A Novel Involution-Based Lightweight Network for Fabric Defect Detection
Abstract
:1. Introduction
2. Related Work
2.1. Attention Mechanism
2.2. Target Detection Framework
3. Method
3.1. Involution Module
3.2. Involution-Based Faster R-CNN Structure
3.3. Loss Function
4. Results
4.1. Dataset and Implementation Platform
4.2. Evaluation Metrics
4.3. Experimental Results
5. Conclusions
6. Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Srinivasan, K.; Dastoor, P.H.; Radhakrishnaiah, P.; Jayaraman, S. FDAS: A knowledge-based framework for analysis of defects in woven textile structures. J. Text. Inst. 1990, 83, 431–448. [Google Scholar] [CrossRef]
- Huang, Y.; Jing, J.; Wang, Z. Fabric defect segmentation sethod based on deep learning. IEEE Trans. Instrum. Meas. 2021, 70, 5005715. [Google Scholar] [CrossRef]
- Haralick, M.R. Statistical and structural approaches to texture. Proc. IEEE 2005, 67, 786–804. [Google Scholar] [CrossRef]
- Tsai, I.S.; Lin, C.H.; Lin, J.J. Applying an artificial neural network to pattern recognition in fabric defects. Text. Res. J. 1995, 65, 123–130. [Google Scholar] [CrossRef]
- Serra, J. Image analysis and mathematical morphology. Biometrics 1982, 39, 536–537. [Google Scholar] [CrossRef]
- Conci, A.; Proença, C.B. A fractal image analysis system for fabric inspection based on a box-counting method. Comput. Netw. ISDN Syst. 1998, 30, 1887–1895. [Google Scholar] [CrossRef]
- Bu, H.G.; Wang, J.; Huang, X.B. Fabric defect detection based on multiple fractal features and support vector data description. Eng. Appl. Artif. Intel. 2009, 22, 224–235. [Google Scholar] [CrossRef]
- Kaneko, H. A generalized fractal dimension and its application to texture analysis-fractal matrix model. In Proceedings of the International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Glasgow, UK, 23–26 May 1989; pp. 1711–1714. [Google Scholar] [CrossRef]
- Almeida, T.; Moutinho, F.; Matos-Carvalho, J.P. Fabric defect detection with deep learning and false negative reduction. IEEE Access 2021, 9, 81936–81945. [Google Scholar] [CrossRef]
- Wood, J.E. Applying fourier and associated transforms to pattern characterization in textiles. Text. Res. J. 1990, 60, 212–220. [Google Scholar] [CrossRef]
- Kwak, C.; Ventura, J.A.; Tofang-Sazi, K. Automated defect inspection and classification of leather fabric. Intell. Data Anal. 2001, 5, 355–370. [Google Scholar] [CrossRef]
- Kang, X.; Zhang, E. A universal defect detection approach for various types of fabrics based on the Elo-rating algorithm of the integral image. Text. Res. J. 2019, 89, 4766–4793. [Google Scholar] [CrossRef]
- Song, L.; Li, R.; Chen, S. Fabric defect detection based on membership degree of regions. IEEE Access 2020, 8, 48752–48760. [Google Scholar] [CrossRef]
- Butler, C.P. The michelson echelon spectroscope. Nature 1899, 59, 606–607. [Google Scholar] [CrossRef]
- Mallat, S.G. A theory for multiresolution signal decomposition: The wavelet representation. IEEE Trans. Pattern. Anal. Mach. Intell. 1988, 11, 674–693. [Google Scholar] [CrossRef]
- Kumar, A.; Pang, G.K. Defect detection in textured materials using optimized filters. IEEE Trans. Syst. Man Cybern. Part B Cybern. 2002, 32, 553–570. [Google Scholar] [CrossRef] [PubMed]
