Journal Description
Journal of Functional Biomaterials
Journal of Functional Biomaterials
is an international, interdisciplinary, peer-reviewed, open access journal on materials for biomedical use and is published monthly online by MDPI.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within Scopus, SCIE (Web of Science), PubMed, PMC, Embase, Ei Compendex, Inspec, CAPlus / SciFinder, AGRIS, and other databases.
- Journal Rank: JCR - Q1 (Engineering, Biomedical) / CiteScore - Q2 (Biomedical Engineering)
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 16.6 days after submission; acceptance to publication is undertaken in 2.8 days (median values for papers published in this journal in the second half of 2024).
- Recognition of Reviewers: reviewers who provide timely, thorough peer-review reports receive vouchers entitling them to a discount on the APC of their next publication in any MDPI journal, in appreciation of the work done.
Impact Factor:
5.0 (2023);
5-Year Impact Factor:
5.5 (2023)
Latest Articles
Peripheral Nerve Protection Strategies: Recent Advances and Potential Clinical Applications
J. Funct. Biomater. 2025, 16(5), 153; https://doi.org/10.3390/jfb16050153 - 24 Apr 2025
Abstract
Peripheral nerve injuries (PNIs) are a significant clinical challenge, often resulting in persistent sensory and motor deficits despite surgical repair. Autologous nerve grafts remain the gold standard for repair; however, outcomes are frequently suboptimal due to donor site morbidity and inconsistent functional recovery.
[...] Read more.
Peripheral nerve injuries (PNIs) are a significant clinical challenge, often resulting in persistent sensory and motor deficits despite surgical repair. Autologous nerve grafts remain the gold standard for repair; however, outcomes are frequently suboptimal due to donor site morbidity and inconsistent functional recovery. A major obstacle in nerve regeneration is the formation of postoperative adhesions and fibrosis, which impede healing and necessitate revision surgeries. Nerve protectors from biological, synthetic, and hybrid materials offer a promising tissue engineering strategy to enhance nerve regeneration. These protectors are applied as a protective barrier when a nerve is severed without the gap, allowing for direct repair. They provide mechanical support and reduce scarring. Biocompatible biological wraps, including vascularized fat flaps, vein wraps, collagen-based materials, human amniotic membrane (hAM), porcine small intestinal submucosa (PSIS), and chitosan, modulate immune responses and promote vascularization. Synthetic alternatives, like polycaprolactone (PCL), provide mechanical stability with controlled degradation. Hybrid wraps, such as PCL-amnion, combine the benefits of both. Despite optimistic results, the heterogeneity of study methodologies hinders direct comparisons and standardization. This review highlights the latest developments in nerve wraps, their clinical applications, limitations, and future potential, guiding clinicians in selecting the most appropriate materials for peripheral nerve repair.
Full article
(This article belongs to the Special Issue The 15th Anniversary of JFB—Functional Biomaterials: Bioactive Properties and Medical Applications)
►
Show Figures
Open AccessReview
Injectable Stem Cell-Based Therapies for Myocardial Regeneration: A Review of the Literature
by
Marissa Guo, Tatsuya Watanabe and Toshiharu Shinoka
J. Funct. Biomater. 2025, 16(5), 152; https://doi.org/10.3390/jfb16050152 - 23 Apr 2025
Abstract
Stem cell-based therapies are an emerging treatment modality aimed at replenishing lost cardiomyocytes and improving myocardial function after cardiac injury. This review examines the current state of research on injectable stem cell therapies in the setting of cardiovascular disease given their relative simplicity
[...] Read more.
Stem cell-based therapies are an emerging treatment modality aimed at replenishing lost cardiomyocytes and improving myocardial function after cardiac injury. This review examines the current state of research on injectable stem cell therapies in the setting of cardiovascular disease given their relative simplicity and ability for deep myocardial tissue penetration. Various methods of cell delivery, ranging in level of invasiveness and procedural complexity, have been developed, and numerous cell types have been studied as potential sources of stem cells, each with distinct advantages and disadvantages. We discuss key challenges associated with this approach, including low stem cell retention after transplantation and the innovative biomolecular strategies that have been explored to address this issue. Overall, investigations into the application of stem cells toward cardiac regeneration remain predominantly in the preclinical stage with a number of small, early-phase clinical trials. However, continued scientific advancements in stem cell technology may provide transformative treatment options for patients with heart failure, offering improved survival and quality of life.
Full article
(This article belongs to the Special Issue Cardiovascular Tissue Engineering: Current Status and Advances)
►▼
Show Figures

Figure 1
Open AccessReview
Recent Trends in the Application of Cellulose-Based Hemostatic and Wound Healing Dressings
by
Clemence Futila Bukatuka, Bricard Mbituyimana, Lin Xiao, Abeer Ahmed Qaed Ahmed, Fuyu Qi, Manjilla Adhikari, Zhijun Shi and Guang Yang
J. Funct. Biomater. 2025, 16(5), 151; https://doi.org/10.3390/jfb16050151 - 23 Apr 2025
Abstract
Rapid hemostasis and wound healing are crucial severe trauma treatment. Natural mechanisms often prove insufficient, spurring research for innovative biomaterials. This review focuses on cellulose-based materials, which are promising due to their absorbency, biocompatibility, and processability. The novelty lies in exploring how these
[...] Read more.
Rapid hemostasis and wound healing are crucial severe trauma treatment. Natural mechanisms often prove insufficient, spurring research for innovative biomaterials. This review focuses on cellulose-based materials, which are promising due to their absorbency, biocompatibility, and processability. The novelty lies in exploring how these materials promote clotting and tissue regeneration. They operate via extrinsic and intrinsic mechanisms. Extrinsically, they create a matrix at the wound to activate coagulation; intrinsically, they maintain clotting factors. Additionally, they aid healing through physical, chemical, and biological means, such as maintaining moisture, incorporating antimicrobial agents, and stimulating cell activity. The innovative fabrication strategies include material selection and chemical modification. Techniques like oxidation enhance performance. Structural engineering methods like freeze-drying and 3D printing optimize porosity and alignment. Cellulose-based dressings are versatile and effective in various forms. They address different wound needs and show benefits like rapid coagulation and tissue repair. This review also covers challenges and future trends, emphasizing the need to enhance mechanical properties and biodegradability. Further, new technologies offer potential improvements to the nanocomposites. Overall, continued research on cellulose-based dressing is vital, and unlocking their potential could revolutionize wound care, providing suitable solutions for trauma management.
Full article
(This article belongs to the Special Issue Recent Studies on Biomaterials for Tissue Repair and Regeneration)
►▼
Show Figures

