From Spectrum to Image: A Novel Deep Clustering Network for Lactose-Free Milk Adulteration Detection
Abstract
:1. Introduction
2. Related Work
2.1. Feature Imageization
2.2. Autoencoder
2.3. Deep Embedded Clustering Framework
3. Method
3.1. Gramian Angular Fields
3.2. Convolution Embedding Manifold Clustering
3.2.1. Convolution Autoencoder
3.2.2. Integrating Uniform Manifold Clustering
3.2.3. Improved Adaptive Margin Loss
3.3. Framework of GAF-ConvDuc Algorithm
Algorithm 1 GAF-ConvDuc |
|
4. Results and Discussion
4.1. Data and Software
4.2. Model Performance Evaluation Metrics
4.3. Spectrum vs. Image
4.4. Ablation Study of the GAF-ConvDuc Algorithm
4.5. Model Performance Analysis
4.6. Model Complexity Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ren, Q.; Zhang, H.; Guo, H.; Jiang, L.; Tian, M.; Ren, F. Detection of cow milk adulteration in yak milk by ELISA. J. Dairy Sci. 2014, 97, 6000–6006. [Google Scholar] [CrossRef] [PubMed]
- Poonia, A.; Jha, A.; Sharma, R.; Singh, H.B.; Rai, A.K.; Sharma, N. Detection of adulteration in milk: A review. Int. J. Dairy Technol. 2017, 70, 23–42. [Google Scholar] [CrossRef]
- Tsakali, E.; Agkastra, C.; Koliaki, C.; Livanios, D.; Boutris, G.; Christopoulou, M.I.; Koulouris, S.; Koussissis, S.; Impe, J.F.M.V.; Houhoula, D. Milk Adulteration: Detection of Bovine Milk in Caprine Dairy Products by Real Time PCR. J. Food Res. 2019, 8, 52. [Google Scholar] [CrossRef]
- Harini, V.; Meher, S.; Alex, Z. A novel refractive index based-fiber optic sensor for milk adulteration detection. Opt. Mater. 2024, 154, 115810. [Google Scholar] [CrossRef]
- Feng, Y.; Zhang, Y. Rapid ATR-FTIR Principal Component Analysis of Commercial Milk. Spectrosc. Spectr. Anal. 2023, 43, 838–841. [Google Scholar]
- Huang, Y.; Guo, X.; Tang, G.; Xiong, Y.; Min, S. Quantitative Analysis of Urea Adulteration in Milk by Near-Infrared Spectroscopy. Spectrosc. Spectr. Anal. 2023, 43, 65–66. [Google Scholar]
- Wei, Y.; Li, L.; Yang, X.; Li, D.; Fu, H.; Yang, T. Near-Infrared Spectroscopy Pattern Recognition of Melamine-Adulterated Milk. China Dairy Ind. 2016, 44, 48–51. [Google Scholar]
- Farah, J.S.; Cavalcanti, R.N.; Guimarães, J.T.; Balthazar, C.F.; Coimbra, P.T.; Pimentel, T.C.; Esmerino, E.A.; Duarte, M.C.K.; Freitas, M.Q.; Granato, D.; et al. Differential scanning calorimetry coupled with machine learning technique: An effective approach to determine the milk authenticity. Food Control 2021, 121, 107585–107593. [Google Scholar] [CrossRef]
- Cai, L.; Zheng, Y.; Liu, Y.; Zhou, R.; Ma, M. Near-infrared (NIR) spectroscopy combined with chemometrics for qualitative and quantitative detection of camel milk powder adulteration. J. Food Compos. Anal. 2025, 143, 107571. [Google Scholar] [CrossRef]
- Wu, X.; Fang, Y.; Wu, B.; Liu, M. Application of Near-Infrared Spectroscopy and Fuzzy Improved Null Linear Discriminant Analysis for Rapid Discrimination of Milk Brands. Foods 2023, 12, 3929. [Google Scholar] [CrossRef]
- Yu, G.; Ma, B.; Chen, J.; Dang, F.; Li, X.; Li, C.; Wang, G. Discrimination Method of Pesticide Residues on Hami Melon Surface Based on GADF Transform and Multi-scale CNN Using Visible-Near Infrared Spectroscopy. Spectrosc. Spectr. Anal. 2021, 41, 3701–3707. [Google Scholar]
