Acknowledgments
This work is supported by the Jaypee University of Information Technology.
Author Contributions
Suman Saha proposed the algorithm and prepared the manuscript. Satya P. Ghrera was in charge of the overall research and critical revision of the paper. Both authors have read and approved the final manuscript.
Conflicts of Interest
The authors declare no conflict of interest.
References
- Uhlmann, J.K. Satisfying general proximity/similarity queries with metric trees. Inf. Proc. Lett. 1991, 40, 175–179. [Google Scholar] [CrossRef]
- Ruiz, E.V. An algorithm for finding nearest neighbours in (approximately) constant average time. Pattern Recognit. Lett. 1986, 4, 145–157. [Google Scholar] [CrossRef]
- Panigrahy, R. Entropy based nearest neighbor search in high dimensions. In Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithm (SODA ’06), Miami, FL, USA, 22–24 January 2006.
- Indyk, P.; Motwani, R. Approximate nearest neighbors: Towards removing the curse of dimensionality. In Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing (STOC ’98), Dallas, TX, USA, 23–26 May 1998.
- Gionis, A.; Indyk, P.; Motwani, R. Similarity search in high dimensions via hashing. In Proceedings of the 25th International Conference on Very Large Data Bases (VLDB ’99), Edinburgh, UK, 7–10 September 1999.
- Dasgupta, S.; Freund, Y. Random projection trees and low dimensional manifolds. In Proceedings of the Fortieth Annual ACM Symposium on Theory of Computing (STOC ’08), Victoria, BC, Canada, 17–20 May 2008.
- Akoglu, L.; Khandekar, R.; Kumar, V.; Parthasarathy, S.; Rajan, D.; Wu, K.L. Fast nearest neighbor search on large time-evolving graphs. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, Nancy, France, 15–19 September 2014.
- Liu, T.; Moore, A.W.; Gray, E.; Yang, K. An Investigation of Practical Approximate Nearest Neighbor Algorithms; MIT Press: Cambridge, MA, USA, 2004; pp. 825–832. [Google Scholar]
- Weiss, R.; Jacobson, E. A method for the analysis of complex organisations. Am. Sociol. Rev. 1955, 20, 661–668. [Google Scholar] [CrossRef]
- Schaeffer, S.E. Graph clustering. Comput. Sci. Rev. 2007, 1, 27–64. [Google Scholar] [CrossRef]
- Fortunato, S. Community detection in graphs. Phys. Rep. 2010, 486, 75–174. [Google Scholar] [CrossRef]
- Newman, M.E.J.; Girvan, M. Finding and evaluating community structure in networks. Phys. Rev. E 2004, 69, 026113. [Google Scholar] [CrossRef] [PubMed]
- Luxburg, U. A tutorial on spectral clustering. Stat. Comput. 2007, 17, 395–416. [Google Scholar] [CrossRef]
- Pons, P.; Latapy, M. Computing communities in large networks using random walks. J. Graph Algorithms Appl. 2004, 10, 284–293. [Google Scholar]
- Duch, J.; Arenas, A. Community detection in complex networks using Extremal Optimization. Phys. Rev. E 2005, 72, 027104. [Google Scholar] [CrossRef] [PubMed]
- Chakrabarti, D. AutoPart: Parameter-Free Graph Partitioning and Outlier Detection. In Knowledge Discovery in Databases: PKDD 2004; Boulicaut, J.F., Esposito, F., Giannotti, F., Pedreschi, D., Eds.; Springer: Berlin/Heidelberg, Germany, 2004; Volume 3202, pp. 112–124. [Google Scholar]
- Macropol, K.; Singh, A.K. Scalable discovery of best clusters on large graphs. Proc. VLDB Endow. 2010, 3, 693–702. [Google Scholar] [CrossRef]
- Levorato, V.; Petermann, C. Detection of communities in directed networks based on strongly p-connected components. In Proceedings of the 2011 International Conference on Computational Aspects of Social Networks (CASoN), Salamanca, Spain, 19–21 October 2011; pp. 211–216.