Figure 1
Open AccessArticle
Anti-Aging Effects and Mechanisms of Cod Collagen Peptides (CCPs) in Caenorhabditis elegans
by
Jiale Wei, Junjie Zhang, Nan Ding, Yu Liu, Yuzhen Wu and Rui Duan
J. Funct. Biomater. 2025, 16(5), 150; https://doi.org/10.3390/jfb16050150 - 23 Apr 2025
Abstract
Given the growing interest in natural compounds for promoting healthy aging, this study aimed to investigate the potential of cod collagen peptides (CCPs), a readily available marine resource, to extend lifespan and improve health. Lifespan assays were performed on C. elegans treated with
[...] Read more.
Given the growing interest in natural compounds for promoting healthy aging, this study aimed to investigate the potential of cod collagen peptides (CCPs), a readily available marine resource, to extend lifespan and improve health. Lifespan assays were performed on C. elegans treated with different concentrations of CCPs. Furthermore, various stress resistance assays, including those evaluating oxidative and thermal stress, were conducted. To elucidate the underlying mechanisms, gene expression analysis of key aging-related genes was performed. The results demonstrated that treatment with 25 mg/mL of CCPs extended the lifespan of C. elegans by 13.2%, increased body length and width by 14.8% and 20.6%, respectively, and enhanced head-swing and body-bending frequencies by 66.9% and 80.4%. Lipofuscin content and apoptosis were reduced by 45.9% and 34.1%, respectively. C. elegans treated with 25 mg/mL of CCPs also showed improved stress resistance, a 90.7% increase in glutathione peroxidase (GPX) activity, and a 147.4% increase in glutathione (GSH) content. Transcriptomic analysis showed that CCPs enhanced anti-aging activity by activating the MAPK pathway and inhibiting the IIS pathway, which was associated with protein aggregation. It also reduced lipid synthesis and regulated lipid metabolism through the fat-6 pathway. The results indicated that CCPs could be employed as a valuable ingredient in the food and pharmaceutical fields.
Full article
(This article belongs to the Special Issue Natural Biomaterials for Biomedical Applications)
►▼
Show Figures

Figure 1
Open AccessReview
Advances in Synthetic Polymer Membranes for Guided Bone Regeneration in Dental Implants: A Scoping Review
by
Belén Lima-Sánchez, María Baus-Domínguez, María-Angeles Serrera-Figallo and Daniel Torres-Lagares
J. Funct. Biomater. 2025, 16(5), 149; https://doi.org/10.3390/jfb16050149 - 22 Apr 2025
Abstract
Background: Different approaches are proposed for bone volume gain in the case of atrophic alveolar ridges, with guided bone regeneration (GBR) and guided tissue regeneration (GTR) being the most used techniques. These techniques require the placement of barrier membranes, which is the main
[...] Read more.
Background: Different approaches are proposed for bone volume gain in the case of atrophic alveolar ridges, with guided bone regeneration (GBR) and guided tissue regeneration (GTR) being the most used techniques. These techniques require the placement of barrier membranes, which is the main element of the bone growth strategy, among which there is a wide range depending on their origin or degradation. This literature review aims to provide an update on the latest advances in polymeric membranes of synthetic origin currently used in bone regeneration. Materials and Methods: Two bibliographic searches were carried out in the PubMed (MEDLINE) and Scopus databases using a search strategy in which inclusion and exclusion criteria were applied. Results: For the selection of articles, the PRISMA guide flow chart was followed, and after a selection process, 11 articles were analyzed based on the characteristics of the marketed membranes and the results obtained after their use. Conclusions: It can be concluded that polymeric membranes play a fundamental role in guided bone regeneration, providing an effective barrier that facilitates bone growth and improves the success of dental implantology treatments.
Full article
(This article belongs to the Special Issue Advanced Biomaterials for Bone Tissue Engineering)
►▼
Show Figures