- Neto, H.A.; Tavares, W.L.; Ribeiro, D.C.; Alves, R.C.; Fonseca, L.M.; Campos, S.V. On the utilization of deep and ensemble learning to detect milk adulteration. BioData Min. 2019, 12, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Chu, C.; Wang, H.; Luo, X.; Fan, Y.; Nan, L.; Du, C.; Gao, D.; Wen, P.; Wang, D.; Yang, Z.; et al. Rapid detection and quantification of melamine, urea, sucrose, water, and milk powder adulteration in pasteurized milk using Fourier transform infrared (FTIR) spectroscopy coupled with modern statistical machine learning algorithms. Heliyon 2024, 10, e32720. [Google Scholar] [CrossRef] [PubMed]
- Rashvand, M.; Paterna, G.; Laveglia, S.; Zhang, H.; Shenfield, A.; Gioia, T.; Altieri, G.; Renzo, G.C.D.; Genovese, F. Quality detection of common beans flour using hyperspectral imaging technology: Potential of machine learning and deep learning. J. Food Compos. Anal. 2025, 142, 107424. [Google Scholar] [CrossRef]
- Ninh, D.K.; Phan, K.D.; Vo, C.T.; Dang, M.N.; Thanh, N.L. Classification of Histamine Content in Fish Using Near-Infrared Spectroscopy and Machine Learning Techniques. Information 2024, 15, 528. [Google Scholar] [CrossRef]
- Zain, S.M.; Behkami, S.; Bakirdere, S.; Koki, I.B. Milk authentication and discrimination via metal content clustering—A case of comparing milk from Malaysia and selected countries of the world. Food Control 2016, 66, 306–314. [Google Scholar] [CrossRef]
- Crase, S.; Hall, B.; Thennadil, S.N. Cluster Analysis for IR and NIR Spectroscopy: Current Practices to Future Perspectives. Comput. Mater. Contin. 2021, 69, 1945–1965. [Google Scholar] [CrossRef]
- Buoio, E.; Colombo, V.; Ighina, E.; Tangorra, F. Rapid Classification of Milk Using a Cost-Effective Near Infrared Spectroscopy Device and Variable Cluster-Support Vector Machine (VC-SVM) Hybrid Models. Foods 2024, 13, 3279. [Google Scholar] [CrossRef]
- Guan, C.; Liang, S.; Chen, J.; Wang, Z. Research on Split-Type LIBS Detection Method for Soil Heavy Metals Based on Clustering Analysis. Spectrosc. Spectr. Anal. 2024, 44, 2506–2513. [Google Scholar]
- Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back-propagating errors. Nature 1986, 323, 533–536. [Google Scholar] [CrossRef]
- Kingma, D.P.; Welling, M. Auto-encoding variational bayes. arXiv 2013, arXiv:1312.6114. [Google Scholar] [CrossRef]
- Xie, J.; Girshick, R.B.; Farhadi, A. Unsupervised Deep Embedding for Clustering Analysis. arXiv 2015, arXiv:1511.06335. [Google Scholar] [CrossRef]
- Jo, S.; Sohng, W.; Lee, H.; Chung, H. Evaluation of an autoencoder as a feature extraction tool for near-infrared spectroscopic discriminant analysis. Food Chem. 2020, 331, 127332. [Google Scholar] [CrossRef] [PubMed]
- Hu, D.; Niu, H.; Wang, G.; Karimi, H.R.; Liu, X.; Zhai, Y. Planetary gearbox fault classification based on tooth root strain and GAF pseudo images. ISA Trans. 2024, 153, 11–15. [Google Scholar] [CrossRef]
- Lei, C.; Wang, L.; Zhang, Q.; Li, X.; Feng, R.; Li, J. Rolling bearing fault diagnosis method based on MTF and PC-MDCNN. J. Mech. Sci. Technol. 2024, 38, 3315–3325. [Google Scholar] [CrossRef]
- Zhao, C.; Yin, Z.; Zhang, W.; Guo, P.; Ma, Y. Identification of apple watercore based on ConvNeXt and Vis/NIR spectra. Infrared Phys. Technol. 2024, 142, 105575. [Google Scholar] [CrossRef]