- Hoffer, L.M.; Francini, F.; Tiribilli, B.; Longobardi, G. Neural networks for the optical recognition of defects in cloth. Opt. Eng. 1996, 35, 3183–3190. [Google Scholar] [CrossRef]
- Sari-Sarraf, H.; Goddard, J.S. Vision system for on-loom fabric inspection. IEEE Trans. Ind. Appl. 1999, 35, 1252–1259. [Google Scholar] [CrossRef]
- Kang, X.; Zhang, E. A universal and adaptive fabric defect detection algorithm based on sparse diction nary learning. IEEE Access 2020, 8, 221808–221830. [Google Scholar] [CrossRef]
- Yapi, D.; Allili, M.S.; Baaziz, N. Automatic fabric defect detection using learning-based local textural distributions in the contourlet domain. IEEE Trans. Autom. Sci. Eng. 2017, 15, 1014–1026. [Google Scholar] [CrossRef]
- Cohen, F.S.; Fan, Z. Automated inspection of textile fabrics using textural models. IEEE Trans. Pattern. Anal. Mach. Intell. 1991, 13, 803–808. [Google Scholar] [CrossRef]
- Hajimowlana, S.H.; Muscedere, R.; Jullien, G.A.; Roberts, J.W. 1D autoregressive modeling for defect detection in web inspection systems. In Proceedings of the 1998 Midwest Symposium on Systems & Circuits (MWSCAS), Notre Dame, IN, USA, 9–12 August 1998; pp. 318–321. [Google Scholar] [CrossRef]
- Hu, J.; Shen, L.; Albanie, S.; Sun, G.; Wu, E. Squeeze-and-excitation networks. IEEE Trans. Pattern. Anal. Mach. Intell. 2017, 32, 2011–2023. [Google Scholar] [CrossRef]
- He, Z.; Yang, W.; Liu, Y.; Liu, J.; Zhang, J. Insulator Defect Detection Based on YOLOv8s-SwinT. Information 2024, 15, 206. [Google Scholar] [CrossRef]
- Zhang, Z.; Huang, X.; Wei, D.; Chang, Q.; Liu, J.; Jing, Q. Copper Nodule Defect Detection in Industrial Processes Using Deep Learning. Information 2024, 15, 802. [Google Scholar] [CrossRef]
- Chen, L.-C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-decoder with atrous separable convolution for semantic image segmentation. In Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition(CVPR), Salt Lake City, UT, USA, 18–23 June 2018; pp. 833–851. [Google Scholar] [CrossRef]
- Nasim, M.; Mumtaz, R.; Ahmad, M.; Ali, A. Fabric Defect Detection in Real World Manufacturing Using Deep Learning. Information 2024, 15, 476. [Google Scholar] [CrossRef]
- Mei, S.; Wang, Y.; Wen, G. Automatic fabric defect detection with a multi-scale convolutional denoising autoencoder network model. Sensors 2018, 18, 1064. [Google Scholar] [CrossRef]
- Wang, Z.; Jing, J. Pixel-wise fabric defect detection by CNNs without labeled training data. IEEE Access 2020, 8, 161317–161325. [Google Scholar] [CrossRef]
- Xu, X.; Chen, J.; Zhang, H.; Ng, W.W.Y. D4Net: De-deformation defect detection network for non-rigid products with large patterns. Inform. Sci. 2021, 547, 763–776. [Google Scholar] [CrossRef]
- Li, D.; Hu, J.; Wang, C.; Li, X.; She, Q.; Zhu, L.; Zhang, T.; Chen, Q. Involution: Inverting the inherence of convolution for visual recognition. In Proceedings of the 2021 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021. [Google Scholar] [CrossRef]
- Niu, Z.; Zhong, G.; Yu, H. A review on the attention mechanism of deep learning. Neurocomputing 2021, 452, 48–62. [Google Scholar] [CrossRef]
- Mnih, V.; Heess, N.; Graves, A.; Kavukcuoglu, K. Recurrent models of visual attention. Adv. Neural Inf. Process. Systems 2014, 3, 2204–2212. [Google Scholar] [CrossRef]
- Bahdanau, D.; Cho, K.; Bengio, Y. Neural machine translation by jointly learning to align and translate. arXiv 2014, arXiv:1409.0473. [Google Scholar] [CrossRef]