Figure 1
Open AccessReview
Sorafenib—Drug Delivery Strategies in Primary Liver Cancer
by
Piotr Szyk, Beata Czarczynska-Goslinska, Marta Ziegler-Borowska, Igor Larrosa and Tomasz Goslinski
J. Funct. Biomater. 2025, 16(4), 148; https://doi.org/10.3390/jfb16040148 - 21 Apr 2025
Abstract
Current primary liver cancer therapies, including sorafenib and transarterial chemoembolization, face significant limitations due to chemoresistance caused by impaired drug uptake, altered metabolism, and other genetic modulations. These challenges contribute to relapse rates of 50–80% within five years. The need for improved treatment
[...] Read more.
Current primary liver cancer therapies, including sorafenib and transarterial chemoembolization, face significant limitations due to chemoresistance caused by impaired drug uptake, altered metabolism, and other genetic modulations. These challenges contribute to relapse rates of 50–80% within five years. The need for improved treatment strategies (adjuvant therapy, unsatisfactory enhanced permeability and retention (EPR) effect) has driven research into advanced drug delivery systems, including targeted nanoparticles, biomaterials, and combinatory approaches. Therefore, this review evaluates recent advancements in primary liver cancer pharmacotherapy, focusing on the potential of drug delivery systems for sorafenib and its derivatives. Approaches such as leveraging Kupffer cells for tumor migration or utilizing smaller NPs for inter-/intracellular delivery, address EPR limitations. Biomaterials and targeted therapies focusing on targeting have demonstrated effectiveness in increasing tumor-specific delivery, but clinical evidence remains limited. Combination therapies have emerged as an interesting solution to overcoming chemoresistance or to broadening therapeutic functionality. Biomimetic delivery systems, employing blood cells or exosomes, provide methods for targeting tumors, preventing metastasis, and strengthening immune responses. However, significant differences between preclinical models and human physiology remain a barrier to translating these findings into clinical success. Future research must focus on the development of adjuvant therapy and refining drug delivery systems to overcome the limitations of tumor heterogeneity and low drug accumulation.
Full article
(This article belongs to the Special Issue 15th Anniversary of JFB—Advanced Biomaterials for Drug Delivery)
►▼
Show Figures

Figure 1
Open AccessArticle
MicroRNA-210 Enhances Cell Survival and Paracrine Potential for Cardiac Cell Therapy While Targeting Mitophagy
by
Rita Alonaizan, Ujang Purnama, Sophia Malandraki-Miller, Mala Gunadasa-Rohling, Andrew Lewis, Nicola Smart and Carolyn Carr
J. Funct. Biomater. 2025, 16(4), 147; https://doi.org/10.3390/jfb16040147 - 21 Apr 2025
Abstract
The therapeutic potential of presumed cardiac progenitor cells (CPCs) in heart regeneration has garnered significant interest, yet clinical trials have revealed limited efficacy due to challenges in cell survival, retention, and expansion. Priming CPCs to survive the hostile hypoxic environment may be key
[...] Read more.
The therapeutic potential of presumed cardiac progenitor cells (CPCs) in heart regeneration has garnered significant interest, yet clinical trials have revealed limited efficacy due to challenges in cell survival, retention, and expansion. Priming CPCs to survive the hostile hypoxic environment may be key to enhancing their regenerative capacity. We demonstrate that microRNA-210 (miR-210), known for its role in hypoxic adaptation, significantly improves CPC survival by inhibiting apoptosis through the downregulation of Casp8ap2, a ~40% reduction in caspase activity, and a ~90% decrease in DNA fragmentation. Contrary to the expected induction of Bnip3-dependent mitophagy by hypoxia, miR-210 did not upregulate Bnip3, indicating a distinct anti-apoptotic mechanism. Instead, miR-210 reduced markers of mitophagy and increased mitochondrial biogenesis and oxidative metabolism, suggesting a role in metabolic reprogramming. Furthermore, miR-210 enhanced the secretion of paracrine growth factors from CPCs, with a ~1.6-fold increase in the release of stem cell factor and of insulin growth factor 1, which promoted in vitro endothelial cell proliferation and cardiomyocyte survival. These findings elucidate the multifaceted role of miR-210 in CPC biology and its potential to enhance cell-based therapies for myocardial repair by promoting cell survival, metabolic adaptation, and paracrine signalling.
Full article
(This article belongs to the Special Issue Cardiovascular Tissue Engineering: Current Status and Advances)
►▼
Show Figures

Figure 1
Open AccessArticle
Bone Regeneration in Defects Created on Rat Calvaria Grafted with Porcine Xenograft and Synthetic Hydroxyapatite Reinforced with Titanium Particles—A Microscopic and Histological Study
by
Antonia Samia Khaddour, Emma Cristina Drăghici, Mihaela Ionescu, Cristina Elena Andrei, Răzvan Eugen Ghiţă, Răzvan Mercuţ, Oana Gîngu, Gabriela Sima, Lavinia Toma Tumbar and Sanda Mihaela Popescu
J. Funct. Biomater. 2025, 16(4), 146; https://doi.org/10.3390/jfb16040146 - 19 Apr 2025
Abstract
(1) Background: Alveolar bone regeneration in dentistry has become important with the evolution of implantology. Biomaterials used for bone grafting are increasingly used to provide resistant bone support that is favorable for the insertion of dental implants. The aim of the study was
[...] Read more.
(1) Background: Alveolar bone regeneration in dentistry has become important with the evolution of implantology. Biomaterials used for bone grafting are increasingly used to provide resistant bone support that is favorable for the insertion of dental implants. The aim of the study was to analyze the degree of biocompatibility and bone neoformation of two biomaterials compared to natural healing. (2) Methods: Bone defects of 3 mm diameter were created in the calvaria of 15 adult male Wistar rats. Three groups were created: group A, in which natural healing was achieved; group B, in which porcine xenograft was added; and group C, in which experimental synthetic bone based on hydroxyapatite reinforced with titanium particles was added. Samples were collected at 2 and 4 months postoperatively and analyzed microscopically and histologically. (3) Results: Data were obtained on the healing pattern of the created cavities, as well as the degree of their filling with newly formed bone tissue. Following the results obtained from the stereomicroscope analysis and histological analysis, statistically significant differences were observed between the two biomaterials regarding the time required for the transformation process of the graft particles into bone. Thus, the porcine xenograft was incorporated more quickly into the native bone, while the synthetic bone required a longer period of time. (4) Conclusions: The bone graft materials used acted as scaffolds for the newly formed bone, but each biomaterial required a different amount of time for the particles to be incorporated into the native bone.
Full article
(This article belongs to the Special Issue Biomaterials and Bioengineering in Dentistry (2nd Edition))
►▼
Show Figures

