Logarithmic Similarity Measure between Interval-Valued Fuzzy Sets and Its Fault Diagnosis Method
Abstract
:1. Introduction
2. LSM between IVFSs
- (P1)
- 0 ≤ M(A, B) ≤ 1;
- (P2)
- M(A, B) = 1 if and only if A = B;
- (P3)
- M(A, B) = M(B, A);
- (P4)
- If C is an IVFS in X and A ⊆ B ⊆ C, then M(A, C) ≤ M(A, B) and M(A, C) ≤ M(B, C).
- (P1)
- Since the value of log2(x) for x ∈ [1, 2] lies within [0, 1], the similarity measure value based on the logarithmic function also lies within [0, 1]. Hence, there is 0 ≤ M(A, B) ≤ 1.
- (P2)
- For any two IVFSs A and B, if A = B, this implies = and = for i = 1, 2, …, n and xi ∈ X. Thus, there are and . Hence M(A, B) = 1.If M(A, B) = 1, this implies and for i = 1, 2, …, n and xi ∈ X since log2(2) = 1. Then, there are = and = for i = 1, 2, …, n and xi ∈ X. Hence A = B.
- (P3)
- The proof is straightforward.
- (P4)
- If A ⊆ B ⊆ C, then this implies ≤ ≤ and ≤ ≤ for i = 1, 2, …, n and xi ∈ X. Then, we have the following relations:Therefore, the proofs of these properties are finished. ☐
- (P1)
- 0 ≤ Mw(A, B) ≤ 1;
- (P2)
- Mw(A, B) = 1 if and only if A = B;
- (P3)
- Mw(A, B) = Mw(B, A);
- (P4)
- If C is an IVFS in X and A ⊆ B ⊆ C, then Mw(A, C) ≤ Mw(A, B) and Mw(A, C) ≤ Mw(B, C).
3. Fault Diagnosis Method Based on the Proposed LSM and Its Applications
3.1. Fault Diagnosis Method
3.2. The Proposed Fault Diagnosis Method for Misfire Fault Diagnosis of Gasoline Engine
3.3. The Proposed Fault Diagnosis Method for Vibrational Fault Diagnosis of Steam Turbine
3.4. Comparative Analysis with the Related Methods
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of interest
References
- Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–356. [Google Scholar] [CrossRef]
- Li, L.; Chadli, M.; Ding, S.X.; Qiu, J.; Yang, Y. Diagnostic observer design for TS fuzzy systems: Application to real-time weighted fault detection approach. IEEE Trans. Fuzzy Syst. 2017. [Google Scholar] [CrossRef]
- Chadli, M.; Abdo, A.; Ding, S.X. H−/H∞ Fault detection filter design for discrete-time Takagi-Sugeno fuzzy system. Automatica 2013, 49, 1996–2005. [Google Scholar] [CrossRef]
- Chibani, A.; Chadli, M.; Shi, P.; Braiek, N.B. Fuzzy fault detection filter design for T-S fuzzy systems in finite frequency domain. IEEE Trans. Fuzzy Syst. 2017, 25, 1051–1061. [Google Scholar] [CrossRef]
- Youssef, T.; Chadli, M.; Karimi, H.R.; Wang, R. Actuator and sensor faults estimation based on proportional integral observer for TS fuzzy model. J. Frankl. Inst. 2017, 354, 2524–2542. [Google Scholar] [CrossRef]
- Shi, P.; Zhang, Y.; Chadli, M.; Agarwal, R.K. Mixed H-infinity and passive filtering for discrete fuzzy neural networks with stochastic jumps and time delays. IEEE Trans. Neural Netw. Learn. Syst. 2016, 27, 903–909. [Google Scholar] [CrossRef] [PubMed]
