Journal Description
Journal of Functional Biomaterials
Journal of Functional Biomaterials
is an international, interdisciplinary, peer-reviewed, open access journal on materials for biomedical use and is published monthly online by MDPI.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within Scopus, SCIE (Web of Science), PubMed, PMC, Embase, Ei Compendex, Inspec, CAPlus / SciFinder, and other databases.
- Journal Rank: JCR - Q1 (Engineering, Biomedical) / CiteScore - Q2 (Biomedical Engineering)
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 15.9 days after submission; acceptance to publication is undertaken in 3.4 days (median values for papers published in this journal in the first half of 2025).
- Recognition of Reviewers: reviewers who provide timely, thorough peer-review reports receive vouchers entitling them to a discount on the APC of their next publication in any MDPI journal, in appreciation of the work done.
Impact Factor:
5.2 (2024);
5-Year Impact Factor:
5.2 (2024)
Latest Articles
Biocompatibility Evaluation of Porcine-Derived Collagen Sheets for Clinical Applications: In Vitro Cytotoxicity, In Vivo Sensitization, and Intracutaneous Reactivity Studies
J. Funct. Biomater. 2025, 16(9), 347; https://doi.org/10.3390/jfb16090347 (registering DOI) - 15 Sep 2025
Abstract
Biocompatibility evaluation of medical devices is essential for ensuring safety, with ISO 10993 series being the standard. However, these tests can be time-consuming and resource-intensive. This study assessed the early-stage biocompatibility of a collagen matrix derived from porcine dermis using three selective ISO
[...] Read more.
Biocompatibility evaluation of medical devices is essential for ensuring safety, with ISO 10993 series being the standard. However, these tests can be time-consuming and resource-intensive. This study assessed the early-stage biocompatibility of a collagen matrix derived from porcine dermis using three selective ISO tests: in vitro cytotoxicity, in vivo sensitization, and irritation. Collagen was hydrolyzed, purified from miniature pig skin, and then processed into porous sheets via lyophilization. Extracts were prepared using both polar and non-polar extraction vehicles for biological testing. Cytotoxicity testing with mouse fibroblast cells showed no significant cytotoxic effects, with cell morphology and viability comparable to controls. Sensitization testing in guinea pigs, involving intradermal and topical exposure, revealed no allergic responses. Irritation testing in rabbits showed no signs of irritation. The cytotoxicity test took 3 days, the sensitization test 28 days, and the irritation test 7 days, all of which proved suitable for early biocompatibility screening. These results confirmed that the collagen matrix is non-cytotoxic, non-sensitizing, and non-irritant for a month. The use of these three tests enables early identification of unsafe materials, reducing time, cost, and animal use before advancing to more complex ISO 10993 studies. Therefore, they are appropriate and necessary for early feasibility decisions in medical device development.
Full article
(This article belongs to the Special Issue Biocompatible Research of Materials in Biomedical Applications)
►
Show Figures
Open AccessArticle
Anti-Swelling Antibacterial Hydrogels Based on Electrostatic Repulsion and Hydrophobic Interactions for Human Motion Sensing
by
Zexing Deng, Litong Shen, Qiwei Cheng, Ying Li, Tianming Du and Xin Zhao
J. Funct. Biomater. 2025, 16(9), 346; https://doi.org/10.3390/jfb16090346 - 14 Sep 2025
Abstract
The development of high-performance sensing materials is critical for advancing bioelectronics. Conductive hydrogels, with their unique flexibility, are promising candidates for biomedical sensors. However, traditional conductive hydrogels often suffer from excessive swelling and undesirable antibacterial activity, limiting their practical use. To overcome these
[...] Read more.