Figure 1
Open AccessSystematic Review
Advanced Platelet-Rich Fibrin Plus (A-PRF+) as an Additive to Hard Tissue Managing Protocols in Oral Surgery: A Systematic Review
by
Marek Chmielewski, Andrea Pilloni and Paulina Adamska
J. Funct. Biomater. 2025, 16(4), 145; https://doi.org/10.3390/jfb16040145 - 19 Apr 2025
Abstract
Background: Advanced platelet-rich fibrin + (A-PRF+) represents a third generation of autologous platelet derivatives. Appropriate centrifugation conditions cause the formation of a clot containing platelets, which slowly release growth factors that influence healing. The objective of this article was to undertake a review
[...] Read more.
Background: Advanced platelet-rich fibrin + (A-PRF+) represents a third generation of autologous platelet derivatives. Appropriate centrifugation conditions cause the formation of a clot containing platelets, which slowly release growth factors that influence healing. The objective of this article was to undertake a review of the available literature on the effectiveness of A-PRF+ use in hard tissue procedures. Materials and methods: In order to ensure the most accurate and relevant results, only randomized clinical trials regarding bone regeneration techniques/bone healing that compared the effect of the A-PRF+ addition in dentistry were included in this study. Articles taken into consideration for the review were published between the beginning of 2014 and 31 December 2024. The search of manuscripts for the review was conducted using the PubMed, Scopus, Google Scholar, and Cochrane databases. For this study, 10 articles focusing on A-PRF+ were qualified. Results: A-PRF+ was found to increase the post-surgical vertical and horizontal alveolar ridge dimensions. The bone formed in the surgical site presented a higher volume of vital and non-vital bone and a more optimal bone composition, at the same time providing a lower percentage of connective tissue inclusions. When combined with other grafting biomaterials, A-PRF+ enhanced their performance and integration. A-PRF+ did not have any significant effect on the mineral bone density compared with other grafting materials. Compared with PRF and other blood derived plasmas rich in growth factors, the performance of A-PRF+ was generally better, but often with no statistical significance. The treatment of periodontal defects measured by the reduction in pocket depth and clinical attachment level also fared better with the A-PRF+ addition, although there was no differences noted between A-PRF+ and biphasic calcium phosphate and xenograft. Finally, the A-PRF+ addition improved the primary implant stability in the evaluated studies. Conclusions: The A-PRF+ addition to the surgical protocols significantly enhanced the healing of the bone and when combined with biomaterials improved their integration and increased the implant insertion torque, improving the primary and secondary stability. It may be a viable alternative for patients that express their concern towards human- and animal-derived biomaterials.
Full article
(This article belongs to the Special Issue Functional Biomaterials for Regenerative Dentistry)
►▼
Show Figures

Figure 1
Open AccessReview
A Review of Past Research and Some Future Perspectives Regarding Titanium Alloys in Biomedical Applications
by
Alex-Barna Kacsó and Ildiko Peter
J. Funct. Biomater. 2025, 16(4), 144; https://doi.org/10.3390/jfb16040144 - 18 Apr 2025
Abstract
This review paper provides a comprehensive synthesis of the current advancements in investigations of different titanium-based alloys, including pure titanium, commercially available Ti6Al4V, and modified alloys, such as Ti-Nb-Zr-Fe alloys, for biomedical applications. Several researchers have explored the effects of alloying elements and
[...] Read more.
This review paper provides a comprehensive synthesis of the current advancements in investigations of different titanium-based alloys, including pure titanium, commercially available Ti6Al4V, and modified alloys, such as Ti-Nb-Zr-Fe alloys, for biomedical applications. Several researchers have explored the effects of alloying elements and processing techniques on enhancing the mechanical, chemical, and biological properties of these materials. Ti-Nb-Zr-Fe alloys are of particular interest due to their potential to address critical requirements in medical applications, including reduced Young’s modulus, superior corrosion resistance, biocompatibility, and mechanical strength. Despite substantial progress, the detailed mechanisms for optimizing these properties remain underexplored in the current literature. The main objective of the present review paper is to emphasize the importance of ongoing investigations aimed at overcoming challenges such as biocompatibility concerns, fatigue resistance, and wear under biological conditions. By critically analyzing existing data, this study highlights gaps in knowledge and identifies opportunities for advancing research on these alloys. Specifically, this review paper highlights the need for targeted studies to reduce the Young’s modulus and improve other critical characteristics of Ti-Nb-Zr-Fe alloys to better meet the demands of orthopedic implants, dental prosthetics, and cardiovascular devices. Even if the current scientific literature is ample on this topic, we consider that through this review we can positively contribute to the collective effort in this field trying to fill some gaps, including some updates on the topic, time frames, advantages, and limitations, and pave the way for further advancements that could revolutionize biomedical implant technology. The review encompasses studies performed over the last 5 decades, specifically from 1975 to 2025, to ensure the inclusion of the most relevant and up-to-date research. This approach aims to highlight the significant progress made while situating the findings within the broader context of ongoing investigations.
Full article
(This article belongs to the Special Issue Metals and Alloys for Biomedical Application)
►▼
Show Figures

