A Non-Probabilistic Model of Relativised Predictability in Physics
Abstract
:1. Introduction
2. Relativised Model of Predictability
- (1)
- The specification of an experiment E for which the outcome must be predicted.
- (2)
- A predicting agent or “predictor”, which must predict the outcome of the experiment. We model this as an effectively computable function, a choice that we will justify further.
- (3)
- An extractor ξ, which is a physical device the agent uses to (uniformly) extract information pertinent to prediction that may be outside the scope of the experimental specification E. This could be, for example, the time, the measurement of some parameter, the iteration of the experiment, etc.
- (4)
- A prediction made by the agent with access to a set Ξ of extractors. The set of extractors Ξ provides the relativisation of the model.
2.1. Predictability Model
- (1)
- contains k correct predictions,
- (2)
- contains no incorrect prediction; that is, the remaining predictions are withheld.
2.2. Relativisation
2.2.1. Specifying the Set of Extractors Ξ
2.2.2. A Detailed Example
3. Unpredictability in Quantum Mechanics
3.1. Quantum Value Indefiniteness
3.2. Complementarity
3.2.1. Quantum Complementarity
3.2.2. Complementarity and Value Definiteness: A Toy Configuration
3.3. Complementarity and Unpredictability
4. Unpredictability, Computability and Complementarity
Incomputability and Complementarity
5. Summary
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Zeilinger, A. The message of the quantum. Nature 2005, 438, 743. [Google Scholar] [CrossRef] [PubMed]
- Fitzsimons, J.F.; Rieffel, E.G.; Scarani, V. Quantum frontier. In Computation for Humanity: Information Technology to Advance Society; Zander, J., Mosterman, P.J., Eds.; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar]
- Stefanov, A.; Gisin, N.; Guinnard, O.; Guinnard, L.; Zbinden, H. Optical quantum random number generator. J. Mod. Opt. 2000, 47, 595–598. [Google Scholar] [CrossRef]
- Kochen, S.; Specker, E.P. The problem of hidden variables in quantum mechanics. J. Math. Mech. (Now Indiana Univ. Math. J.) 1967, 17, 59–87. [Google Scholar] [CrossRef]
- Bell, J.S. On the problem of hidden variables in quantum mechanics. Rev. Mod. Phys. 1966, 38, 447–452. [Google Scholar] [CrossRef]
- Berta, M.; Christandl, M.; Colbeck, R.; Renes, J.M.; Renner, R. The uncertainty principle in the presence of quantum memory. Nat. Phys. 2010, 6, 659–662. [Google Scholar] [CrossRef]
- Dynes, J.F.; Yuan, Z.L.; Sharpe, A.W.; Shields, A.J. A high speed, postprocessing free, quantum random number generator. Appl. Phys. Lett. 2008, 93, 031109. [Google Scholar] [CrossRef]
- Abbott, A.A.; Calude, C.S.; Svozil, K. On the unpredictability of individual quantum measurement outcomes. In Fields of Logic and Computation II—Essays Dedicated to Yuri Gurevich on the Occasion of His 75th Birthday; Beklemishev, L.D., Blass, A., Dershowitz, N., Finkbeiner, B., Schulte, W., Eds.; Springer: Cham, Switzerland, 2015; Volume 9300, pp. 69–86. [Google Scholar]
- Popper, K.R. Indeterminism in quantum physics and in classical physics I. Br. J. Philos. Sci. 1950, 1, 117–133. [Google Scholar] [CrossRef]
- Wolpert, D.H. Physical limits of inference. Phys. D 2008, 237, 1257–1281. [Google Scholar] [CrossRef]
- Eagle, A. Randomness is unpredictability. Br. J. Philos. Sci. 2005, 56, 749–790. [Google Scholar] [CrossRef]
- Werndl, C. What are the new implications of chaos for unpredictability? Br. J. Philos. Sci. 2009, 60, 195–220. [Google Scholar] [CrossRef]
- Einstein, A.; Podolsky, B.; Rosen, N. Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 1935, 47, 777–780. [Google Scholar] [CrossRef]
- Copeland, B.J. The Church-Turing Thesis. In The Stanford Encyclopedia of Philosophy, Fall 2008 ed.; Zalta, E.N., Ed.; The Metaphysics Research Lab, Stanford University: Stanford, CA, USA, 2008. [Google Scholar]
- Longo, G.; Paul, T. The mathematics of computing between logic and physics. In Computability in Context: Computation and Logic in the Real World; Cooper, S., Sorbi, A., Eds.; Imperial College Press/World Scientific: London, UK, 2008; Chapter 7; pp. 243–274. [Google Scholar]