The development of high-performance sensing materials is critical for advancing bioelectronics. Conductive hydrogels, with their unique flexibility, are promising candidates for biomedical sensors. However, traditional conductive hydrogels often suffer from excessive swelling and undesirable antibacterial activity, limiting their practical use. To overcome these challenges, anti-swelling, antibacterial, and ionically conductive hydrogels were built through free radical polymerization. The preparation was conducted using a monomer mixture comprising acrylic acid (AA), the antibacterial zwitterionic compound [2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)ammonium hydroxide (SBMA), and the hydrophobic monomer lauryl methacrylate (LMA). The protonation of SBMA by AA enables electrostatic repulsion, thereby imparting anti-swelling properties to the hydrogel. The introduction of hydrophobic LMA components further enhances the anti-swelling and mechanical performance of hydrogel. The resulting hydrogel exhibits excellent anti-swelling property with a swelling ratio of 59.36% after 120 h and good mechanical performance with a tensile strength of 158 kPa, an elongation at break of 176%, and a compressive strength of 0.37 MPa at 80% strain. In addition, hydrogels possess superior sensing performance for strain sensing with a gauge factor of 1.315 within 40–60% of strain, 330 ms of response time, and 177 ms of recovery time. Furthermore, the hydrogel is capable of monitoring human motion and physiological signals. These attributes make it highly suitable for wearable sensors and biomedical monitoring applications.
Full article
(This article belongs to the Special Issue Biomaterials, Bioconjugated Materials, and Biomaterial Composites with Antimicrobial Properties)
►▼
Show Figures

Figure 1
Open AccessArticle
Clinical and Radiological Evaluation of Flap and Flapless Procedures with Biomaterials in Alveolar Ridge Preservation
by
Ewa Dolińska, Ewa Duraj, Marcin Bernaczyk, Magdalena Sulewska and Małgorzata Pietruska
J. Funct. Biomater. 2025, 16(9), 345; https://doi.org/10.3390/jfb16090345 - 14 Sep 2025
Abstract
Although ridge preservation procedures have been shown to prevent post-extraction bone loss, the effectiveness of using a flap or flapless surgical approach remains unclear. The aim of the study was to compare the mentioned above alveolar ridge preservation procedures in the esthetic region
[...] Read more.
Although ridge preservation procedures have been shown to prevent post-extraction bone loss, the effectiveness of using a flap or flapless surgical approach remains unclear. The aim of the study was to compare the mentioned above alveolar ridge preservation procedures in the esthetic region of maxilla. Twenty-nine patients were randomly assigned to receive flap (n = 14) or flapless (n = 15) alveolar ridge preservation procedure. Sockets were grafted with alloplastic biomaterial, then covered with a collagen membrane in both groups. Clinical examinations were performed over a 6-month observation period and radiological (CBCT) examination was conducted before and 6 months after treatment. For both after flap and flapless procedures, there was a reduction in interdental papillae height and keratinized tissue width, increase in buccal soft tissues thickness with a decrease in radiological buccal bone plate width, decrease in radiological buccal and lingual plate height (significantly for the flapless group) and radiological alveolar process width reduction (significantly in flapless group at the height of 5 mm and 7 mm from the bottom of the socket). A decrease in the radiological buccal bone plate width was observed, where the further measuring point was from the bottom of the alveolus. In the mucoperiosteal flap preparation, group buccal bone plate width reduction at the height 3 mm, 5 mm and 7 mm was significant and in the flapless group a significant decrease was observed from 5 to 9 mm from the bottom of the socket. Despite ridge preservation, there is soft tissue thickening and a decrease in bone height and width regardless of the flap/flapless method used.
Full article
(This article belongs to the Special Issue Functional Biomaterial for Bone Regeneration (2nd Edition))
►▼
Show Figures

Figure 1
Open AccessArticle
Antibacterial Activity of a Trace-Cu-Modified Mg Alloy in Simulated Intestinal Fluid
by
Baiyun Zhong, Zemeng Wei, Yi Yao, Lixun Jiang, Manli Zhou, Jinping Li, Weidong Liu, Xin Li and Ming-Chun Zhao
J. Funct. Biomater. 2025, 16(9), 344; https://doi.org/10.3390/jfb16090344 - 12 Sep 2025
Abstract
Mg alloys hold promise for biodegradable gastrointestinal implants, but most evaluations rely on simplified media like Hank’s solution, which lacks organic components and fails to replicate the acidic-to-alkaline transition of intestinal fluid, risking underestimation of biodegradation rates and clinical relevance. This work investigated
[...] Read more.
