Modification of PLA-Based Films by Grafting or Coating
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Chitin–Lignin Nanoparticles Surface Modification
2.3. Preparation of PLA-Based Films by Solution Casting Method
2.4. Preparation of Poly(L-Lactide) (PLLA)-Based Coating
2.5. Characterization Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Klein, F.; Klein, A.E.; Menrad, K.; Möhring, W.; Blesin, J.M. Influencing factors for the purchase intention of consumers choosing bioplastic products in Germany. Sustain. Prod. Consum. 2019, 19, 33–43. [Google Scholar] [CrossRef]
- Park, S.B.; Park, K.S.; Joung, E.K.; Han, D.K. Biopolymer-based functional composites for medical applications. Prog. Polym. Sci. 2017, 68, 77–105. [Google Scholar] [CrossRef]
- Adlhart, C.; Verran, J.; Azevedo, N.F.; Olmez, H.; Keinänen-Toivola, M.M.; Gouveia, I.; Melo, L.F.; Crijns, F. Surface modifications for antimicrobial effects in the healthcare setting: A critical overview. J. Hosp. Infect. 2018, 99, 239–249. [Google Scholar] [CrossRef] [Green Version]
- Poverenov, E.; Klein, M. Formation of contact active antimicrobial surfaces by covalent grafting of quaternary ammonium compounds. Colloids. Surf. B Biointerfaces 2018, 169, 195–205. [Google Scholar]
- Bazaka, K.; Jacob, M.V.; Chrzanowski, W.; Ostrikov, K. Anti-bacterial surfaces: Natural agents, mechanisms of action, and plasma surface modification. RSC Adv. 2015, 5, 48739–48759. [Google Scholar] [CrossRef] [Green Version]
- Zia, K.M.; Noreen, A.; Zuber, M.; Tabasum, S.; Mujahid, M. Recent developments and future prospects on bio-based polyesters derived from renewable resources: A review. Inter. J. Biol. Macromol. 2016, 82, 1028–1040. [Google Scholar] [CrossRef] [PubMed]
- Koller, M. Chemical and Biochemical Engineering Approaches in Manufacturing Polyhydroxyalkanoate (PHA) Biopolyesters of Tailored Structure with Focus on the Diversity of Building Blocks. Chem. Biochem. Eng. Q. 2018, 32, 413–438. [Google Scholar] [CrossRef]
- Ruiz-Ruiz, F.; Mancera-Andrade, E.I.; Parra-Saldivar, R.; Keshavarz, T.; Iqbal, H.M.N. Drug Delivery and Cosmeceutical Applications of Poly-Lactic Acid Based Novel Constructs—A Review. Curr. Drug Metab. 2017, 18, 914. [Google Scholar] [CrossRef]
- Jain, A.; Reddy Kunduru, K.; Basu, A.; Mizrahi, B.; Domb, A.J.; Khan, W. Injectable formulations of poly(lactic acid) and its copolymers in clinical use. Adv. Drug Deliv. Rev. 2016, 107, 213–227. [Google Scholar] [CrossRef]
- Mills, C.A.; Navarro, M.; Engel, E.; Martinez, E.; Ginebra, M.P.; Planell, J.; Errachid, A.; Samitier, J. Transparent micro- and nanopatterned poly(lactic acid) for biomedical applications. J. Biomed. Mater. Res. 2006, 76, 781–787. [Google Scholar] [CrossRef] [Green Version]
- Murariu, M.; Dubois, P. PLA composites: From production to properties. Adv. Drug Deliv. Rev. 2016, 107, 17–46. [Google Scholar] [CrossRef] [PubMed]
- Coltelli, M.B.; Gigante, V.; Panariello, L.; Morganti, P.; Cinelli, P.; Danti, S.; Lazzeri, A. Chitin nanofibrils in renewable materials for packaging and personal care applications. Adv. Mater. Lett. 2018, 10, 425–430. [Google Scholar]