- Brandes, U.; Gaertler, M.; Wagner, D. Experiments on Graph Clustering Algorithms. In Algorithms - ESA 2003; Battista, G.D., Zwick, U., Eds.; Springer: Berlin/Heidelberg, Germany, 2003; Volume 2832, pp. 568–579. [Google Scholar]
- Bullmore, E.; Sporns, O. Complex brain networks: Graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 2009, 10, 186–198. [Google Scholar] [CrossRef] [PubMed]
- Saha, S.; Ghrera, S.P. Network community detection on metric space. Algorithms 2015, 8, 680–696. [Google Scholar] [CrossRef]
- Freeman, L.C. Centrality in social networks conceptual clarification. Soc. Netw. 1978, 1, 215–239. [Google Scholar] [CrossRef]
- Carrington, P.J.; Scott, J.; Wasserman, S. (Eds.) Models and Methods in Social Network Analysis; Cambridge University Press: Cambridge, UK, 2005.
- Newman, M. The structure and function of complex networks. SIAM Rev. 2003, 45, 167–256. [Google Scholar] [CrossRef]
- Radicchi, F.; Castellano, C.; Cecconi, F.; Loreto, V.; Parisi, D. Defining and identifying communities in networks. Proc. Natl. Acad. Sci. USA 2004, 101, 2658–2663. [Google Scholar] [CrossRef] [PubMed]
- Ciaccia, P.; Patella, M.; Zezula, P. M-tree: An efficient access method for similarity search in metric spaces. In Proceedings of the 23rd International Conference on Very Large Data Bases (VLDB’97), Athens, Greece, 25–29 August 1997.
- Ciaccia, P.; Patella, M.; Zezula, P. A cost model for similarity queries in metric spaces. In Proceedings of the 16th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems (PODS ’97), Seattle, WA, USA, 1–4 June 1998.
- Motwani, R.; Naor, A.; Panigrahy, R. Lower Bounds on Locality Sensitive Hashing. SIAM J. Discret. Math. 2007, 21, 930–935. [Google Scholar] [CrossRef]
- Paulevé, L.; Jégou, H.; Amsaleg, L. Locality sensitive hashing: A comparison of hash function types and querying mechanisms. Pattern Recognit. Lett. 2010, 31, 1348–1358. [Google Scholar] [CrossRef] [Green Version]
- Joly, A.; Buisson, O. A posteriori multi-probe locality sensitive hashing. In Proceedings of the 16th ACM International Conference on Multimedia, Vancouver, BC, Canada, 27–31 October 2008; pp. 209–218.
- Datar, M.; Immorlica, N.; Indyk, P.; Mirrokni, V.S. Locality-sensitive hashing scheme based on p-stable distributions. In Proceedings of the Twentieth Annual Symposium on Computational Geometry (SCG ’04), Brooklyn, NY, USA, 9–11 June 2004.
- Andoni, A.; Indyk, P. Near-optimal Hashing Algorithms for Approximate Nearest Neighbor in High Dimensions. Commun. ACM 2008, 51, 117–122. [Google Scholar] [CrossRef]
- Charikar, M.S. Similarity Estimation Techniques from Rounding Algorithms. In Proceedings of the Thiry-fourth Annual ACM Symposium on Theory of Computing (STOC ’02), Montreal, QC, Canada, 19–21 May 2002.
- Indyk, P. A Sublinear Time Approximation Scheme for Clustering in Metric Spaces. In Proceedings of the 40th Annual Symposium on Foundations of Computer Science, New York, NY, USA, 17–19 October 1999; pp. 154–159.
- Leskovec, J.; Lang, K.J.; Mahoney, M.W. Empirical comparison of algorithms for network community detection. In Proceedings of the 19th International Conference on World Wide Web, Raleigh, NC, USA, 26–30 April 2010.
- Yang, J.; Leskovec, J. Defining and Evaluating Network Communities Based on Ground-Truth. In Proceedings of the ACM SIGKDD Workshop on Mining Data Semantics, Beijing, China, 12–16 August 2012.