Mg alloys hold promise for biodegradable gastrointestinal implants, but most evaluations rely on simplified media like Hank’s solution, which lacks organic components and fails to replicate the acidic-to-alkaline transition of intestinal fluid, risking underestimation of biodegradation rates and clinical relevance. This work investigated a trace-Cu-modified Mg alloy (Mg-0.05Cu) in simulated intestinal fluid (SIF) versus Hank’s solution. Microstructural analysis confirmed Mg2Cu intermetallic phases as Cu reservoirs. Electrochemical and immersion tests revealed significantly accelerated biodegradation in SIF, due to its disruption of protective layer formation, sustaining loose biodegradation products. The biodegradation rate of the trace-Cu-modified Mg alloy in SIF was consistent with reported values for Mg alloys in similar media, as was that in Hank’s solution. Remarkably, Mg-0.05Cu exhibited potent antibacterial activity against E. coli, achieving 99.3% eradication within 12 h and 100% elimination by 24–48 h, alongside excellent cytocompatibility with L929 cells (>95% viability). This efficacy arose from the synergistic Cu2+ release and high-pH microenvironment. These findings demonstrate that trace Cu alloying in high-purity Mg balances rapid antibacterial action with controlled biodegradation in a physiologically relevant SIF. This positions Mg-0.05Cu as a highly promising candidate for practical applications, such as biodegradable intestinal stents, anti-adhesion barriers, anastomosis rings, and anti-obesity devices, where rapid infection control and predictable degradation are critical for clinical success. This work underscores the importance of using biomimetic media for evaluating gastrointestinal implants and establishes Mg-0.05Cu as a promising strategy for developing infection-resistant biodegradable devices.
Full article
(This article belongs to the Special Issue Antimicrobial Biomaterials for Medical Applications)
►▼
Show Figures

Figure 1
Open AccessArticle
Electrophoretic Coatings for Orthodontic Implants: Evaluation of Surface Properties, Adhesion, and Antibacterial Activity in Simulated Implantation Trials
by
Maria Biegun-Żurowska, Karolina Klesiewicz, Katarzyna Matysiak, Marcin Gajek, Alicja Rapacz-Kmita and Magdalena Ziąbka
J. Funct. Biomater. 2025, 16(9), 343; https://doi.org/10.3390/jfb16090343 - 12 Sep 2025
Abstract
In this study, the properties of electrophoretically deposited (EPD) coatings on orthodontic implants made from Ti-6Al-4V alloy were evaluated during simulated implantation trials on animal bones. Three types of chitosan-based coatings were prepared using EPD: titanium nitride microparticles (TiNPs), titanium nitride nanoparticles (TiNNPs),
[...] Read more.
In this study, the properties of electrophoretically deposited (EPD) coatings on orthodontic implants made from Ti-6Al-4V alloy were evaluated during simulated implantation trials on animal bones. Three types of chitosan-based coatings were prepared using EPD: titanium nitride microparticles (TiNPs), titanium nitride nanoparticles (TiNNPs), and boron nitride particles (BNPs). Each of these coatings was also modified by adding a polylactic acid (PLA) layer using a dip-coating technique to compare their properties with and without this additional layer. The coatings were analysed using optical microscopy, confocal microscopy, and scanning electron microscopy (SEM) with elemental analysis. Surface roughness measurements of the coated implants were also conducted to highlight differences that could significantly influence the type and strength of the bone-implant interface, directly affecting the stability of the implant as an anchorage unit. Eventually, to evaluate the antibacterial properties of the EPD coatings, their antibacterial activity against both Gram-positive and Gram-negative bacteria strains was tested. Scanning electron observations confirmed the homogenous distribution of micro- and nanoparticles in all coatings. The highest surface roughness values were observed in layers containing titanium nitride nanoparticles (TiNNPs) and chitosan. The presence of an additional dip-coating PLA layer improved the adhesion, and its effect on the surface roughness depended on the particle size. While the antibacterial properties of the coatings show promising results, achieving optimal adhesion of the coatings to implants remains a challenge that requires further development.
Full article
(This article belongs to the Special Issue Surface Analyses, Physicochemical and Mechanical Properties of Dental Biomaterials (2nd Edition))
►▼
Show Figures

Graphical abstract
Open AccessReview
Influence of Design Parameters on Implant Abutment Performance: A Scoping Review
by
Vladimir Prpic, Petar Kosec, Stanko Skec and Amir Catic
J. Funct. Biomater. 2025, 16(9), 342; https://doi.org/10.3390/jfb16090342 - 11 Sep 2025
Abstract
Implant abutments serve as the critical interface between dental implants and prosthodontic restorations, playing a central role in the functional and aesthetic success of implant-supported rehabilitations. With the development of CAD/CAM technologies, dental implantology has experienced a significant transformation. The latest and still
[...] Read more.