- Coltelli, M.; Cinelli, P.; Gigante, V.; Aliotta, L.; Morganti, P.; Panariello, L.; Lazzeri, A. Chitin Nanofibrils in Poly(Lactic Acid) (PLA) Nanocomposites: Dispersion and Thermo-Mechanical Properties. Int. J. Mol. Sci. 2019, 20, 504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gigante, V.; Coltelli, M.; Vannozzi, A.; Panariello, L.; Fusco, A.; Trombi, L.; Donnarumma, G.; Danti, S.; Lazzeri, A. Flat Die Extruded Biocompatible Poly ( Lactic Acid )/Poly(Butylene Succinate) (PBS) Based Films. Polymers 2019, 11, 1857. [Google Scholar] [CrossRef] [Green Version]
- Coltelli, M.B.; Aliotta, L.; Vannozzi, A.; Morganti, P.; Panariello, L.; Danti, S.; Neri, S.; Fernandez-Avila, C.; Fusco, A.; Donnarumma, G.; et al. Properties and skin compatibility of films based on poly(lactic acid) (PLA) bionanocomposites incorporating chitin nanofibrils (CN). J. Funct. Biomat. 2020, 11, 21. [Google Scholar] [CrossRef] [Green Version]
- Braun, B.; Dorgan, J.R.; Hollingsworth, L.O. Supra-Molecular EcoBioNanocomposites Based on Polylactide and Cellulosic Nanowhiskers: Synthesis and Properties. Biomacromolecules 2012, 13, 2013–2019. [Google Scholar] [CrossRef]
- Rasal, R. Surface and Bulk Modification of Poly(Lactic Acid). Ph.D. Thesis, Graduate School of Clemson University, Clemson, SC, USA, 2009; p. 335. [Google Scholar]
- Sergiy, M. 8 Clarkson Ave Chapter 11 Grafting on Solid Surfaces: “Grafting to” and “Grafting from” Methods. Master’s Thesis, Clarkson University, Potsdam, NY, USA, 2008. [Google Scholar]
- Encinas, N.; Pantoja, M.; Abenojar, J.; Martínez, M.A. Control of Wettability of Polymers by Surface Roughness Modification. J. Adhes Sci. Technol. 2010, 24, 1869–1883. [Google Scholar] [CrossRef] [Green Version]
- Tsubokawa, N. Surface Grafting of Polymers onto Nanoparticles in a Solvent-FreeDry-System and Applications of Polymer-grafted Nanoparticles as Novel Functional Hybrid Materials. Polym. J. 2007, 39, 983–1000. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Cui, W.; Bei, J. Bulk and surface modifications of polylactide. Anal. Bioanal. Chem. 2005, 381, 547–556. [Google Scholar] [CrossRef]
- Edlund, U.; Källrot, M.; Albertsson, A.C. Single-step covalent functionalization of polylactide surfaces. J. Am. Chem Soc. 2005, 127, 8865–8871. [Google Scholar] [CrossRef]
- Moraczewski, K.; Stepczynska, M.; Malinowski, R.; Rytlewski, P.; Jagodzinski, B.; Zenkiewicz, M. Stability studies of plasma modification effects of polylactide andpolycaprolactone surface layers. Sustain. Prod. Consum. 2019, 19, 33–43. [Google Scholar]
- Cakic, S.M.; Spirkova, M.; Ristic, I.S.; Simendic, J.K.B.; Marinovic-Cincovic, M.; Poreba, R. The waterborne polyurethane dispersions based on polycarbonate diol: Effect of ionic content. Mater. Chem. Phys. 2013, 138, 277–285. [Google Scholar] [CrossRef]
- Karacan, I.; Ben-Nissan, B.; Wang, H.A.; Juritza, A.; Swain, M.V.; Müller, W.H.; Chou, J.; Stamboulis, A.; Macha, I.J.; Taraschi, V. Mechanical testing of antimicrobial biocomposite coating on metallic medical implants as drug delivery system. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 104, 109757. [Google Scholar] [CrossRef] [PubMed]