- Zarei, M.; Samani, K.A.; Omidi, G.R. Complex eigenvectors of network matrices give better insight into the community structure. J. Stat. Mech. Theory Exp. 2009, 2009, P10018. [Google Scholar] [CrossRef]
- Pan, G.; Zhang, W.; Wu, Z.; Li, S. Online community detection for large complex networks. PLoS ONE 2014, 9, e102799. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.; Cunningham, P. Community detection: Effective evaluation on large social networks. J. Complex Netw. 2014, 2, 19–37. [Google Scholar] [CrossRef]
- Aldecoa, R.; Marin, I. Exploring the limits of community detection strategies in complex networks. Sci. Rep. 2013, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Meo, P.; Ferrara, E.; Fiumara, G.; Provetti, A. Mixing local and global information for community detection in large networks. J. Comput. Syst. Sci. 2014, 80, 72–87. [Google Scholar] [CrossRef]
- De Meo, P.; Nocera, A.; Terracina, G.; Ursino, D. Recommendation of similar users, resources and social networks in a social internetworking scenario. Inf. Sci. 2011, 181, 1285–1305. [Google Scholar] [CrossRef]
- Becker, H.; Naaman, M.; Gravano, L. Learning similarity metrics for event identification in social media. In Proceedings of the Third ACM International Conference on Web Search and Data Mining (WSDM ’10), New York, NY, USA, 3–6 February 2010.
- Van Dongen, S. A Cluster Algorithm For Graphs; Technical Report INS-R 0010; CWI: Amsterdam, The Netherlands, 2000. [Google Scholar]
- Eckmann, J.P.; Moses, E. Curvature of co-links uncovers hidden thematic layers in the World Wide Web. Proc. Natl. Acad. Sci. USA 2002, 99, 5825–5829. [Google Scholar] [CrossRef] [PubMed]
- Girvan, M.; Newman, M.E.J. Community structure in social and biological networks. Proc. Natl. Acad. Sci. USA 2002, 99, 7821–7826. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Lipowsky, R. Network brownian motion: A new method to measure vertex-vertex proximity and to identify communities and subcommunities. In Computational Science - ICCS 2004; Springer: Berlin/Heidelberg, Germany, 2004; Volume 3038, pp. 1062–1069. [Google Scholar]
- Reichardt, J.; Bornholdt, S. Detecting fuzzy community structures in complex networks with a Potts model. Phys. Rev. Lett. 2004, 93, 218701. [Google Scholar] [CrossRef] [PubMed]
- Clauset, A.; Newman, M.E.J.; Moore, C. Finding community structure in very large networks. Phys. Rev. E 2004. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Huberman, B. Finding communities in linear time: A physics approach. Eur. Phys. J. B 2004, 38, 331–338. [Google Scholar] [CrossRef]
- Fortunato, S.; Latora, V.; Marchiori, M. Method to find community structures based on information centrality. Phys. Rev. E 2004, 70, 056104. [Google Scholar] [CrossRef] [PubMed]
- Donetti, L.; Muñoz, M.A. Detecting network communities: A new systematic and efficient algorithm. J. Stat. Mech. Theory Exp. 2004, 2004, P10012. [Google Scholar] [CrossRef]
- Guimera, R.; Amaral, L.A.N. Functional cartography of complex metabolic networks. Nature 2005, 433, 895–900. [Google Scholar] [CrossRef] [PubMed]
- Capocci, A.; Servedio, V.D.P.; Caldarelli, G.; Colaiori, F. Detecting communities in large networks. Physica A 2004, 352, 669–676. [Google Scholar] [CrossRef]
- Bagrow, J.P.; Bollt, E.M. Local method for detecting communities. Phys. Rev. E 2005, 72, 046108. [Google Scholar] [CrossRef] [PubMed]
- Palla, G.; Derenyi, I.; Farkas, I.; Vicsek, T. Uncovering the overlapping community structure of complex networks in nature and society. Nature 2005, 435, 814–818. [Google Scholar] [CrossRef] [PubMed]
- Raghavan, U.N.; Albert, R.; Kumara, S. Near linear time algorithm to detect community structures in large-scale networks. Phys. Rev. E 2007, 76, 036106. [Google Scholar] [CrossRef] [PubMed]
- Rosvall, M.; Bergstrom, C.T. Maps of random walks on complex networks reveal community structure. Proc. Natl. Acad. Sci. 2008, 105, 1118–1123. [Google Scholar] [CrossRef] [PubMed]
- Ronhovde, P.; Nussinov, Z. Multiresolution community detection for megascale networks by information-based replica correlations. Phys. Rev. E 2009, 80, 016109. [Google Scholar] [CrossRef] [PubMed]
- Jin, F.; Khandpur, R.P.; Self, N.; Dougherty, E.; Guo, S.; Chen, F.; Prakash, B.A.; Ramakrishnan, N. Modeling mass protest adoption in social network communities using geometric brownian motion. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD ’14), New York, NY, USA, 24–27 August 2014.
