Analysing Standard Progressive Matrices (SPM-LS) with Bayesian Item Response Models
Abstract
:1. Introduction
2. Bayesian IRT Models
2.1. Bayesian IRT Models for Binary Data
2.2. IRT Models as Regression Models
2.3. Model Priors and Identification
3. Analysis of the SPM-LS Data
3.1. Model Estimation
3.2. Model Comparison
4. Discussion
Funding
Acknowledgments
Conflicts of Interest
References
- Ackerman, Phillip L., and Ruth Kanfer. 2009. Test length and cognitive fatigue: An empirical examination of effects on performance and test-taker reactions. Journal of Experimental Psychology: Applied 15: 163. [Google Scholar] [CrossRef] [Green Version]
- Allison, J. Ames, and Chi Hang Au. 2018. Using Stan for item response theory models. Measurement: Interdisciplinary Research and Perspectives 16: 129–34. [Google Scholar]
- Aust, F., and M. Barth. 2018. Papaja: Create APA Manuscripts with R Markdown. Available online: https://github.com/crsh/papaja (accessed on 3 February 2020).
- Bates, Douglas, Martin Mächler, Ben Bolker, and Steve Walker. 2015. Fitting linear mixed-effects models using lme4. Journal of Statistical Soft-Ware 67: 1–48. [Google Scholar] [CrossRef]
- Betancourt, Michael. 2017. A conceptual introduction to Hamiltonian Monte Carlo. arXiv arXiv:1701.02434. [Google Scholar]
- Bürkner, Paul-Christian. 2017. brms: An R package for bayesian multilevel models using Stan. Journal of Statistical Software 80: 1–28. [Google Scholar] [CrossRef] [Green Version]
- Bürkner, Paul-Christian. 2018. Advanced Bayesian multilevel modeling with the R package brms. The R Journal 10: 395–411. [Google Scholar] [CrossRef]
- Bürkner, Paul-Christian. 2019. Bayesian item response modelling in R with brms and Stan. arXiv arXiv:1905.09501. [Google Scholar]
- Carpenter, Bob, Andrew Gelman, Matthew D. Hoffman, Daniel Lee, Ben Goodrich, Michael Betancourt, Marcus Brubaker, Jiqiang Guo, Peter Li, and Allen Riddell. 2017. Stan: A probabilistic programming language. Journal of Statistical Software 76: 1–32. [Google Scholar] [CrossRef] [Green Version]
- Chalmers, R. Philip. 2012. mirt: A multidimensional item response theory package for the R environment. Journal of Statistical Software 48: 1–29. [Google Scholar] [CrossRef] [Green Version]
- Culpepper, Steven Andrew. 2016. Revisiting the 4-parameter item response model: Bayesian estimation and application. Psychometrika 81: 1142–63. [Google Scholar] [CrossRef]
- Culpepper, Steven Andrew. 2017. The prevalence and implications of slipping on low-stakes, large-scale assessments. Journal of Educational and Behavioral Statistics 42: 706–25. [Google Scholar] [CrossRef]
- Curtis, S. McKay. 2010. BUGS code for item response theory. Journal of Statistical Software 36: 1–34. [Google Scholar] [CrossRef]
- Depaoli, Sarah, James P. Clifton, and Patrice R. Cobb. 2016. Just another Gibbs sampler (JAGS) flexible software for MCMC implementation. Journal of Educational and Behavioral Statistics 41: 628–49. [Google Scholar] [CrossRef]
- Do, Chuong B., and Serafim Batzoglou. 2008. What is the expectation maximization algorithm? Nature Biotechnology 26: 897. [Google Scholar] [CrossRef] [PubMed]
- Embretson, Susan E., and Steven P. Reise. 2013. Item Response Theory. Hove: Psychology Press. [Google Scholar]
- Fox, Jean-Paul. 2010. Bayesian Item Response Modeling: Theory and Applications. Berlin/Heidelberg: Springer. [Google Scholar]
- Freedman, David A. 1981. Bootstrapping regression models. The Annals of Statistics 9: 1218–28. [Google Scholar] [CrossRef]
- Gelman, Andrew, John B. Carlin, Hal S. Stern, David B. Dunson, Aki Vehtari, and Donald B. Rubin. 2013. Bayesian Data Analysis, 3rd ed. Boca Raton: Chapman Hall/CRC. [Google Scholar] [CrossRef]
- Gelman, Andrew, Daniel Simpson, and Michael Betancourt. 2017. The prior can often only be understood in the context of the likelihood. Entropy 19: 555–67. [Google Scholar] [CrossRef] [Green Version]
- Glas, Cees A. W., and Rob R. Meijer. 2003. A Bayesian approach to person fit analysis in item response theory models. Applied Psychological Measurement 27: 217–33. [Google Scholar] [CrossRef] [Green Version]