- Chang, Q.; Hao, Y.; Cheng, L.; Liu, Y.; Qu, A. Preparation and performance evaluation of biodegradable corn starch film using poly (lactic acid) as waterproof coating. Surf. Eng. 2019, 1743–2944. [Google Scholar] [CrossRef]
- Valerini, D.; Tammaro, L.; Villani, F.; Rizzo, A.; Caputo, I.; Paolella, G.; Vigliotta, G. Antibacterial Al-doped ZnO coatings on PLA films. J. Mater. Sci. 2020, 55, 4830–4847. [Google Scholar] [CrossRef]
- Wei, Y.; Guo, H.; Zhou, M.; Yue, L.; Chen, Q. DBD plasma assisted atomic layer deposition alumina barrier layer on selfdegradation polylactic acid film surface. Plasma Sci. Technol. 2019, 21, 015503. [Google Scholar] [CrossRef]
- Danti, S.; Trombi, L.; Fusco, A.; Azimi, B.; Lazzeri, A.; Morganti, P.; Coltelli, M.-B.; Donnarumma, G. Chitin Nanofibrils and Nanolignin as Functional Agents in Skin Regeneration. Int. J. Mol. Sci. 2019, 20, 2669. [Google Scholar] [CrossRef] [Green Version]
- Gehring, W. Nicotinic acid/niacinamide and the skin. J. Cosmet. Derm. 2014, 3, 88–93. [Google Scholar] [CrossRef]
- Morganti, P. Composition and Material Comprising Chitin Nanofibrils, Lignin and A Co-Polymer and Their Uses. International Patent Application WO2016042474A1, 15 September 2015. [Google Scholar]
- Coltelli, M.B.; Gigante, V.; Vannozzi, A.; Aliotta, L.; Danti, S.; Neri, S.; Gagliardini, A.; Morganti, P.; Panariello, L.; Lazzeri, A. Poly(Lactic Acid) (Pla) Based Nano-Structured Functional Films For Personal Care Applications. In Proceedings of the AUTEX2019–19th World Textile Conference on Textiles at the Crossroads, Ghent, Belgium, 11–15 June 2019; 1A2_0372. Available online: https://ojs.ugent.be/autex/article/view/11509 (accessed on 22 February 2020).
- Yang, R.; Ding, L.; Chen, W.; Zhang, X.; Li, J. Molecular-Weight Dependence of Nucleation Effect of a Liquid Crystalline Polyester β Nucleating Agent for Isotactic Polypropylene. Ind. Eng. Chem. Res. 2018, 57, 6734–6740. [Google Scholar] [CrossRef]
- Ristić, I.S.; Tanasić, L.; Nikolić, L.B.; Cakic, S.M.; Ilic, O.; Radicevic, R.; Budinski-Simendic, J. The Properties of Poly(L-Lactide) Prepared by Different Synthesis Procedure. J. Polym. Environ. 2011, 19, 419. [Google Scholar] [CrossRef]
- Ristić, I.S.; Marinović-Cincović, M.; Cakić, S.M.; Tanasic, L.; Budniski-Simendic, J. Synthesis and properties of novel star-shaped polyesters based on L-lactide and castor oil. Polym. Bull. 2013, 70, 1723–1738. [Google Scholar] [CrossRef]
- Shi, D.; Lai, X.; Jiang, Y. Synthesis of Inorganic Silica Grafted Three-arm PLLA and Their Behaviors for PLA Matrix. Chin. J. Polym. Sci. 2019, 37, 216–226. [Google Scholar] [CrossRef]
- Stuani Pereira, F.; da Silva Agostini, D.L.; Job, A.E.; Perez Gonzalez, E.R. Thermal studies of chitin–chitosan derivatives. Therm. Anal. Calorim. 2013, 114, 321–327. [Google Scholar] [CrossRef]
- Lisperguer, J.; Perez, P.; Urizar, S. Structure And Thermal Properties Of Lignins: Characterization By Infrared Spectroscopy And Differential Scanning Calorimetry. J. Chil. Chem. Soc. 2009, 54, 460–463. [Google Scholar] [CrossRef] [Green Version]
