Robot Named Fight Source Code Public! 2022. Available online: https://store.steampowered.com/news/app/603530/view/3293844171243621529 (accessed on 9 November 2024).
- Jaderberg, M.; Czarnecki, W.M.; Dunning, I.; Marris, L.; Lever, G.; Castañeda, A.G.; Graepel, T. Human-level performance in 3D multiplayer games with population-based reinforcement learning. Science 2019, 364, 859–865. [Google Scholar] [CrossRef] [PubMed]
- Tastan, B.; Sukthankar, G.R. Learning policies for first-person shooter games using inverse reinforcement learning. In Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, Palo Alto, CA, USA, 11–14 October 2011; Available online: https://api.semanticscholar.org/CorpusID:7835693 (accessed on 9 November 2024).
- Gordillo, C.; Bergdahl, J.; Tollmar, K.; Gisslen, L. Improving playtesting coverage via Curiosity Driven Reinforcement Learning Agents. In Proceedings of the 2021 IEEE Conference on Games (CoG), Copenhagen, Denmark, 17–20 August 2021; pp. 1–8. [Google Scholar] [CrossRef]
Attribute | Definition |
---|---|
positionX | Player’s position in the X-coordinate |
positionY | Player’s position in the Y-coordinate |
health | Current life points |
energy | Current energy points |
weaponsCollected | List of weapons obtained |
weaponsSelected | Weapon currently equipped |
inputKey | List of buttons pressed |
rayPointer | List of collider detector pointers |
direction | Direction in which the ray points |
collider | Name of the colliding object |
distance | Distance between the player and the collider |
collidersOnScreen | List of colliders displayed on the screen |
collider | Name of the colliding object |
location | Collider’s screen coordinates |
distance | Distance between the player and the collider |
Evaluation | Samples | PPL | CE Loss |
---|---|---|---|
Evaluation set | 10,308 | 1.0000 | 0.0000 |
New Frames set | 10,308 | 1.0012 | 0.0012 |
Ablation over Evaluation set | 10,308 | 1.0045 | 0.0045 |
Group | Metric | Diffusion Transformer | Transformer | Transformer (DTT) |
---|---|---|---|---|
Action | Total | 375,779 | 375,779 | - |
Action Success Rate | 0.9993 ± 0.0045 | 0.9965 ± 0.0097 | 0.0028 | |
Avg. Action Distance | 0.052 ± 0.012 | 0.068 ± 0.018 | −0.016 | |
Frame | Total | 10,308 | 10,308 | - |
Frame Accuracy | 0.9730 ± 0.1620 | 0.8798 ± 0.3252 | 0.0932 | |
Avg. Frame Confidence | 0.9990 ± 0.0026 | 0.9965 ± 0.0051 | 0.0025 | |
Entropy | Avg. Entropy | 0.0031 ± 0.0060 | 0.0101 ± 0.0124 | −0.0070 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chapa Mata, A.; Nimi, H.; Chacón, J.C. Synthetic User Generation in Games: Cloning Player Behavior with Transformer Models. Information 2025, 16, 329. https://doi.org/10.3390/info16040329
Chapa Mata A, Nimi H, Chacón JC. Synthetic User Generation in Games: Cloning Player Behavior with Transformer Models. Information. 2025; 16(4):329. https://doi.org/10.3390/info16040329
Chicago/Turabian StyleChapa Mata, Alfredo, Hisa Nimi, and Juan Carlos Chacón. 2025. "Synthetic User Generation in Games: Cloning Player Behavior with Transformer Models" Information 16, no. 4: 329. https://doi.org/10.3390/info16040329
APA StyleChapa Mata, A., Nimi, H., & Chacón, J. C. (2025). Synthetic User Generation in Games: Cloning Player Behavior with Transformer Models. Information, 16(4), 329. https://doi.org/10.3390/info16040329