Implant abutments serve as the critical interface between dental implants and prosthodontic restorations, playing a central role in the functional and aesthetic success of implant-supported rehabilitations. With the development of CAD/CAM technologies, dental implantology has experienced a significant transformation. The latest and still unexplored field of science includes an advanced algorithm-driven process known as generative design. Generally, generative design is used to investigate a broad spectrum of design alternatives that satisfy predetermined criteria established by a designer. Prior to the application of generative design, it is essential to define the key parameters that influence the optimization of the designed object’s configuration, such as a hybrid implant abutment. A bibliographic search was performed using PubMed and Scopus databases to identify relevant studies published up to 1 July 2025. Studies that investigated transmucosal and prosthodontic height of implant abutments were selected for inclusion. Only 13 studies met inclusion criteria and were further analyzed. Included studies showed the importance of transmucosal and prosthodontic height of implant abutments in order to reduce possible complications. The review highlights the importance of optimizing the transmucosal and transgingival heights of implant abutments. For predictable biological and mechanical outcomes, both dimensions should be at least 2 mm. The obtained parameter values will be used to create the initial parametric model, which will then be utilized in the generative design process of hybrid implant abutments.
Full article
(This article belongs to the Special Issue The Development and Future of Dental Implants)
►▼
Show Figures

Figure 1
Open AccessSystematic Review
Types of Bone Substitutes and Their Application in Regenerative Medicine: A Systematic Review
by
Nikoleta Ivanova, Stoyan Ivanov, Stefan Peev and Tsanka Dikova
J. Funct. Biomater. 2025, 16(9), 341; https://doi.org/10.3390/jfb16090341 - 9 Sep 2025
Abstract
Background: The growing demand for effective methods of bone tissue regeneration highlights the relevance of studying modern bone substitutes and their applications in regenerative medicine. The aim of this work was to conduct a comprehensive analysis of the biological, mechanical, and clinical characteristics
[...] Read more.
Background: The growing demand for effective methods of bone tissue regeneration highlights the relevance of studying modern bone substitutes and their applications in regenerative medicine. The aim of this work was to conduct a comprehensive analysis of the biological, mechanical, and clinical characteristics of various types of bone substitutes to determine their potential in regenerative medicine. Methods: The study was performed as a systematic literature review in accordance with PRISMA guidelines, analyzing 68 high-quality scientific sources from 2019 to May 2025, using the PubMed, Scopus, Web of Science, and Google Scholar databases. Results: It was established that autogenous grafts exhibit the highest osteogenic properties due to the presence of growth factors BMP-2, BMP-7, and concentrated growth factors; however, their use is limited by donor site morbidity in 20–30% of patients and the requirement to treat 6% of fractures complicated by non-union. Allogeneic and xenogeneic substitutes provide structural support for large defects but require intensive processing in accordance with European Directives 2004/23/EC and 2006/86/EC to minimize the risk of infection transmission. Synthetic substitutes based on calcium phosphate ceramics with pore sizes ranging from 23 to 210 micrometres demonstrate excellent biocompatibility and controlled degradation, with β-tricalcium phosphate exhibiting optimal characteristics for long-term applications compared to calcium sulphate. Conclusions: The findings of the study highlight the necessity of a personalized approach in selecting bone substitutes, considering the specific requirements of medical specialities, and support the development of hybrid biomaterials to combine structural strength with biological activity.
Full article
(This article belongs to the Special Issue The 15th Anniversary of JFB—Functional Biomaterials: Bioactive Properties and Medical Applications)
►▼
Show Figures

Figure 1
Open AccessArticle
Intraoperative Biologization of β-TCP and PCL-TCP by Autologous Proteins
by
Andrea Sowislok, Gerrit Gruber, Farnusch Kaschani, Markus Kaiser, Eleftherios Papaeleftheriou and Marcus Jäger
J. Funct. Biomater. 2025, 16(9), 340; https://doi.org/10.3390/jfb16090340 - 9 Sep 2025
Abstract
Protein adsorption on orthopedic biomaterials during the initial intraoperative contact critically influences biological responses and osseointegration. Osteoconductive grafts such as β-tricalcium phosphate (β-TCP) and poly (ε-caprolactone)-β-TCP (PCL-TCP) can be functionally activated by exposure to autologous tissue. However, the composition and relevance of the
[...] Read more.