- Liu, Q.; Zhang, J.; Lin, S.; Yu, P.; Liu, Z.; Guan, X.; Huang, J. Discriminating moisture content in Fraxinus mandshurica Rupr logs using fusion of 2D GADF spectral images and 1D NIR spectra. Microchem. J. 2025, 208, 112394. [Google Scholar] [CrossRef]
- Deng, J.; Chen, Z.; Jiang, H.; Chen, Q. High-precision detection of dibutyl hydroxytoluene in edible oil via convolutional autoencoder compressed Fourier-transform near-infrared spectroscopy. Food Control 2025, 167, 110808. [Google Scholar] [CrossRef]
- Yuan, Z.; Dong, D. Near-Infrared Spectroscopy Measurement with Contrasted Variational Autoencoders and Its Application in Liquid Sample Detection. Spectrosc. Spectr. Anal. 2022, 42, 3637–3641. [Google Scholar]
- Du, S.; Han, W.; Kang, Z.; Liao, Y.; Li, Z. A Convolution Auto-Encoders Network for Aero-Engine Hot Jet FT-IR Spectrum Feature Extraction and Classification. Aerospace 2024, 11, 933. [Google Scholar] [CrossRef]
- Bai, Y.; Sun, X.; Ji, Y.; Fu, W.; Zhang, J. Two-stage multi-dimensional convolutional stacked autoencoder network model for hyperspectral images classification. Multimed. Tools Appl. 2023, 83, 23489–23508. [Google Scholar] [CrossRef]
- Li, M.; Cao, C.; Li, C.; Yang, S. Deep Embedding Clustering Based on Residual Autoencoder. Neural Process. Lett. 2024, 56, 127. [Google Scholar] [CrossRef]
- Bai, Y.; Zhou, Y.; Liu, J. Clustering Analysis of Daily Load Curves Based on Deep Convolutional Embedded Clustering. Power Syst. Technol. 2022, 46, 2104–2113. [Google Scholar] [CrossRef]
- Duan, L.; Ma, S.; Aggarwal, C. Improving spectral clustering with deep embedding, cluster estimation and metric learning. Knowl. Inf. Syst. 2021, 63, 675–694. [Google Scholar] [CrossRef]
- Feng, L.; Wang, C.; Wu, T.; Zhang, J. Dimensionality Reduction Method Based on Manifold Learning with Variational Autoencoder. J. Comput.-Aided Des. Comput. Graph. 2025, 37, 439–445. [Google Scholar]
- Nie, P.; Xiao, H.; Yu, C. Improved Model of YOLOv5 Prediction Bounding Box Clustering Adaptive Loss Weight. Control Decis. 2023, 38, 645–653. [Google Scholar] [CrossRef]
- Li, Q.; Zou, Y.; Long, G.H.; Wu, W. Ferromagnetic resonance over-voltage identification method based on Gram angle field. Energy Rep. 2022, 8, 546–558. [Google Scholar] [CrossRef]
- Hu, Y.; Luo, P.; Liu, H.; Shi, P.; Jiang, N.; Deng, Q.; Liu, S.; Zhou, J.; Han, H. Open-circuit fault diagnosis method of inverter in wind turbine yaw system based on GADF image coding. Comput. Electr. Eng. 2024, 117, 109252–109263. [Google Scholar] [CrossRef]
- Cheng, X.; Zhang, Z.; Bao, Y.; Zheng, H. Identification of High-Risk Scenarios for Cascading Failures in New Energy Power Grids Based on Deep Embedding Clustering Algorithms. Energy Eng. 2023, 120, 2517–2529. [Google Scholar] [CrossRef]
- Becht, E.; Mcinnes, L.; Healy, J.; Dutertre, C.A.; Kwok, I.W.H.; Ng, L.G.; Ginhoux, F.; Newell, E.W. Dimensionality reduction for visualizing single-cell data using UMAP. Nat. Biotechnol. 2018, 37, 38–43. [Google Scholar] [CrossRef]
- Ireneusz, S.; Anna, S.C.; Marek, F.; Paulina, J. Dimensionality reduction by UMAP for visualizing and aiding in classification of imaging flow cytometry data. iScience 2022, 25, 105142. [Google Scholar] [CrossRef]
- Zhao, H.; Yang, Y. The research on two phase pickup vehicle routing based on the K-means++ and genetic algorithms. Int. J. Web Eng. Technol. 2020, 15, 32–52. [Google Scholar] [CrossRef]