Figure 1
Open AccessArticle
Finite Element Simulation of Biomechanical Effects on Periodontal Ligaments During Maxillary Arch Expansion with Thermoformed Aligners
by
Gustavo A. Rojas, Jose Isidro García-Melo and Juan S. Aristizábal
J. Funct. Biomater. 2025, 16(4), 143; https://doi.org/10.3390/jfb16040143 - 17 Apr 2025
Abstract
Purpose: This paper investigates the biomechanical effect of thermoformed aligners equipped with complementary biomechanical attachments (CBAs) on periodontal ligaments (PDLs) during the expansion process of the maxillary arch. The analysis was conducted using advanced simulations based on the finite element method (FEM). Methods:
[...] Read more.
Purpose: This paper investigates the biomechanical effect of thermoformed aligners equipped with complementary biomechanical attachments (CBAs) on periodontal ligaments (PDLs) during the expansion process of the maxillary arch. The analysis was conducted using advanced simulations based on the finite element method (FEM). Methods: High-resolution 3D CAD models were created for four tooth types: canine, first premolar, second premolar, and first molar. Additional 3D models were developed for aligners, CBAs, and PDLs. These were integrated into a comprehensive FEM model to simulate clinical rehabilitation scenarios. Validation was achieved through comparative analysis with empirical medical data. Results: The FEM simulations revealed the following: for canine, the displacement was 0.134 mm with a maximum stress of 4.822 KPa in the amelocemental junction. For the first premolar, the displacement was 0.132 mm at a maximum stress of 3.273 KPa in the amelocemental junction. The second premolar had a displacement of 0.129 mm and a stress of 1.358 KPa at 1 mm from the amelocemental junction; and first molar had a displacement of 0.124 mm and a maximum stress of 2.440 KPa. Conclusions: The inclusion of CBAs significantly reduced tooth tipping during maxillary arch expansion. Among the models tested, the vestibular CBA demonstrated superior performance, delivering optimal tooth movement when combined with thermoformed aligners. Significance: FEM techniques provide a robust and cost-effective alternative to in vivo experimentation, offering precise and reliable insights into the biomechanical efficacy of CBAs in thermoformed aligners. This approach minimizes experimental variability and accelerates the evaluation of innovative orthodontic configurations.
Full article
(This article belongs to the Special Issue Biomechanical Studies and Biomaterials in Dentistry)
►▼
Show Figures

Figure 1
Open AccessArticle
Enhanced Osteoconductivity of Zirconia Implants with One-Step Femtosecond Laser Treatment Through Morphological and Chemical Modifications
by
Yuqi Li, Yanzhe Fu, Nan Li, Guanqi Liu, Jiebo Li, Jiao Wen and Jianmin Han
J. Funct. Biomater. 2025, 16(4), 142; https://doi.org/10.3390/jfb16040142 - 15 Apr 2025
Abstract
Improving surface bioactivity is crucial to acquiring zirconia implants with ideal osteoconductivity. In this work, we enhanced the surface properties of zirconia implants, specifically roughness, hydrophilicity, and osteoconductivity, using a “one-step” femtosecond laser (FSL) treatment in air, deionized water, and sodium hydroxide solution.
[...] Read more.
Improving surface bioactivity is crucial to acquiring zirconia implants with ideal osteoconductivity. In this work, we enhanced the surface properties of zirconia implants, specifically roughness, hydrophilicity, and osteoconductivity, using a “one-step” femtosecond laser (FSL) treatment in air, deionized water, and sodium hydroxide solution. Zirconia specimens were treated in these media, and their surface morphology, chemical composition, and osteoconductivity were evaluated through various assays. The results showed that FSL treatment successfully created micro/nanoporous structures and increased roughness across all specimens. The liquid media treatment facilitated the grafting of hydroxyl (-OH) groups, significantly improving hydrophilicity. The L-NaOH group exhibited a higher hydroxyl content (28%) compared to the L-Air group (10%), reducing the contact angle significantly. Enhanced osteoblast differentiation and mineralization, along with improved gene expression, were observed in the L-Water and L-NaOH groups. In conclusion, the one-step FSL treatment developed a dual-function bioactive zirconia surface, offering an effective method for the biomedical functionalization of zirconia implants.
Full article
(This article belongs to the Section Dental Biomaterials)
►▼
Show Figures

Figure 1
Open AccessArticle
Impact of Vitamin D3 Functionalization on the Osteogenic Capacity of Bioinspired 3D Scaffolds Based on Ce-Doped Bioactive Glass and Spongia Agaricina
by
Ana-Maria Seciu-Grama, Sorana Elena Lazăr, Simona Petrescu, Oana Cătălina Mocioiu, Oana Crăciunescu and Irina Atkinson
J. Funct. Biomater. 2025, 16(4), 141; https://doi.org/10.3390/jfb16040141 - 14 Apr 2025
Abstract
Reconstruction of extensive bone defects due to age, trauma, or post-illness conditions remains challenging. Biomimetic scaffolds with osteogenic capabilities have been proposed as an alternative to the classical autograft and allograft implants. Three-dimensional scaffolds were obtained based on Ce-doped mesoporous bioactive glass (MBG)
[...] Read more.
Reconstruction of extensive bone defects due to age, trauma, or post-illness conditions remains challenging. Biomimetic scaffolds with osteogenic capabilities have been proposed as an alternative to the classical autograft and allograft implants. Three-dimensional scaffolds were obtained based on Ce-doped mesoporous bioactive glass (MBG) and Spongia agaricina (SA) as sacrificial templates functionalized with vitamin D3. The study aimed to investigate the effect of vitamin D3 functionalization on the optimal variant of a 3D scaffold doped with 3 mol% ceria, selected in our previous work based on its biological and physicochemical properties. Scanning electron microscopy (SEM) images of the non-functionalized/functionalized scaffolds revealed a porous structure with interconnected pores ranging from 100 to 350 μm. Fourier transform infrared spectroscopy (FTIR) and SEM analysis confirmed the surface functionalization. Cytotoxicity evaluation showed that all investigated scaffolds do not exhibit cytotoxicity and genotoxicity toward the Saos-2 osteosarcoma cell line. Moreover, the study demonstrated that functionalization with vitamin D3 enhanced osteogenic activity in dental pulp stem cells (DPSCs) by increasing calcium deposition and osteocalcin secretion, as determined by Alizarin red stain and a colorimetric ELISA kit, as a result of its synergistic action with cerium ions. The results showed that the Ce-doped MBG scaffold functionalized with vitamin D3 had the potential for applications in bone regeneration.
Full article
(This article belongs to the Special Issue Functional Biomaterial for Bone Regeneration)
►▼
Show Figures