- Zadeh, L.A. The concept of a linguistic variable and its application to approximate reasoning—I. Inf. Sci. 1975, 8, 199–249. [Google Scholar] [CrossRef]
- Cai, W. The extension set and incompatibility problem. J. Sci. Explor. 1983, 1, 610–614. [Google Scholar]
- Atanassov, K. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986, 20, 87–96. [Google Scholar] [CrossRef]
- Gau, W.L.; Buehrer, D.J. Vague Sets. IEEE Trans. Syst. Man Cybern. 1993, 23, 610–614. [Google Scholar] [CrossRef]
- Wang, M.H. Application of extension theory to vibration fault diagnosis of generator sets. IEE Proc. Gener. Transm. Distrib. 2004, 151, 503–508. [Google Scholar] [CrossRef]
- Ye, J. Application of extension theory in misfire fault diagnosis of gasoline engines. Expert Syst. Appl. 2009, 36, 1217–1221. [Google Scholar] [CrossRef]
- Ye, J.; Qiao, X.L.; Wei, H.L.; Li, W.B. Fault diagnosis of turbine based on similarity measures between vague sets. In Proceedings of the Safety Science and Technology; Li, S.C., Wang, Y.J., Huang, P., Eds.; Science Press, USA Inc.: Monmouth Junction, NJ, USA, 2005; Volume V, pp. 1358–1362. [Google Scholar]
- Ye, J. Fault diagnosis of turbine based on fuzzy cross entropy of vague sets. Expert Syst. Appl. 2009, 36, 8103–8106. [Google Scholar] [CrossRef]
- Lu, Z.K.; Ye, J. Cosine similarity measure between vague sets and its application of fault diagnosis. Res. J. Appl. Sci. Eng. Technol. 2013, 6, 2625–2629. [Google Scholar] [CrossRef]
- Shi, L.L.; Ye, J. Study on fault diagnosis of turbine using an improved cosine similarity measure for vague sets. J. Appl. Sci. 2013, 13, 1781–1786. [Google Scholar] [CrossRef]
- Kong, L.W.; Wu, Y.F.; Ye, J. Misfire fault diagnosis method of gasoline engines using the cosine similarity measure of neutrosophic numbers. Neutrosoph. Sets Syst. 2015, 8, 43–46. [Google Scholar]
- Ye, J. Fault diagnoses of steam turbine using the exponential similarity measure of neutrosophic numbers. J. Intell. Fuzzy Syst. 2016, 30, 1927–1934. [Google Scholar] [CrossRef]
- Wang, X.Q.; Wei, J.L.; Ye, J. Misfire fault diagnosis of gasoline engines using the cosine measure of single-valued neutrosophic sets. J. New Theory 2016, 10, 39–44. [Google Scholar]
- Ye, J. Single valued neutrosophic similarity measures based on cotangent function and their application in the fault diagnosis of steam turbine. Soft Comput. 2017, 21, 817–825. [Google Scholar] [CrossRef]
Kk (Fault Knowledge) | A1 (φHC × 10−2) | A2 (φCO2 × 10−1) | A3 (φNOx × 10) | A4 (φCO × 10−1) | A5 (φO2) |
---|---|---|---|---|---|
K1 (Normal work) | [0.03, 0.08] | [0.51, 0.95] | [0.03, 0.08] | [0.3, 0.5] | [0.062, 0.09] |
K2 (Slight misfire) | [0.01, 0.046] | [0.426, 0.84] | [0.04, 0.12] | [0.29, 0.5] | [0.04, 0.11] |
K3 (Severe misfire) | [0.2, 0.5] | [0.3, 0.7] | [0.1, 0. 3] | [0.1, 0.3] | [0.07, 0.15] |