- Paul, T. Semiclassical analysis and sensitivity to initial conditions. Inf. Comput. 2009, 207, 660–669. [Google Scholar] [CrossRef]
- Devaney, R.L. An Introduction to Chaotic Dynamical Systems, 2nd ed.; Addison-Wesley: Redwood, CA, USA, 1989. [Google Scholar]
- Pironio, S.; Acín, A.; Massar, S.; Boyer de la Giroday, A.; Matsukevich, D.N.; Maunz, P.; Olmschenk, S.; Hayes, D.; Luo, L.; Manning, T.A.; et al. Random numbers certified by Bell’s theorem. Nature 2010, 464, 1021–1024. [Google Scholar] [CrossRef] [PubMed]
- Gisin, N.; Ribordy, G.; Tittel, W.; Zbinden, H. Quantum cryptography. Rev. Mod. Phys. 2002, 74, 145–195. [Google Scholar] [CrossRef]
- Zeilinger, A. A Foundational principle for quantum mechanics. Found. Phys. 1999, 29, 631–643. [Google Scholar] [CrossRef]
- Abbott, A.A.; Calude, C.S.; Conder, J.; Svozil, K. Strong Kochen–Specker theorem and incomputability of quantum randomness. Phys. Rev. A 2012, 86, 062109. [Google Scholar] [CrossRef]
- Abbott, A.A.; Calude, C.S.; Svozil, K. A variant of the Kochen–Specker theorem localising value indefiniteness. J. Math. Phys. 2015, 56, 102201. [Google Scholar] [CrossRef]
- Pitowsky, I. Infinite and finite Gleason’s theorems and the logic of indeterminacy. J. Math. Phys. 1998, 39, 218–228. [Google Scholar] [CrossRef]
- Fritz, T. Nonlocality with less complementarity. Phys. Rev. A 2012, 85, 022102. [Google Scholar] [CrossRef]
- Wright, R. Generalized urn models. Found. Phys. 1990, 20, 881–903. [Google Scholar] [CrossRef]
- Svozil, K. Logical equivalence between generalized urn models and finite automata. Int. J. Theor. Phys. 2005, 44, 745–754. [Google Scholar] [CrossRef]
- Pauli, W. Die allgemeinen Prinzipien der Wellenmechanik. In Handbuch der Physik. Band V, Teil 1. Prinzipien der Quantentheorie I; Flügge, S., Ed.; Springer: Berlin, Germany, 1958; pp. 1–168. (in German) [Google Scholar]
- Heisenberg, W. Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Zeitschrift für Physik 1927, 43, 172–198. (in German). [Google Scholar] [CrossRef]
- Busch, P.; Lahti, P.; Werner, R.F. Measurement uncertainty relations. J. Math. Phys. 2014, 55, 042111. [Google Scholar] [CrossRef]
- Cowen, R. Proof mooted for quantum uncertainty. Nat. News 2013, 498, 419–420. [Google Scholar] [CrossRef] [PubMed]
- Rozema, L.A.; Darabi, A.; Mahler, D.H.; Hayat, A.; Soudagar, Y.; Steinberg, A.M. Violation of Heisenberg’s measurement-disturbance relationship by weak measurements. Phys. Rev. Lett. 2012, 109, 100404. [Google Scholar] [CrossRef] [PubMed]
- Robertson, H.P. The uncertainty principle. Phys. Rev. 1929, 34, 163–164. [Google Scholar] [CrossRef]
- Popper, K.R. Quantum Theory and the Schism in Physics; Routledge: London, UK, 1992. [Google Scholar]
- Gold, E.M. Limiting recursion. J. Symb. Log. 1965, 30, 28–48. [Google Scholar] [CrossRef]
- Bohm, D. A suggested interpretation of the quantum theory in terms of “hidden” variables. I. Phys. Rev. 1952, 85, 166–179. [Google Scholar] [CrossRef]
- Bohm, D. A suggested interpretation of the quantum theory in terms of “hidden” variables. II. Phys. Rev. 1952, 85, 180–193. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abbott, A.A.; Calude, C.S.; Svozil, K. A Non-Probabilistic Model of Relativised Predictability in Physics. Information 2015, 6, 773-789. https://doi.org/10.3390/info6040773
Abbott AA, Calude CS, Svozil K. A Non-Probabilistic Model of Relativised Predictability in Physics. Information. 2015; 6(4):773-789. https://doi.org/10.3390/info6040773
Chicago/Turabian StyleAbbott, Alastair A., Cristian S. Calude, and Karl Svozil. 2015. "A Non-Probabilistic Model of Relativised Predictability in Physics" Information 6, no. 4: 773-789. https://doi.org/10.3390/info6040773
APA StyleAbbott, A. A., Calude, C. S., & Svozil, K. (2015). A Non-Probabilistic Model of Relativised Predictability in Physics. Information, 6(4), 773-789. https://doi.org/10.3390/info6040773