Protein adsorption on orthopedic biomaterials during the initial intraoperative contact critically influences biological responses and osseointegration. Osteoconductive grafts such as β-tricalcium phosphate (β-TCP) and poly (ε-caprolactone)-β-TCP (PCL-TCP) can be functionally activated by exposure to autologous tissue. However, the composition and relevance of the resulting protein layer still remain unclear. In this study involving 10 patients undergoing primary total hip arthroplasty, β-TCP and PCL-TCP samples were incubated both in the femoral medullary cavity and within a surgical tissue collector harvesting autologous tissue (blood, bone fragments, muscle, and fat). Surface morphology was assessed microscopically, and protein adsorption was characterized via high-resolution LC-MS/MS with subsequent bioinformatics and statistical analysis. Both materials adsorbed over 2000 different autologous proteins. β-TCP showed higher overall protein concentrations, while PCL-TCP demonstrated greater proteomic diversity and incubation method-dependent shifts in protein profiles, influenced by surface roughness and wettability. Samples incubated in the tissue collector exhibited less protein variability and smaller material-specific differences compared to incubation in the femoral cavity, particularly for PCL-TCP. Predominant proteins were linked to immune regulation, stress response, and protein metabolism. These findings emphasize the impact of material properties and incubation environment on protein adsorption, with ex vivo incubation leading to more consistent protein adsorption patterns.
Full article
(This article belongs to the Special Issue Functional Scaffolds for Bone and Joint Surgery)
►▼
Show Figures

Figure 1
Open AccessArticle
Impact of 45S5-Bioactive Glass on Chondrocytes in Knee Osteoarthritis—In Vitro Study Exploring Cellular Responses
by
Max Marinescu, Sébastien Hagmann, Jörg Fellenberg, Elena Tripel, Simone Gantz, Ravikumar Mayakrishnan, Aldo R. Boccaccini, Tobias Renkawitz, Babak Moradi, Fabian Westhauser and Hadrian Platzer
J. Funct. Biomater. 2025, 16(9), 339; https://doi.org/10.3390/jfb16090339 - 9 Sep 2025
Abstract
Osteoarthritis (OA), the most common joint disease, is marked by cartilage degradation and chronic inflammation. While 45S5-bioactive glass (45S5-BG) is well-established in bone regeneration and has been suggested to exert immunomodulatory effects, its impact on OA chondrocytes remains largely unexplored. Therefore, this in
[...] Read more.
Osteoarthritis (OA), the most common joint disease, is marked by cartilage degradation and chronic inflammation. While 45S5-bioactive glass (45S5-BG) is well-established in bone regeneration and has been suggested to exert immunomodulatory effects, its impact on OA chondrocytes remains largely unexplored. Therefore, this in vitro study investigated the effects of 45S5-BG microparticles (0.125 mg/mL) on chondrocytes derived from OA patients, evaluating its therapeutic potential in OA. Chondrocytes were cultured with or without 45S5-BG for 1 and 7 days. Gene expression of cartilage markers, cytokines, matrix metalloproteinases (MMPs), and toll-like receptors (TLRs) was analyzed by qPCR. Protein levels were assessed by ELISA. 45S5-BG stimulation significantly altered chondrocyte activity, inducing upregulation of IL-6, IL-1β, TNF-α, MMP-1/-3/-13, and TLR4. Expression of ACAN and COL2A1 was reduced, while COL10A1—a marker of chondrocyte hypertrophy—was significantly increased at day 1. These findings show a catabolic and pro-inflammatory shift in chondrocyte phenotype upon 45S5-BG exposure, showing no therapeutic benefit of 45S5-BG on OA chondrocytes. However, considering the pronounced effects on chondrocyte activity and the well-established bioactivity and biocompatibility of 45S5-BG, our findings suggest that modified BG formulations could be developed to enhance chondroprotective and anti-inflammatory properties, warranting further investigation in co-culture and in vivo models.