Table 1.
Algorithms for network community detection and their complexities.
Author | Reference | Category | Order |
---|
Van Dongen | (Graph clustering, 2000 [44]) | GT | , parameter |
Eckmann & Moses | (Curvature, 2002 [45]) | GT | |
Girvan & Newman | (Modularity, 2002 [46]) | SDP | |
Zhou & Lipowsky | (Vertex Proximity, 2004 [47]) | GT | |
Reichardt & Bornholdt | (spinglass, 2004 [48]) | SDP | parameter dependent |
Clauset et al. | (fast greedy, 2004 [49]) | SDP | |
Newman & Girvan | (eigenvector, 2004 [12]) | SP | |
Wu & Huberman | (linear time, 2004 [50]) | GT | |
Fortunato et al. | (infocentrality, 2004 [51]) | SDP | |
Radicchi et al. | (Radicchi et al. 2004 [25]) | SP | |
Donetti & Munoz | (Donetti and Munoz, 2004 [52]) | SDP | |
Guimera et al. | (Simulated Annealing, 2004 [53]) | SDP | parameter dependent |
Capocci et al. | (Capocci et al. 2004 [54]) | SP | |
Latapy & Pons | (walktrap, 2004 [14]) | SP | |
Duch & Arenas | (Extremal Optimization, 2005 [15]) | GT | |
Bagrow & Bollt | (Local method, 2005 [55]) | SDP | |
Palla et al. | (overlapping community, 2005 [56]) | GT | |
Raghavan et al. | (label propagation, 2007 [57]) | GT | |
Rosvall & Bergstrom | (Infomap, 2008 [58]) | SP | |
Ronhovde & Nussinov | (Multiresolution community, 2009 [59]) | GT | , |
De Meo et al. | (Mixing information, 2014 [41]) | SDP | |
Jin et al. | (Geometric Brownian motion, 2014 [60]) | SDP | |
Table 2.
Complex network datasets and values of their parameters.
Name | Type | # Nodes | # Edges | Diameter | k |
---|
DBLP | U | 317,080 | 1,049,866 | 8 | 268 |
Arxiv-AstroPh | U | 18,772 | 396,160 | 5 | 23 |
web-Stanford | D | 281,903 | 2,312,497 | 9.7 | 69 |
Facebook | U | 4039 | 88,234 | 4.7 | 164 |
Gplus | D | 107,614 | 13,673,453 | 3 | 457 |
Twitter | D | 81,306 | 1,768,149 | 4.5 | 213 |
Epinions1 | D | 75,879 | 508,837 | 5 | 128 |
LiveJournal1 | D | 4,847,571 | 68,993,773 | 6.5 | 117 |
Orkut | U | 3,072,441 | 117,185,083 | 4.8 | 756 |
Youtube | U | 1,134,890 | 2,987,624 | 6.5 | 811 |
Pokec | D | 1,632,803 | 30,622,564 | 5.2 | 246 |
Slashdot0811 | D | 77,360 | 905,468 | 4.7 | 81 |
Slashdot0922 | D | 82,168 | 948,464 | 4.7 | 87 |
Friendster | U | 65,608,366 | 1,806,067,135 | 5.8 | 833 |
Amazon0601 | D | 403,394 | 3,387,388 | 7.6 | 92 |
P2P-Gnutella31 | D | 62,586 | 147,892 | 6.5 | 35 |
RoadNet-CA | U | 1,965,206 | 5,533,214 | 500 | 322 |
Wiki-Vote | D | 7115 | 103,689 | 3.8 | 21 |
Table 3.