- Jensen, Arthur R., Dennis P. Saccuzzo, and Gerald E. Larson. 1988. Equating the standard and advanced forms of the Raven progressive matrices. Educational and Psychological Measurement 48: 1091–95. [Google Scholar] [CrossRef]
- Junker, Brian W., and Klaas Sijtsma. 2001. Nonparametric item response theory in action: An overview of the special issue. Applied Psychological Measurement 25: 211–20. [Google Scholar] [CrossRef]
- Levy, Roy, and Robert J. Mislevy. 2017. Bayesian Psychometric Modeling. Boca Raton: Chapman Hall/CRC. [Google Scholar]
- Loken, Eric, and Kelly L. Rulison. 2010. Estimation of a four-parameter item response theory model. British Journal of Mathematical and Statistical Psychology 63: 509–25. [Google Scholar] [CrossRef]
- Lord, Frederic M. 2012. Applications of Item Response Theory to Practical Testing Problems. Milton Park: Routledge. [Google Scholar]
- Lunn, David, David Spiegelhalter, Andrew Thomas, and Nicky Best. 2009. The BUGS project: Evolution, critique and future directions. Statistics in Medicine 28: 3049–67. [Google Scholar] [CrossRef] [PubMed]
- Luo, Yong, and Hong Jiao. 2018. Using the Stan program for bayesian item response theory. Educational and Psychological Measurement 78: 384–408. [Google Scholar] [CrossRef] [PubMed]
- Maydeu-Olivares, Alberto. 2013. Goodness-of-fit assessment of item response theory models. Measurement: Interdisciplinary Research and Perspectives 11: 71–101. [Google Scholar] [CrossRef]
- Mooney, Christopher F., Christopher L. Mooney, Christopher Z. Mooney, Robert D. Duval, and Robert Duvall. 1993. Bootstrapping: A Nonparametric Approach to Statistical Inference. Thousand Oaks: Sage. [Google Scholar]
- Myszkowski, Nils, and Martin Storme. 2018. A snapshot of g? Binary and polytomous item-response theory investigations of the last series of the standard progressive matrices (SPM-LS). Intelligence 68: 109–16. [Google Scholar] [CrossRef]
- Nalborczyk, Ladislas, Cédric Batailler, Hélène Lœvenbruck, Anne Vilain, and Paul-Christian Bürkner. 2019. An introduction to bayesian multilevel models using brms: A case study of gender effects on vowel variability in standard indonesian. Journal of Speech, Language, and Hearing Research 62: 1225–42. [Google Scholar] [CrossRef] [Green Version]
- Pedersen, Thomas Lin. 2017. Patchwork: The Composer of Ggplots. Available online: https://github.com/thomasp85/patchwork (accessed on 3 February 2020).
- Pind, Jörgen, Eyrún K. Gunnarsdóttir, and Hinrik S. Jóhannesson. 2003. Raven’s standard progressive matrices: New school age norms and a study of the test’s validity. Personality and Individual Differences 34: 375–86. [Google Scholar] [CrossRef]
- Plummer, Martyn. 2013. JAGS: Just Another Gibbs Sampler. Available online: http://mcmc-jags.sourceforge.net/ (accessed on 3 February 2020).
- Rasch, Georg. 1961. On general laws and the meaning of measurement in psychology. In Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability. Berkeley: University of California Press, vol. 4, pp. 321–33. [Google Scholar]
- Raven, John C. 1941. Standardization of progressive matrices, 1938. British Journal of Medical Psychology 19: 137–50. [Google Scholar] [CrossRef]
- R Core Team. 2019. R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing, Available online: https://www.R-project.org/ (accessed on 3 February 2020).
- Robitzsch, Alexander. 2019. Sirt: Supplementary Item Response Theory Models. Available online: https://CRAN.R-project.org/package=sirt (accessed on 3 February 2020).
- Robitzsch, Alexander, Thomas Kiefer, and Margaret Wu. 2019. TAM: Test Analysis Modules. Available online: https://CRAN.R-project.org/package=TAM (accessed on 3 February 2020).
- R Studio Team. 2018. RStudio: Integrated Development for R. Boston: RStudio, Inc., vol. 42. [Google Scholar]
- Rupp, Andre A., Dipak K. Dey, and Bruno D. Zumbo. 2004. To Bayes or not to Bayes, from whether to when: Applications of Bayesian methodology to modeling. Structural Equation Modeling 11: 424–51. [Google Scholar] [CrossRef]
- Schloerke, Barret, Jason Crowley, Di Cook, Heike Hofmann, Hadley Wickham, François Briatte, Moritz Marbach, Edwin Thoen, Amos Elberg, and Joseph Larmarange. 2018. GGally: Extension to ’ggplot2’. Available online: https://CRAN.R-project.org/package=GGally (accessed on 3 February 2020).