Graphical abstract
Open AccessArticle
Surface Micromorphology of Experimental Composites Doped with Bioactive Glass After Different Storage Times
by
Leonardo Svellenti, Moritz Tanner, Andrea Gubler, Matej Par, Thomas Attin, Phoebe Burrer and Tobias T. Tauböck
J. Funct. Biomater. 2025, 16(4), 140; https://doi.org/10.3390/jfb16040140 - 14 Apr 2025
Abstract
Objective: To evaluate the surface micromorphology of bioactive glass-modified resin composite materials after storage in simulated body fluid for different periods of time and ultrasonic cleaning. Materials and methods: A resin composite material (Heliomolar Flow, Ivoclar Vivadent) was modified by incorporating 10 or
[...] Read more.
Objective: To evaluate the surface micromorphology of bioactive glass-modified resin composite materials after storage in simulated body fluid for different periods of time and ultrasonic cleaning. Materials and methods: A resin composite material (Heliomolar Flow, Ivoclar Vivadent) was modified by incorporating 10 or 20 wt% of bioactive glass 45S5. The unmodified conventional composite (0 wt% bioactive glass) served as the control. Surface morphology of light-cured composite specimens was examined by profilometry both before and after storage in simulated body fluid (SBF; pH = 7.4, t = 37 °C) for 0, 3, 7, or 30 days, and surface roughness (Ra) was recorded. After storage, ultrasonic cleaning (UC) of the specimens was performed for 10 min in an ultrasonic bath filled with deionized water, and the profilometric measurements were subsequently repeated. In addition, the surfaces of specimens were examined by scanning electron microscopy (SEM). Results: Directly after specimen preparation, the Ra values of the composites modified with bioactive glass were similar to those of the conventional composite (0 wt% bioactive glass). A longer immersion in SBF and higher added concentrations of bioactive glass led to an increase in surface roughness. SEM examination revealed that precipitates were formed on the surfaces of specimens containing bioactive glass after exposure to SBF for at least 7 days. The density of these precipitates increased with exposure time and added bioactive glass content. After subsequent ultrasonic cleaning, a significant Ra reduction was observed for specimens containing 10 and 20 wt% bioactive glass and stored for 30 days (p < 0.001). For the resin composite material doped with 20 wt% bioactive glass particles, UC revealed a significant Ra reduction at all time points. Conclusion: The increase in the surface roughness of bioactive glass-modified composites after storage in SBF might be partly attributed to precipitate formation on their surfaces. After ultrasonic cleaning, surface roughness was still increased, indicating poorer surface quality compared to conventional composite.
Full article
(This article belongs to the Special Issue New Trends in Biomaterials and Implants for Dentistry (2nd Edition))
►▼
Show Figures

Figure 1
Open AccessArticle
Evaluation of the Characteristics of Digital Light Processing 3D-Printed Magnesium Calcium Phosphate for Bone Regeneration
by
Peng Zhang, Meiling Zhang, Yoo-Na Jung, Seong-Won Choi, Yong-Seok Lee, Geelsu Hwang and Kwi-Dug Yun
J. Funct. Biomater. 2025, 16(4), 139; https://doi.org/10.3390/jfb16040139 - 14 Apr 2025
Abstract
Recent advancements in three-dimensional (3D) printing technology, particularly digital light processing (DLP) 3D printing, have enabled the customization of bone substitutes with specific shapes that match bone defect sizes and geometries. Magnesium calcium phosphate (MCP) has gained considerable attention due to its strong
[...] Read more.
Recent advancements in three-dimensional (3D) printing technology, particularly digital light processing (DLP) 3D printing, have enabled the customization of bone substitutes with specific shapes that match bone defect sizes and geometries. Magnesium calcium phosphate (MCP) has gained considerable attention due to its strong mechanical properties, degradability, and ability to promote bone regeneration. In this study, we prepared MCP samples with five different molar ratios via DLP 3D printing. We analyzed the physicochemical properties of these five groups, including phase compositions and microstructures, which were examined using X-ray diffraction and scanning electron microscopy, respectively. Additionally, we assessed the effects of MCP on material density and shrinkage. Biaxial flexural strength and degradation rate were evaluated; biological properties were examined through WST-8 analysis and alkaline phosphatase activity assays. Among the tested samples, MCP1/1 exhibited the highest strength. A higher proportion of magnesium phosphate in MCP corresponded to an increased degradation rate. Cell response observations in the WST-8 assay indicated that cell proliferation was better in the MCP1/1 group than in the other groups on days 4 and 7 of culturing. Alkaline phosphatase activity assays demonstrated that MCP1/1 exhibited higher activity than calcium phosphate. Our findings suggest that MCP1/1 can be used effectively in bone-tissue-engineering applications.
Full article
(This article belongs to the Special Issue State of the Art: Three-Dimensional Printing Materials and Regenerative Medicine)
►▼
Show Figures