Experiment 1: Experiment with nearness measure.
Name | JC | PA | KM | CT | PR | PM |
---|
Facebook | 0.4806 | 0.4937 | 0.5037 | 0.4973 | 0.5206 | 0.5434 |
Gplus | 0.3061 | 0.3253 | 0.3411 | 0.3309 | 0.3671 | 0.3998 |
Twitter | 0.3404 | 0.3465 | 0.3508 | 0.3481 | 0.3582 | 0.3691 |
Epinions1 | 0.0667 | 0.0816 | 0.0943 | 0.0861 | 0.1150 | 0.1401 |
LiveJournal1 | 0.1010 | 0.1097 | 0.1167 | 0.1122 | 0.1284 | 0.1432 |
Pokec | 0.0183 | 0.0205 | 0.0222 | 0.0211 | 0.0251 | 0.0288 |
Slashdot0811 | 0.0066 | 0.0080 | 0.0087 | 0.0082 | 0.0101 | 0.0127 |
Slashdot0922 | 0.0086 | 0.0105 | 0.0116 | 0.0109 | 0.0137 | 0.0171 |
Friendster | 0.0360 | 0.0395 | 0.0422 | 0.0405 | 0.0467 | 0.0526 |
Orkut | 0.0424 | 0.0476 | 0.0518 | 0.0491 | 0.0587 | 0.0675 |
Youtube | 0.0375 | 0.0483 | 0.0574 | 0.0515 | 0.0724 | 0.0903 |
DBLP | 0.4072 | 0.4103 | 0.4118 | 0.4110 | 0.4148 | 0.4207 |
Arxiv-AstroPh | 0.4469 | 0.4590 | 0.4682 | 0.4624 | 0.4837 | 0.5045 |
web-Stanford | 0.3693 | 0.3738 | 0.3765 | 0.3749 | 0.3815 | 0.3896 |
Amazon0601 | 0.2057 | 0.2174 | 0.2266 | 0.2207 | 0.2419 | 0.2615 |
P2P-Gnutella31 | 0.0180 | 0.0246 | 0.0302 | 0.0266 | 0.0394 | 0.0503 |
RoadNet-CA | 0.0701 | 0.0893 | 0.1051 | 0.0949 | 0.1312 | 0.1633 |
Wiki-Vote | 0.0874 | 0.1109 | 0.1308 | 0.1179 | 0.1633 | 0.2023 |
Table 4.
Experiment 2: Experiment on approximation.
Name | Exact | 0.1 Mtree | 0.1 Lsh | 0.2 Mtree | 0.2 Lsh | 0.3 Mtree | 0.3 Lsh | 0.4 Mtree | 0.4 Lsh | 0.5 Mtree | 0.5 Lsh |
---|
Facebook | 0.5472 | 0.5468 | 0.5462 | 0.5463 | 0.5452 | 0.5459 | 0.5441 | 0.5454 | 0.5431 | 0.5450 | 0.5421 |
Gplus | 0.4056 | 0.4053 | 0.4049 | 0.4050 | 0.4042 | 0.4047 | 0.4035 | 0.4044 | 0.4028 | 0.4041 | 0.4021 |
Twitter | 0.3709 | 0.3706 | 0.3701 | 0.3702 | 0.3693 | 0.3699 | 0.3685 | 0.3695 | 0.3677 | 0.3692 | 0.3669 |
Epinions1 | 0.1447 | 0.1446 | 0.1445 | 0.1445 | 0.1443 | 0.1445 | 0.1441 | 0.1444 | 0.1439 | 0.1443 | 0.1437 |
LiveJournal1 | 0.1458 | 0.1456 | 0.1454 | 0.1455 | 0.1450 | 0.1453 | 0.1447 | 0.1452 | 0.1443 | 0.1450 | 0.1439 |
Pokec | 0.0295 | 0.0294 | 0.0293 | 0.0294 | 0.0292 | 0.0293 | 0.0290 | 0.0293 | 0.0289 | 0.0292 | 0.0287 |
Slashdot0811 | 0.0125 | 0.0124 | 0.0123 | 0.0123 | 0.0122 | 0.0121 | 0.0120 | 0.0120 | 0.0119 | 0.0119 | 0.0117 |