- Derose, J.F.; Wang, J.; Berger, M. Attention Flows: Analyzing and comparing attention mechanisms in language models. IEEE Trans. Vis. Comput. Gr. 2020, 27, 1160–1170. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.-M.; Feng, W.-Z.; Wang, H.; Chu, Q.; Chen, Q. An attention mechanism and multi-granularity-based Bi-LSTM model for Chinese Q&A system. Soft. Comput. 2019, 24, 5831–5845. [Google Scholar] [CrossRef]
- He, L.; Chan, J.C.-W.; Wang, Z. Automatic depression recognition using CNN with attention mechanism from videos. Neurocomputing 2021, 422, 165–175. [Google Scholar] [CrossRef]
- Li, Y.; Zeng, J.; Shan, S.; Chen, X. Occlusion aware facial expression recognition using CNN with attention mechanism. IEEE Trans. Image. Process. 2018, 14, 2439–2450. [Google Scholar] [CrossRef]
- Sun, W.; Zhao, H.; Jin, Z. A visual attention based ROI detection method for facial expression recognition. Neurocomputing 2018, 296, 12–22. [Google Scholar] [CrossRef]
- Zhang, Y.; Yin, Z.; Nie, L.; Huang, S. Attention based multi-layer fusion of multispectral images for pedestrian detection. IEEE Access 2020, 8, 165071–165084. [Google Scholar] [CrossRef]
- Buades, A.; Coll, B.; Morel, J.M. A non-local algorithm for image denoising. Computer Vision and Pattern Recognition. In Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA, 20–25 June 2005. [Google Scholar] [CrossRef]
- Wang, X.; Girshick, R.; Gupta, A.; He, K. Non-local neural networks. arXiv 2017, arXiv:1711.07971. [Google Scholar] [CrossRef]
- Yue, K.; Sun, M.; Yuan, Y.; Zhou, F. Compact generalized non-local network. In Proceedings of the 32nd Conference on Neural Information Processing Systems (NIPS 2018), Montréal, QC, Canada, 3–8 December 2018. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G. ImageNet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Systems 2017, 60, 84–90. [Google Scholar] [CrossRef]
- Liu, L.; Ouyang, W.; Wang, X.; Fieguth, P.; Chen, J.; Liu, X.; Pietikinen, M. Deep learning for generic object detection: A Survey. Int. J. Comput. Vision. 2019, 128, 261–318. [Google Scholar] [CrossRef]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 580–587. [Google Scholar] [CrossRef]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Region-based convolutional networks for accurate object detection and segmentation. IEEE Trans. Pattern. Anal. Mach. Intell. 2016, 38, 142–158. [Google Scholar] [CrossRef]
- Uijlings, J.R.R.; van de Sande, K.E.A.; Gevers, T.; Smeulders, A.W. Selective search for object recognition. Int. J. Comput. Vision. 2014, 104, 154–171. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans. Pattern. Anal. Mach. Intell. 2014, 37, 1904–1916. [Google Scholar] [CrossRef] [PubMed]
- Girshick, R. Fast R-CNN. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1440–1448. [Google Scholar] [CrossRef]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the2016 IEEE Conference on Computer Vision and Pat-tern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar] [CrossRef]
- Redmon, J.; Farhadi, A. YOLO9000: Better, faster, stronger. In Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, 21–26 July 2017; pp. 6517–6525. [Google Scholar] [CrossRef]