Full article
(This article belongs to the Special Issue Bioactive Glass in Tissue Engineering Applications)
►▼
Show Figures

Figure 1
Open AccessReview
Modified Polysaccharides: Potential Biomaterials for Bioprinting
by
Tao Jiang, Yun Yang, Zening Lin, Yang Hong and Zirong Luo
J. Funct. Biomater. 2025, 16(9), 338; https://doi.org/10.3390/jfb16090338 - 9 Sep 2025
Abstract
Polysaccharides have emerged as promising biomaterials for 3D bioprinting due to their inherent biocompatibility, biodegradability, and structural diversity. However, their limited mechanical strength, insufficient bioactivity, and suboptimal printability hinder their direct application in fabricating complex tissue constructs. This review systematically summarizes universal modification
[...] Read more.
Polysaccharides have emerged as promising biomaterials for 3D bioprinting due to their inherent biocompatibility, biodegradability, and structural diversity. However, their limited mechanical strength, insufficient bioactivity, and suboptimal printability hinder their direct application in fabricating complex tissue constructs. This review systematically summarizes universal modification strategies to address these challenges by tailoring polysaccharides’ physicochemical and biological properties. We first analyse the fundamental requirements of bioprinting materials, emphasising on the critical role of shear-thinning behaviours, post-printing structural fidelity, and cell-instructive functions. Subsequently, we highlight the advantages and limitations of representative polysaccharides, including chitosan, alginate, and hyaluronic acid. Chemical functionalisation, physical reinforcement, and biological hybridisation are proposed as versatile approaches to synergistically enhance printability, mechanical robustness, and bioactivity to tackle the limitations. Furthermore, dynamic crosslinking mechanisms enabling self-healing and stimuli-responsive behaviours are discussed as emerging solutions for constructing biomimetic architectures. Finally, we outline future directions in balancing material processability with cellular viability and scaling up modified polysaccharides for clinical translation. This review aims to provide a design blueprint for engineering polysaccharide-based bioinks toward next-generation regenerative medicine.
Full article
(This article belongs to the Special Issue Review Papers in Biomaterials for Tissue Engineering and Regenerative Medicine)
►▼
Show Figures

Figure 1
Open AccessArticle
Comparative Evaluation of the Bone Regenerative Potential of a Novel Calcium Silicate-Modified Calcium Carbonate Graft Material: Histological and Micro-Computed Tomography Assessment Using a Rat Calvarial Defect Model
by
Masataka Nakayama, Yu Kataoka, Naoki Kitamura, Chie Watanabe, Satoko Kujiraoka, Kikue Yamaguchi, Yuma Seki, Toshitake Furusawa, Hidero Unuma and Motohiro Munakata
J. Funct. Biomater. 2025, 16(9), 337; https://doi.org/10.3390/jfb16090337 - 9 Sep 2025
Abstract
In the present study, we evaluated the usefulness of a porous sintered calcium carbonate body with CaSiO3 by comparing its osteogenic capacity with that of calcium carbonate without CaSiO3 and that of β-tricalcium phosphate (TP). A cranial defect model of eight-week-old
[...] Read more.
In the present study, we evaluated the usefulness of a porous sintered calcium carbonate body with CaSiO3 by comparing its osteogenic capacity with that of calcium carbonate without CaSiO3 and that of β-tricalcium phosphate (TP). A cranial defect model of eight-week-old male Wistar rats was divided into three groups: calcium carbonate (CC), calcium carbonate-CaSiO3 composite (CC+CS), and TP. Micro-computed tomography (CT) and histological analysis were performed at four and eight weeks postoperatively. Upon quantitative evaluation of newly formed bone volume by radiography, the CC+CS group demonstrated the highest value at eight weeks postoperatively and exhibited significantly more new bone formations than the CC group (p < 0.05). Upon histological evaluation, the CC+CS group demonstrated significantly higher new bone formation than the CC group (p < 0.05). Furthermore, in terms of residual graft material ratio, at eight weeks postoperatively, the amount of residual graft material in the CC+CS group was significantly higher than that in the TP group (p < 0.05). Therefore, the addition of CaSiO3 enhances the functional regulation of calcium carbonate-based artificial bone and can be incorporated in bone graft materials.