Slashdot0922 | 0.0168 | 0.0167 | 0.0167 | 0.0167 | 0.0166 | 0.0166 | 0.0164 | 0.0166 | 0.0163 | 0.0165 | 0.0162 |
Friendster | 0.0536 | 0.0535 | 0.0534 | 0.0534 | 0.0532 | 0.0533 | 0.0529 | 0.0532 | 0.0527 | 0.0531 | 0.0525 |
Orkut | 0.0690 | 0.0689 | 0.0688 | 0.0688 | 0.0685 | 0.0687 | 0.0683 | 0.0686 | 0.0680 | 0.0685 | 0.0678 |
Youtube | 0.0936 | 0.0936 | 0.0935 | 0.0935 | 0.0934 | 0.0935 | 0.0932 | 0.0934 | 0.0931 | 0.0934 | 0.0930 |
DBLP | 0.4215 | 0.4211 | 0.4206 | 0.4207 | 0.4197 | 0.4204 | 0.4189 | 0.4200 | 0.4180 | 0.4196 | 0.4171 |
Arxiv-AstroPh | 0.5081 | 0.5077 | 0.5072 | 0.5073 | 0.5063 | 0.5069 | 0.5053 | 0.5065 | 0.5044 | 0.5061 | 0.5035 |
web-Stanford | 0.3908 | 0.3904 | 0.3900 | 0.3901 | 0.3891 | 0.3897 | 0.3883 | 0.3894 | 0.3874 | 0.3890 | 0.3866 |
Amazon0601 | 0.2650 | 0.2647 | 0.2644 | 0.2645 | 0.2638 | 0.2642 | 0.2633 | 0.2640 | 0.2627 | 0.2637 | 0.2621 |
P2P-Gnutella31 | 0.0523 | 0.0523 | 0.0523 | 0.0523 | 0.0523 | 0.0523 | 0.0523 | 0.0523 | 0.0523 | 0.0523 | 0.0523 |
RoadNet-CA | 0.1692 | 0.1690 | 0.1686 | 0.1687 | 0.1681 | 0.1685 | 0.1675 | 0.1682 | 0.1670 | 0.1680 | 0.1664 |
Wiki-Vote | 0.2095 | 0.2094 | 0.2093 | 0.2093 | 0.2090 | 0.2092 | 0.2088 | 0.2091 | 0.2085 | 0.2090 | 0.2083 |
Table 5.
Comparison of our approaches with other best methods in terms of modularity.
Name | Spectral | SDP | GT | WT | LP | GBM | NN-Search | M-Tree | LSH |
---|
Facebook | 0.4487 | 0.5464 | 0.5434 | 0.5117 | 0.5042 | 0.4742 | 0.5472 | 0.5450 | 0.5421 |
Gplus | 0.2573 | 0.4047 | 0.3998 | 0.3528 | 0.3412 | 0.2963 | 0.4056 | 0.4041 | 0.4021 |
Twitter | 0.3261 | 0.3706 | 0.3691 | 0.3545 | 0.3513 | 0.3375 | 0.3709 | 0.3692 | 0.3669 |
e
Epinions1 | 0.0280 | 0.1440 | 0.1401 | 0.1034 | 0.0940 | 0.0589 | 0.1447 | 0.1443 | 0.1437 |
LiveJournal1 | 0.0791 | 0.1455 | 0.1432 | 0.1220 | 0.1169 | 0.0966 | 0.1458 | 0.1450 | 0.1439 |
Pokec | 0.0129 | 0.0294 | 0.0288 | 0.0235 | 0.0223 | 0.0172 | 0.0295 | 0.0292 | 0.0287 |
Slashdot0811 | 0.0038 | 0.0130 | 0.0127 | 0.0095 | 0.0090 | 0.0060 | 0.0125 | 0.0119 | 0.0117 |
Slashdot0922 | 0.0045 | 0.0176 | 0.0171 | 0.0127 | 0.0119 | 0.0078 | 0.0168 | 0.0165 | 0.0162 |
Friendster | 0.0275 | 0.0536 | 0.0526 | 0.0443 | 0.0423 | 0.0343 | 0.0536 | 0.0531 | 0.0525 |