Real-Tasting Sample (Kts) | A1 (φHC × 10−2) | A2 (φCO2 × 10−1) | A3 (φNOx × 10) | A4 (φCO × 10−1) | A5 (φO2) | Actual Fault Form |
---|---|---|---|---|---|---|
Kt1 | 0.0455 | 0.47 | 0.033 | 0.48 | 0.0527 | K2 |
Kt2 | 0.0572 | 0.75 | 0.062 | 0.42 | 0.0751 | K1 |
Kt3 | 0.0261 | 0.65 | 0.086 | 0.453 | 0.0431 | K2 |
Kt4 | 0.0312 | 0.62 | 0.051 | 0.287 | 0.1064 | K2 |
Kt5 | 0.3761 | 0.45 | 0.139 | 0.179 | 0.1025 | K3 |
Kt6 | 0.4220 | 0.52 | 0.188 | 0.194 | 0.0931 | K3 |
Kt7 | 0.0189 | 0.81 | 0.091 | 0.459 | 0.0377 | K2 |
Kt8 | 0.0555 | 0.86 | 0.057 | 0.39 | 0.0736 | K1 |
Kt9 | 0.0551 | 0.85 | 0.050 | 0.386 | 0.0789 | K1 |
Real-Tasting Sample (Kts) | LSM (Sk) | ||
---|---|---|---|
K1 | K2 | K3 | |
Kt1 | 0.9069 | 0.9158 | 0.8494 |
Kt2 | 0.9189 | 0.9169 | 0.8537 |
Kt3 | 0.9162 | 0.9173 | 0.8647 |
Kt4 | 0.9157 | 0.9169 | 0.8831 |
Kt5 | 0.8569 | 0.8826 | 0.9013 |
Kt6 | 0.8641 | 0.8719 | 0.9013 |
Kt7 | 0.9145 | 0.9172 | 0.8323 |
Kt8 | 0.9189 | 0.9113 | 0.8245 |
Kt9 | 0.9189 | 0.9142 | 0.8265 |
Real-Tasting Sample (Kts) | Relation Index (ηk) | Fault Diagnosis Result | ||
---|---|---|---|---|
K1 | K2 | K3 | ||
Kt1 | 0.7318 | 1.0000 | −1.0000 | K2 |
Kt2 | 1.0000 | 0.9387 | −1.0000 | K1 |
Kt3 | 0.9581 | 1.0000 | −1.0000 | K2 |
Kt4 | 0.9332 | 1.0000 | −1.0000 | K2 |
Kt5 | −1.0000 | 0.1573 | 1.0000 | K3 |
Kt6 | −1.0000 | −0.5807 | 1.0000 | K3 |
Kt7 | 0.9365 | 1.0000 | −1.0000 | K2 |
Kt8 | 1.0000 | 0.8390 | −1.0000 | K1 |
Kt9 | 1.0000 | 0.8972 | −1.0000 | K1 |
Kk (Fault Knowledge) | Frequency Range (f: Operating Frequency) | ||||||||
---|---|---|---|---|---|---|---|---|---|
A1 (0.01–0.39f) | A2 (0.4–0.49f) | A3 (0.5f) | A4 (0.51–0.99f) | A5 (f) | A6 (2f) | A7 (3–5f) | A8 (Odd Times of f) | A9 (High Frequency > 5f) | |
K1 (Unbalance) | [0.00, 0.00] | [0.00, 0.00] | [0.00, 0.00] | [0.00, 0.00] | [0.85, 1.00] | [0.04, 0.06] | [0.04, 0.07] | [0.00, 0.00] | [0.00, 0.00] |
K2 (Pneumatic force couple) | [0.00, 0.00] | [0.28, 0.31] | [0.09, 0.12] | [0.55, 0.70] | [0.00, 0.00] | [0.00, 0.00] | [0.00, 0.00] | [0.00, 0.00] | [0.08, 0.13] |
K3 (Offset center) | [0.00, 0.00] | [0.00, 0.00] | [0.00, 0.00] | [0.00, 0.00] | [0.30, 0.58] | [0.40, 0.62] | [0.08, 0.13] | [0.00, 0.00] | [0.00, 0.00] |
K4 (Oil-membrane oscillation) | [0.09, 0.11] | [0.78, 0.82] | [0.00, 0.00] | [0.08, 0.11] | [0.00, 0.00] | [0.00, 0.00] | [0.00, 0.00] | [0.00, 0.00] | [0.00, 0.00] |
K5 (Radial impact friction of rotor) | [0.09, 0.12] | [0.09, 0.11] | [0.08, 0.12] | [0.09, 0.12] | [0.18, 0.21] | [0.08, 0.13] | [0.08, 0.13] | [0.08, 0.12] | [0.08, 0.12] |
K6 (Symbiosis looseness) | [0.00, 0.00] | [0.00, 0.00] | [0.00, 0.00] | [0.00, 0.00] | [0.18, 0.22] | [0.12, 0.17] | [0.37, 0.45] | [0.00, 0.00] | [0.22, 0.28] |
K7 (Damage of antithrust bearing) | [0.00, 0.00] | [0.00, 0.00] | [0.08, 0.12] | [0.86, 0.93] | [0.00, 0.00] | [0.00, 0.00] | [0.00, 0.00] | [0.00, 0.00] | [0.00, 0.00] |