- van der Linden, Wim J., and Ronald K. Hambleton, eds. 1997. Handbook of Modern Item Response Theory. Berlin/Heidelberg: Springer. [Google Scholar]
- Vehtari, Aki, Daniel Simpson, Andrew Gelman, Yuling Yao, and Jonah Gabry. 2019. Pareto smoothed importance sampling. arXiv arXiv:1507.02646. [Google Scholar]
- Vehtari, Aki, Andrew Gelman, and Jonah Gabry. 2017. Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Statistics and Computing 27: 1413–32. [Google Scholar] [CrossRef] [Green Version]
- Vehtari, Aki, Andrew Gelman, and Jonah Gabry. 2018. Loo: Efficient Leave-One-Out Cross-Validation and WAIC for Bayesian Models. Available online: https://github.com/stan-dev/loo (accessed on 3 February 2020).
- Vehtari, Aki, Andrew Gelman, Daniel Simpson, Bob Carpenter, and Paul-Christian Bürkner. 2019. Rank-normalization, folding, and localization: An improved for assessing convergence of MCMC. arXiv arXiv:1903.08008. [Google Scholar]
- Waller, Niels G., and Leah Feuerstahler. 2017. Bayesian modal estimation of the four-parameter item response model in real, realistic, and idealized datasets. Multivariate Behavioral Research 52: 350–70. [Google Scholar] [CrossRef] [PubMed]
- Wickham, Hadley. 2016. Ggplot2: Elegant Graphics for Data Analysis. New York: Springer, Available online: http://ggplot2.org (accessed on 3 February 2020).
- Wickham, Hadley, Romain Francois, Lionel Henry, and Kirill Müller. 2019. Dplyr: A Grammar of Data Manipulation. Available online: https://CRAN.R-project.org/package=dplyr (accessed on 3 February 2020).
- Wickham, H., and L. Henry. 2019. Tidyr: Tidy Messy Data. Available online: https://CRAN.R-project.org/package=tidyr (accessed on 3 February 2020).
- Xie, Yihui. 2015. Dynamic Documents with R and Knitr, 2nd ed. Boca Raton: Chapman Hall/CRC, Available online: https://yihui.name/knitr/ (accessed on 3 February 2020).
- Xie, Yihui, Joseph J. Allaire, and Garrett Grolemund. 2018. R Markdown: The Definitive Guide. Boca Raton: Chapman Hall/CRC, Available online: https://bookdown.org/yihui/rmarkdown (accessed on 3 February 2020).
- Zhan, Peida, Hong Jiao, Kaiwen Man, and Lijun Wang. 2019. Using JAGS for Bayesian cognitive diagnosis modeling: A tutorial. Journal of Educational and Behavioral Statistics. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Hao. 2019. kableExtra: Construct Complex Table with ’Kable’ and Pipe Syntax. Available online: https://CRAN.R-project.org/package=kableExtra (accessed on 3 February 2020).
Model | ELPD | SE(ELPD) | ELPD-Difference | SE(ELPD-Difference) |
---|---|---|---|---|
4PL | −2544.7 | 42.6 | 0.0 | 0.0 |
3PL | −2547.8 | 42.8 | −3.1 | 5.1 |
2PL | −2588.7 | 42.9 | −44.0 | 9.5 |
1PL | −2655.0 | 43.8 | −110.3 | 15.0 |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bürkner, P.-C. Analysing Standard Progressive Matrices (SPM-LS) with Bayesian Item Response Models. J. Intell. 2020, 8, 5. https://doi.org/10.3390/jintelligence8010005
Bürkner P-C. Analysing Standard Progressive Matrices (SPM-LS) with Bayesian Item Response Models. Journal of Intelligence. 2020; 8(1):5. https://doi.org/10.3390/jintelligence8010005
Chicago/Turabian StyleBürkner, Paul-Christian. 2020. "Analysing Standard Progressive Matrices (SPM-LS) with Bayesian Item Response Models" Journal of Intelligence 8, no. 1: 5. https://doi.org/10.3390/jintelligence8010005
APA StyleBürkner, P. -C. (2020). Analysing Standard Progressive Matrices (SPM-LS) with Bayesian Item Response Models. Journal of Intelligence, 8(1), 5. https://doi.org/10.3390/jintelligence8010005