- Legras, R.; Mercier, J.P.; Nield, E. Polymer crystallization by chemical nucleation. Nature 1983, 34, 432–434. [Google Scholar] [CrossRef]
- Kawai, T.; Rahman, N.; Matsuba, G.; Nishida, K.; Kanaya, T.; Nakano, M.; Okamoto, H.; Kawada, J.; Usuki, A.; Honma, N.; et al. Crystallization and melting behavior of poly(L-lactic acid). Macromolecules 2007, 40, 9463–9469. [Google Scholar] [CrossRef]
- Anderson, K.S.; Hillmyer, M.A. Melt preparation and nucleation efficiency of polylactide stereocomplex crystallites. Polymer 2006, 47, 2030–2035. [Google Scholar] [CrossRef]
- Aliotta, L.; Cinelli, P.; Coltelli, M.B.; Righetti, M.C.; Gazzano, M.; Lazzeri, A. Effect of nucleating agents on crystallinity and properties of poly (lactic acid) (PLA). Eur. Polym. J. 2017, 93, 822–832. [Google Scholar] [CrossRef]
- Zhou, J.; Jiang, Z.; Wang, Z.; Zhang, J.; Li, J.; Li, Y.; Zhang, J.; Chen, P.; Gu, Q. Synthesis and characterization of triblock copolymer PLA-b-PBT-b-PLA and its effect on the crystallization of PLA. RSC Adv. 2013, 3, 18464–18473. [Google Scholar] [CrossRef]
- Praveen, P.; Rao, V. Synthesis and Thermal Studies of Chitin/AgCl Nanocomposite. Procedia Mater. Sci. 2014, 5, 1155–1159. [Google Scholar] [CrossRef] [Green Version]
Sample | Tensile Strength (MPa) | Elongation at Break (%) |
---|---|---|
PLA cast film | 1.96 | 44.33 |
CN-LN-niacinamide PLA cast film | 11.75 | 155.13 |
CN-LN-glycyrrhetic acid PLA cast film | 11.61 | 112.82 |
gCN-LN-niacinamide PLA cast film | 9.24 | 264.66 |
gCN-LN-glycyrrhetic acid PLA cast film | 7.92 | 236.78 |
Sample | Tg (°C) | Tc (°C) | Tm (°C) |
---|---|---|---|
PLA extruded film | 46.7 | 92.14 | 142.8 |
CN-LN-niacinamide PLA extruded film | 45.2 | 83.58 | 137.5 |
CN-LN-glycyrrhetic acid PLA extruded film | 47.6 | 89.88 | 138.72 |
gCN-LN-niacinamide PLA extruded film | 44.3 | 84.7 | 136.2 |
gCN-LN-glycyrrhetic acid PLA extruded film | 43.1 | 85.2 | 136.8 |
Sample | Tensile strength (MPa) | Elongation at break (%) |
---|---|---|
PLA extruded film | 0.3 | 112 |
CN-LN-niacinamide PLA extruded film | 0.26 | 115.2 |
gCN-LN-niacinamide PLA extruded film | 0.25 | 116.54 |
CN-LN-glycyrrhetic acid PLA extruded film | 0.24 | 114.76 |
gCN-LN-glycyrrhetic acid PLA extruded film | 0.24 | 112.48 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miletić, A.; Ristić, I.; Coltelli, M.-B.; Pilić, B. Modification of PLA-Based Films by Grafting or Coating. J. Funct. Biomater. 2020, 11, 30. https://doi.org/10.3390/jfb11020030
Miletić A, Ristić I, Coltelli M-B, Pilić B. Modification of PLA-Based Films by Grafting or Coating. Journal of Functional Biomaterials. 2020; 11(2):30. https://doi.org/10.3390/jfb11020030
Chicago/Turabian StyleMiletić, Aleksandra, Ivan Ristić, Maria-Beatrice Coltelli, and Branka Pilić. 2020. "Modification of PLA-Based Films by Grafting or Coating" Journal of Functional Biomaterials 11, no. 2: 30. https://doi.org/10.3390/jfb11020030
APA StyleMiletić, A., Ristić, I., Coltelli, M. -B., & Pilić, B. (2020). Modification of PLA-Based Films by Grafting or Coating. Journal of Functional Biomaterials, 11(2), 30. https://doi.org/10.3390/jfb11020030