K8 (Surge) | [0.00, 0.00] | [0.27, 0.32] | [0.08, 0.12] | [0.54, 0.62] | [0.00, 0.00] | [0.00, 0.00] | [0.00, 0.00] | [0.00, 0.00] | [0.00, 0.00] |
K9 (Looseness of bearing block) | [0.85, 0.93] | [0.00, 0.00] | [0.00, 0.00] | [0.00, 0.00] | [0.00, 0.00] | [0.00, 0.00] | [0.00, 0.00] | [0.08, 0.12] | [0.00, 0.00] |
K10 (Non-uniform bearing stiffness) | [0.00, 0.00] | [0.00, 0.00] | [0.00, 0.00] | [0.00, 0.00] | [0.00, 0.00] | [0.77, 0.83] | [0.19, 0.23] | [0.00, 0.00] | [0.00, 0.00] |
Kts | LSM (Sk) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
K1 | K2 | K3 | K4 | K5 | K6 | K7 | K8 | K9 | K10 | |
Kt1 | 0.7879 | 0.9409 | 0.8003 | 0.8191 | 0.8501 | 0.8088 | 0.9956 | 0.9449 | 0.7933 | 0.7963 |
Kt2 | 0.8133 | 0.8525 | 0.8415 | 0.8577 | 0.9043 | 0.8907 | 0.8231 | 0.8480 | 0.8935 | 0.8406 |
Kts | Relation Index (ηk) | Fault Diagnosis Result | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
K1 | K2 | K3 | K4 | K5 | K6 | K7 | K8 | K9 | K10 | ||
Kt1 | −1 | 0.4732 | −0.8807 | −0.6993 | −0.4007 | −0.7986 | 1.0000 | 0.5117 | −0.9476 | −0.9193 | K7 |
Kt2 | −1 | −0.1380 | −0.3789 | −0.0252 | 1.0000 | 0.7014 | −0.7850 | −0.2372 | 0.7612 | −0.3993 | K5 |
Real-Tasting Sample (Kts) | Fault Diagnosis Result in [17] | Fault Diagnosis Result of the New Diagnosis Method | Actual Fault Result |
---|---|---|---|
Kt1 | K2 | K2 | K2 |
Kt2 | K1 | K1 | K1 |
Kt3 | K2 | K2 | K2 |
Kt4 | K2 | K2 | K2 |
Kt5 | K3 | K3 | K3 |
Kt6 | K3 | K3 | K3 |
Kt7 | K2 | K2 | K2 |
Kt8 | K1 | K1 | K1 |
Kt9 | K1 | K1 | K1 |
Real-Tasting Sample (Kts) | Ranking Order of Fault Diagnoses in [14] | Ranking Order of Fault Diagnoses in [16] | Ranking Order of Fault Diagnoses Using the New Diagnosis Method | Fault Diagnosis Result | Actual Fault Result |
---|---|---|---|---|---|
Kt1 | K7→K8→K2→K5→K3→ K4→K6→K10→K9→K1 | K7→K2→K8→K5→K6→ K3→K4→K10→K9→K1 | K7→K8→K2→K5→K4→ K6→K3→K10→K9→K1 | K7 | K7 |
Kt2 | K5→K9→K6→K2→K4→ K8→K3→K10→K7→K1 | K5→K6→K9→K8→K2→ K3→K4→K10→K7→K1 | K5→K9→K6→K4→K2→ K8→K3→K10→K7→K1 | K5 | K5 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, Z.; Ye, J. Logarithmic Similarity Measure between Interval-Valued Fuzzy Sets and Its Fault Diagnosis Method. Information 2018, 9, 36. https://doi.org/10.3390/info9020036
Lu Z, Ye J. Logarithmic Similarity Measure between Interval-Valued Fuzzy Sets and Its Fault Diagnosis Method. Information. 2018; 9(2):36. https://doi.org/10.3390/info9020036
Chicago/Turabian StyleLu, Zhikang, and Jun Ye. 2018. "Logarithmic Similarity Measure between Interval-Valued Fuzzy Sets and Its Fault Diagnosis Method" Information 9, no. 2: 36. https://doi.org/10.3390/info9020036
APA StyleLu, Z., & Ye, J. (2018). Logarithmic Similarity Measure between Interval-Valued Fuzzy Sets and Its Fault Diagnosis Method. Information, 9(2), 36. https://doi.org/10.3390/info9020036