- Redmon, J.; Farhadi, A. YOLOv3: An incremental improvement. arXiv 2018, arXiv:2018.02767. [Google Scholar] [CrossRef]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. SSD: Single Shot Multibox Detector; Springer: Cham, Switzerland, 2016. [Google Scholar] [CrossRef]
- Zou, Z.; Shi, Z.; Guo, Y.; Ye, J. Object detection in 20 years: A Survey. arXiv 2019, arXiv:1905.05055. [Google Scholar] [CrossRef]
- Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal loss for dense object detection. IEEE Trans. Pattern. Anal. Mach. Intell. 2017, 42, 318–327. [Google Scholar] [CrossRef]
- Bochkovskiy, A.; Wang, C.Y.; Liao, H. YOLOv4: Optimal speed and accuracy of object detection. arXiv 2020. [Google Scholar] [CrossRef]
- Li, F.; Xiao, K.; Hu, Z.; Zhang, G. Fabric defect detection algorithm based on improved YOLOv5. Vis. Comput. 2023, 40, 2309–2324. [Google Scholar] [CrossRef]
- Kang, X. Research on fabric defect detection method based on lightweight network. J. Eng. Fibers Fabr. 2024, 19, 15589250241232153. [Google Scholar] [CrossRef]
- Zhou, Q.; Sun, H.; Chen, P.; Chen, G.; Wang, S.; Wang, H. Research on the Defect Detection Algorithm of Warp-Knitted Fabrics Based on Improved YOLOv5. Fibers Polym. 2023, 24, 2903–2919. [Google Scholar] [CrossRef]
- Lu, B.; Huang, B. A texture-aware one-stage fabric defect detection network with adaptive feature fusion and multi-task training. J. Intell. Manuf. 2024, 35, 1267–1280. [Google Scholar] [CrossRef]
Fold | ||
---|---|---|
Fold 1 | 84.2 | 52.9 |
Fold 2 | 82.6 | 51.1 |
Fold 3 | 83.2 | 54.2 |
Fold 4 | 83.9 | 53.5 |
Fold 5 | 85.5 | 51.1 |
Detector | Backbone | #Params (M) | FLOPs (G) | ||
---|---|---|---|---|---|
Faster R-CNN | ResNet50 | 41.14 | 206.68 | 85.9 | 50.5 |
Faster R-CNN | RedNet50 | 31.21 | 176.19 | 85.5 | 51.1 |
Mask R-CNN | ResNet50 | 43.76 | 258.22 | 81.1 | 38.2 |
RetinaNet | ResNet50 | 36.17 | 205.69 | 85.0 | 49.0 |
Author | Dataset | ||
---|---|---|---|
Faster R-CNN | Improved Method | ||
Feng li et al. [58] | Over 8000 | 51.4% | 65.1% |
Xuejuan kang et al. [59] | 800 | 88.9% | 81.1% |
Qihong zhou et al. [60] | 2907 | 61.3% | 65.7% |
Bingyu lu et al. [61] | 47,128 | 63.1% | 68.8% |
Ours | 6308 | 85.9% | 85.5% |
Detector | Backbone | Kernel Size | #Params (M) | FLOPs (G) | ||
---|---|---|---|---|---|---|
Faster R-CNN | RedNet50 | 3 × 3 | 30.42 | 173.31 | 75.1 | 42.6 |
Faster R-CNN | RedNet50 | 5 × 5 | 31.84 | 178.49 | 80.7 | 46.1 |
Faster R-CNN | RedNet50 | 7 × 7 | 31.21 | 176.19 | 85.5 | 51.1 |
Faster R-CNN | RedNet50 | 9 × 9 | 31.80 | 178.79 | 78.8 | 45.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ke, Z.; Yu, L.; Zhi, C.; Xue, T.; Zhang, Y. A Novel Involution-Based Lightweight Network for Fabric Defect Detection. Information 2025, 16, 340. https://doi.org/10.3390/info16050340
Ke Z, Yu L, Zhi C, Xue T, Zhang Y. A Novel Involution-Based Lightweight Network for Fabric Defect Detection. Information. 2025; 16(5):340. https://doi.org/10.3390/info16050340
Chicago/Turabian StyleKe, Zhenxia, Lingjie Yu, Chao Zhi, Tao Xue, and Yuming Zhang. 2025. "A Novel Involution-Based Lightweight Network for Fabric Defect Detection" Information 16, no. 5: 340. https://doi.org/10.3390/info16050340
APA StyleKe, Z., Yu, L., Zhi, C., Xue, T., & Zhang, Y. (2025). A Novel Involution-Based Lightweight Network for Fabric Defect Detection. Information, 16(5), 340. https://doi.org/10.3390/info16050340