Figure 1
Open AccessArticle
An Assessment of the Micro-Tensile Bond Strength of Composites for Indirect Restoration to Enamel and Dentin
by
Viktoria Petrova, Janet Kirilova and Sevda Yantcheva
J. Funct. Biomater. 2025, 16(4), 138; https://doi.org/10.3390/jfb16040138 - 12 Apr 2025
Abstract
This study aimed to evaluate the micro-tensile bond strength (µTBS) of two types of composites for indirect restoration, luted to enamel and dentin with self-adhesive cement. Moreover, it aimed to evaluate the impact of thermocycling on bond strength. Sixteen flat enamel and dentin
[...] Read more.
This study aimed to evaluate the micro-tensile bond strength (µTBS) of two types of composites for indirect restoration, luted to enamel and dentin with self-adhesive cement. Moreover, it aimed to evaluate the impact of thermocycling on bond strength. Sixteen flat enamel and dentin surfaces of human molars were cemented to equal flat specimens of the laboratory composite Signum ceramis and the CAD/CAM block Cerasmart. Half of the specimens of the group underwent thermocycling. After that, the samples were cut into 80 beams for µTBS analysis. The data were analyzed using Levene’s test and the independent sample t-test. The micro-tensile bond strength tests revealed that thermocycling significantly reduced the adhesive bond. Dentin bonds better to conventional laboratory composites. Enamel bonds are better than composite blocks for milling.
Full article
(This article belongs to the Special Issue Biomechanical Studies and Biomaterials in Dentistry)
►▼
Show Figures

Figure 1
Open AccessArticle
Thermal Dynamics of Laser-Irradiated Trilayer Bonded-Zirconia Structures
by
Mitchell Tharp, Jaccare Jauregui-Ulloa, Grace Mendonça De Souza and Susana Salazar Marocho
J. Funct. Biomater. 2025, 16(4), 137; https://doi.org/10.3390/jfb16040137 - 11 Apr 2025
Abstract
This study aims to assess the thermal dynamics of supporting structures during laser-assisted debonding of bonded yttrium-stabilized zirconia (YSZ) ceramic. We tested the hypothesis that the heat transfer to dentin analog material and composite resin resembles that of dentin. Thirty sintered YSZ (ZirCAD,
[...] Read more.
This study aims to assess the thermal dynamics of supporting structures during laser-assisted debonding of bonded yttrium-stabilized zirconia (YSZ) ceramic. We tested the hypothesis that the heat transfer to dentin analog material and composite resin resembles that of dentin. Thirty sintered YSZ (ZirCAD, Ivoclar, Schann, Liechtenstein) slabs (4 mm diameter, 1 mm thickness) were air particle abraded, followed by two coats of Monobond Plus (Ivoclar). The slabs were bonded to exposed occlusal dentin, NEMA G10 dentin analog, or composite resin cylinders using Multilink Automix (Ivoclar) dual-cured cement. The bonded YSZ specimens (n = 10/group) subjected to irradiation with an Er,Cr:YSGG laser (Waterlase MD, Biolase, Foothill Ranch, CA, USA) at 7.5 W, 25 Hz, with 50% water and air for 15 s. Heat transfer during laser irradiation was monitored with an infrared camera (Optris PI 640, Optris GmbH, Berlin, Germany) at 0.1-s intervals. Data were analyzed using one-way ANOVA, which showed no significant differences in mean temperature between zirconia and cement layers across the substrates (composite resin, G10, dentin) (p = 0.0794). These results suggest flexibility in substrate choice for future thermal dynamics studies under laser irradiation.
Full article
(This article belongs to the Special Issue Property, Evaluation and Development of Dentin Materials)
►▼
Show Figures

Figure 1
Open AccessReview
Therapeutic Potential of Nano-Sustained-Release Factors for Bone Scaffolds
by
Haoran Jiang, Meng Zhang, Yang Qu, Bohan Xing, Bojiang Wang, Yanqun Liu and Peixun Zhang
J. Funct. Biomater. 2025, 16(4), 136; https://doi.org/10.3390/jfb16040136 - 9 Apr 2025
Abstract
Research on nano-sustained-release factors for bone tissue scaffolds has significantly promoted the precision and efficiency of bone-defect repair by integrating biomaterials science, nanotechnology, and regenerative medicine. Current research focuses on developing multifunctional scaffold materials and intelligent controlled-release systems to optimize the spatiotemporal release
[...] Read more.
Research on nano-sustained-release factors for bone tissue scaffolds has significantly promoted the precision and efficiency of bone-defect repair by integrating biomaterials science, nanotechnology, and regenerative medicine. Current research focuses on developing multifunctional scaffold materials and intelligent controlled-release systems to optimize the spatiotemporal release characteristics of growth factors, drugs, and genes. Nano slow-release bone scaffolds integrate nano slow-release factors, which are loaded with growth factors, drugs, genes, etc., with bone scaffolds, which can significantly improve the efficiency of bone repair. In addition, these drug-loading systems have also been extended to the fields of anti-infection and anti-tumor. However, the problem of heterotopic ossification caused by high doses has led to a shift in research towards a low-dose multi-factor synergistic strategy. Multiple Phase II clinical trials are currently ongoing, evaluating the efficacy and safety of nano-hydroxyapatite scaffolds. Despite significant progress, this field still faces a series of challenges: the immunity risks of the long-term retention of nanomaterials, the precise matching of multi-factor release kinetics, and the limitations of the large-scale production of personalized scaffolds. Future development directions in this area include the development of responsive sustained-release systems, biomimetic sequential release design, the more precise regeneration of injury sites through a combination of gene-editing technology and self-assembled nanomaterials, and precise drug loading and sustained release through microfluidic and bioprinting technologies to reduce the manufacturing cost of bone scaffolds. The progress of these bone scaffolds has gradually changed bone repair from morphology-matched filling regeneration to functional recovery, making the clinical transformation of bone scaffolds safer and more universal.
Full article
(This article belongs to the Special Issue Mesoporous Nanomaterials for Bone Tissue Engineering)
►▼
Show Figures