Orkut | 0.0294 | 0.0689 | 0.0675 | 0.0549 | 0.0519 | 0.0398 | 0.0690 | 0.0685 | 0.0678 |
Youtube | 0.0096 | 0.0934 | 0.0903 | 0.0640 | 0.0573 | 0.0319 | 0.0936 | 0.0934 | 0.0930 |
DBLP | 0.4011 | 0.4214 | 0.4207 | 0.4136 | 0.4125 | 0.4060 | 0.4215 | 0.4196 | 0.4171 |
Arxiv-AstroPh | 0.4174 | 0.5079 | 0.5045 | 0.4755 | 0.4688 | 0.4410 | 0.5081 | 0.5061 | 0.5035 |
web-Stanford | 0.3595 | 0.3908 | 0.3896 | 0.3791 | 0.3772 | 0.3673 | 0.3908 | 0.3890 | 0.3866 |
Amazon0601 | 0.1768 | 0.2649 | 0.2615 | 0.2336 | 0.2269 | 0.1999 | 0.2650 | 0.2637 | 0.2621 |
P2P-Gnutella31 | 0.0009 | 0.0522 | 0.0503 | 0.0343 | 0.0301 | 0.0146 | 0.0523 | 0.0523 | 0.0523 |
RoadNet-CA | 0.0212 | 0.1690 | 0.1633 | 0.1168 | 0.1053 | 0.0603 | 0.1692 | 0.1680 | 0.1664 |
Wiki-Vote | 0.0266 | 0.2093 | 0.2023 | 0.1451 | 0.1306 | 0.0752 | 0.2095 | 0.2090 | 0.208 |
Table 6.
Comparison of our approaches with other best methods in terms of time.
Name | Spectral | SDP | GT | WT | LP | GBM | NN-Search | M-Tree | LSH |
---|
Facebook | 6 | 7 | 11 | 13 | 7 | 8 | 6 | 4 | 1 |
Gplus | 797 | 832 | 1342 | 1512 | 877 | 948 | 661 | 390 | 115 |
Twitter | 462 | 485 | 786 | 886 | 509 | 554 | 398 | 235 | 68 |
Epinions1 | 411 | 419 | 667 | 749 | 452 | 475 | 292 | 174 | 56 |
LiveJournal1 | 1297 | 1332 | 2129 | 2394 | 1427 | 1514 | 969 | 576 | 179 |
Pokec | 1281 | 1305 | 2075 | 2330 | 1410 | 1480 | 901 | 538 | 173 |
Slashdot0811 | 552 | 561 | 891 | 1000 | 608 | 636 | 382 | 228 | 74 |
Slashdot0922 | 561 | 570 | 906 | 1017 | 618 | 647 | 389 | 232 | 75 |
Friendster | 2061 | 2105 | 3352 | 3766 | 2269 | 2390 | 1477 | 880 | 280 |
Orkut | 1497 | 1529 | 2435 | 2736 | 1647 | 1735 | 1074 | 640 | 203 |
Youtube | 829 | 844 | 1340 | 1505 | 913 | 957 | 578 | 345 | 111 |
DBLP | 381 | 403 | 655 | 739 | 420 | 461 | 341 | 201 | 57 |
Arxiv-AstroPh | 217 | 230 | 375 | 423 | 239 | 263 | 197 | 116 | 33 |
web-Stanford | 498 | 525 | 852 | 960 | 549 | 600 | 437 | 258 | 74 |
Amazon0601 | 653 | 678 | 1089 | 1225 | 719 | 771 | 520 | 308 | 93 |
P2P-Gnutella31 | 182 | 184 | 293 | 328 | 200 | 209 | 124 | 74 | 24 |
RoadNet-CA | 758 | 785 | 1261 | 1419 | 834 | 894 | 599 | 355 | 107 |
Wiki-Vote | 54 | 55 | 88 | 99 | 59 | 63 | 39 | 23 | 7 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).