- Wu, Z.; Fang, G.; Wang, Y.; Xu, R. An End-to-end Deep Clustering Method with Consistency and Complementarity Attention Mechanism for Multisensor Fault Diagnosis. Appl. Soft Comput. 2024, 158, 111594. [Google Scholar] [CrossRef]
- Ji, S.; Zhu, H.; Wang, P.; Ling, X. Image clustering algorithm using superpixel segmentation and non-symmetric Gaussian–Cauchy mixture model. IET Image Process. 2020, 14, 4132–4143. [Google Scholar] [CrossRef]
- Kouser, K.; Priyam, A.; Gupta, M.; Kumar, S.; Bhattacharjee, V. Genetic Algorithm-Based Optimization of Clustering Algorithms for the Healthy Aging Dataset. Appl. Sci. 2024, 14, 5530. [Google Scholar] [CrossRef]
- Chen, B.; Deng, W. Deep embedding learning with adaptive large margin N-pair loss for image retrieval and clustering. Pattern Recognit. 2019, 93, 353–364. [Google Scholar] [CrossRef]
- Abdallah, T.; Jrad, N.; Hajjar, S.E.; Abdallah, F.; Humeau-Heurtier, A.; Howayek, E.E.; Van Bogaert, P. Deep Clustering for Epileptic Seizure Detection. IEEE Trans. Biomed. Eng. 2025, 72, 480–492. [Google Scholar] [CrossRef]
- Warrens, M.J.; van der Hoef, H. Understanding the Adjusted Rand Index and Other Partition Comparison Indices Based on Counting Object Pairs. J. Classif. 2022, 39, 487–509. [Google Scholar] [CrossRef]
- Min, Y.; Hao, D.; Wang, G.; He, Y.; He, J. Reactor voiceprint clustering method based on the deep adaptive K-means++ algorithm. Power Syst. Prot. Control 2025, 53, 1–13. [Google Scholar] [CrossRef]
Method | ACC (%) | NMI | ARI | SC |
---|---|---|---|---|
K-means | 67.2 | 0.696 | 0.543 | 0.109 |
w GAF, w/o Conv | 76.7 | 0.822 | 0.651 | 0.449 |
w/o GAF, w Conv | 81.7 | 0.840 | 0.753 | 0.491 |
w GAF, w Conv | 88.9 | 0.911 | 0.836 | 0.571 |
Method | Size | Dim |
---|---|---|
GASF, GADF | 20, 40, 80 | 16, 32, 64 |
Method | ACC (%) | NMI | ARI | SC |
---|---|---|---|---|
K-means | 67.2 | 0.696 | 0.543 | 0.109 |
GAF-Kmeans | 76.7 | 0.822 | 0.651 | 0.449 |
GAF-SPC | 72.2 | 0.820 | 0.642 | 0.315 |
MTF-Kmeans | 61.7 | 0.629 | 0.430 | 0.227 |
MTF-SPC | 55.0 | 0.608 | 0.371 | 0.230 |
VAE | 81.7 | 0.860 | 0.750 | 0.470 |
GAF-DEC | 85.6 | 0.910 | 0.830 | 0.570 |
MTF-DEC | 78.9 | 0.831 | 0.705 | 0.430 |
GAF-ConvDuc | 88.9 | 0.911 | 0.836 | 0.571 |
Method | ACC (%) | MFLOPs | Train Time (s) | Test Time (s) |
---|---|---|---|---|
K-means | 67.2 | / | 1.28 | 0.13 |
GAF-Kmeans | 76.7 | / | 6.04 | 1.39 |
VAE | 81.7 | 5.27 | 20.36 | 1.74 |
GAF-DEC | 85.6 | 17.22 | 41.64 | 3.25 |
GAF-ConvDuc | 88.9 | 19.18 | 43.82 | 3.49 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, C.; Ding, S.; He, Y. From Spectrum to Image: A Novel Deep Clustering Network for Lactose-Free Milk Adulteration Detection. Information 2025, 16, 498. https://doi.org/10.3390/info16060498
Zhang C, Ding S, He Y. From Spectrum to Image: A Novel Deep Clustering Network for Lactose-Free Milk Adulteration Detection. Information. 2025; 16(6):498. https://doi.org/10.3390/info16060498
Chicago/Turabian StyleZhang, Chong, Shankui Ding, and Ying He. 2025. "From Spectrum to Image: A Novel Deep Clustering Network for Lactose-Free Milk Adulteration Detection" Information 16, no. 6: 498. https://doi.org/10.3390/info16060498
APA StyleZhang, C., Ding, S., & He, Y. (2025). From Spectrum to Image: A Novel Deep Clustering Network for Lactose-Free Milk Adulteration Detection. Information, 16(6), 498. https://doi.org/10.3390/info16060498