Graphical abstract
Open AccessReview
Antibiotic Action, Drug Delivery, Biodegradability, and Wound Regeneration Characteristics of Surgical Sutures and Cutting-Edge Surgical Suture Manufacturing Technologies
by
Hye-Ree Han
J. Funct. Biomater. 2025, 16(4), 135; https://doi.org/10.3390/jfb16040135 - 8 Apr 2025
Abstract
(1) Background: With the emergence of various super bacteria, interest in antibacterial properties, drug delivery, and wound regeneration is increasing in the field of surgical materials. There are many studies on surgical sutures, but not many recent ones that have studied structurally subdivided
[...] Read more.
(1) Background: With the emergence of various super bacteria, interest in antibacterial properties, drug delivery, and wound regeneration is increasing in the field of surgical materials. There are many studies on surgical sutures, but not many recent ones that have studied structurally subdivided functions. Accordingly, various studies on surgical sutures were classified based on the main functions that are considered important, and studies were conducted by categorizing the latest production technology into 3D printing and electrospinning. (2) Methods: Data from the literature (n = 1077) were collected from databases such as PubMed, Harvard.edu, MDPI, Google Scholar, Web of Science, ACS, Nature, and IOP Publishing. The selected 103 papers were divided into two main groups: cutting-edge characteristics of surgical sutures and the latest technologies for manufacturing surgical sutures. (3) Results: Cutting-edge characteristics of surgical sutures were divided into four major categories: antibacterial, drug delivery, biodegradability, and wound regeneration, and examined in depth. In addition, the final technologies for manufacturing surgical sutures were divided into electrospinning and 3D printing. (4) Conclusions: The results of this study can contribute to the development of multifunctional surgical sutures that promote wound regeneration through antibacterial properties, drug elution, and biodegradability.
Full article
(This article belongs to the Topic New Challenges in the Cosmetics Industry)
►▼
Show Figures

Figure 1
Open AccessArticle
Evaluation of Biomechanical Effects of Mandible Arch Types in All-on-4 and All-on-5 Dental Implant Design: A 3D Finite Element Analysis
by
Sema Nur Sevinç Gül, Fahri Murat and Abdullah Tahir Şensoy
J. Funct. Biomater. 2025, 16(4), 134; https://doi.org/10.3390/jfb16040134 - 7 Apr 2025
Abstract
This study evaluates the biomechanical effects of different implant configurations in various mandibular arch types using finite element analysis (FEA). Stress distribution and deformation patterns were analyzed under different loading conditions in square, U-shaped, and V-shaped arches. The results indicate that increasing the
[...] Read more.
This study evaluates the biomechanical effects of different implant configurations in various mandibular arch types using finite element analysis (FEA). Stress distribution and deformation patterns were analyzed under different loading conditions in square, U-shaped, and V-shaped arches. The results indicate that increasing the number of implants generally reduces cortical bone stress, particularly in U and V arches, while implant-level stress tends to increase. Under molar loading, cortical bone stress in the square arch decreased by 16.9% (from 90.61 MPa to 75.27 MPa) with the All-on-5 system, while implant stress in the V arch dropped by 46.26% (from 142.35 MPa to 76.5 MPa). Additionally, the cantilever effect in All-on-4 configurations resulted in higher stress on the prosthesis and implants, particularly in V arches. While the All-on-5 system provided better load distribution, the study highlights the importance of optimizing implant positioning based on mandibular anatomy. Despite limitations such as the use of static forces and standardized arch types, these findings offer valuable insights into the biomechanical performance of full-arch implant rehabilitations, supporting future clinical applications and research.
Full article
(This article belongs to the Section Dental Biomaterials)
►▼
Show Figures

Figure 1

Journal Menu
► ▼ Journal Menu-
- JFB Home
- Aims & Scope
- Editorial Board
- Topical Advisory Panel
- Instructions for Authors
- Special Issues
- Topics
- Sections & Collections
- Article Processing Charge
- Indexing & Archiving
- Editor’s Choice Articles
- Most Cited & Viewed
- Journal Statistics
- Journal History
- Journal Awards
- Conferences
- Editorial Office
Journal Browser
► ▼ Journal BrowserHighly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
Applied Sciences, Bioengineering, Coatings, Metals, JFB, Materials
Towards Load-Bearing Biomedical Titanium-Based Alloys: From Essential Requirements to Future Developments
Topic Editors: Liqiang Wang, Yanhua ChenDeadline: 31 December 2025
Topic in
JFB, Materials, Prosthesis, IJMS, Oral, JCM
New Technological and Clinical Advances for Controlling Peri-Implantitis
Topic Editors: Javier Gil, Eugenio Velasco-Ortega, Aritza Brizuela-Velasco, Conrado AparicioDeadline: 31 March 2026
Topic in
Cancers, IJMS, Applied Nano, JFB, Nanomaterials
Nanotechnology Therapies for Cancers
Topic Editors: Deepak Parashar, Vivek K. KashyapDeadline: 31 December 2026

Conferences
Special Issues
Special Issue in
JFB
Feature Review Papers on Dental Biomaterials
Guest Editor: Gianrico SpagnuoloDeadline: 30 April 2025
Special Issue in
JFB
Bioceramics and Bioactive Glass-Based Materials (2nd Edition)
Guest Editors: Anişoara Cîmpean, Florin MiculescuDeadline: 30 April 2025
Special Issue in
JFB
3D Bioprinting for Medical Applications
Guest Editors: Marta Klak, Michal WszołaDeadline: 30 April 2025
Special Issue in
JFB
Molecular Mechanisms and Biological Procedures of Biomaterials in Medical Applications
Guest Editor: Yi ZhangDeadline: 30 April 2025
Topical Collections
Topical Collection in
JFB
Biocements for Medical/Dental Purposes
Collection Editor: James Kit-Hon Tsoi
Topical Collection in
JFB
Feature Papers in Biomaterials for Healthcare Applications
Collection Editor: Dimitrios Karamichos
Topical Collection in
JFB
Feature Papers in Biomaterials for Drug Delivery
Collection Editor: Junjie Li