Full article
(This article belongs to the Section Biomaterials and Devices for Healthcare Applications)
►▼
Show Figures

Figure 1
Open AccessSystematic Review
Propolis as a Natural Remedy in Reducing Dental Plaque and Gingival Inflammation: A Systematic Review and Meta-Analysis
by
Magdalena Sycińska-Dziarnowska, Liliana Szyszka-Sommerfeld, Monika Bugajska, Magdalena Ziąbka, Izabela Szućko-Kociuba, Gianrico Spagnuolo, Krzysztof Woźniak and Hyo-Sang Park
J. Funct. Biomater. 2025, 16(9), 336; https://doi.org/10.3390/jfb16090336 - 8 Sep 2025
Abstract
Dental plaque, if not regularly removed through proper oral hygiene, can lead to tooth decay, gingivitis, and more severe periodontal disease. Effective plaque removal is essential in preventing gingivitis, the precursor to periodontitis. Propolis, a bee product known for its antibacterial, anti-inflammatory, and
[...] Read more.
Dental plaque, if not regularly removed through proper oral hygiene, can lead to tooth decay, gingivitis, and more severe periodontal disease. Effective plaque removal is essential in preventing gingivitis, the precursor to periodontitis. Propolis, a bee product known for its antibacterial, anti-inflammatory, and antioxidant properties, has shown potential in dental applications. This systematic review and meta-analysis was conducted to evaluate the efficacy of propolis-containing mouthwashes and toothpastes in reducing dental plaque and gingival inflammation. Materials and Methods: The study protocol was registered in PROSPERO (CRD42023467573), and the review was conducted in accordance with PRISMA guidelines. A comprehensive search of PubMed, PubMed Central, Embase, Scopus, and Web of Science was performed up to 10 May 2025 to identify randomized controlled trials and observational studies assessing propolis-based mouthwashes or toothpastes. Data synthesis used random-effects meta-analysis due to anticipated heterogeneity among studies. Results: Seven randomized controlled trials were included in the meta-analysis, evaluating the efficacy of propolis alcohol-free mouthwash on plaque index (PI) and gingival index (GI). For PI, the pooled standardized mean difference (SMD) was 1.74 (95% CI: 0.19–3.29; p = 0.036), with low between-study heterogeneity (I2 = 13.7%). For GI, the pooled SMD was 2.19 (95% CI: 1.10–3.29; p = 0.005), with no observed heterogeneity (I2 = 0.0%). Propolis mouthwashes demonstrated large effect sizes, significantly reducing plaque accumulation and gingival inflammation compared to baseline. Conclusions: The evidence supports the potential of propolis-containing mouthwashes and toothpastes in managing dental plaque and gingival health. Propolis-based oral care products could be a valuable addition to preventive strategies in dental hygiene, offering an alternative for reducing dental plaque and gingival inflammation.
Full article
(This article belongs to the Special Issue Dental Biomaterials in Implantology and Orthodontics)
►▼
Show Figures

Figure 1
Open AccessArticle
Comparison of Commercial and Experimental Fibre-Reinforced Composites in Restoring Endodontically Treated Teeth with Minimal Coronal Dentine: An In Vitro Study
by
Amre R Atmeh, Faisal Masaud, Luba AlMuhaish, Abdulkarim Alanazi, Hadeel Almutiri, Saqib Ali, Hassan Almoqhawi and Abdul Samad Khan
J. Funct. Biomater. 2025, 16(9), 335; https://doi.org/10.3390/jfb16090335 - 8 Sep 2025
Abstract
Aim: To compare the fracture resistance of teeth with varying degrees of residual coronal dentine after restoration using two fibre-reinforced composite core materials. Materials and Methods: Seventy extracted human lower premolars were divided into four groups: sound (control), one missing proximal wall (Cl-II),
[...] Read more.
Aim: To compare the fracture resistance of teeth with varying degrees of residual coronal dentine after restoration using two fibre-reinforced composite core materials. Materials and Methods: Seventy extracted human lower premolars were divided into four groups: sound (control), one missing proximal wall (Cl-II), two missing proximal walls (MOD), and endocrown (EC). Subgroups were restored with either a short fibre-reinforced flowable composite (EverX Flow) or an experimental fibre-reinforced composite. Except for the control, teeth underwent endodontic treatment and were restored accordingly. Fracture resistance was tested using a universal testing machine. Statistical analysis compared fracture resistance across groups. Results: Teeth in EC exhibited the highest fracture resistance (1153.43 ± 332.52 N), comparable to sound teeth (1114.03 ± 185.58 N) and not significantly different from the experimental composite group (1006.89 ± 200.51 N) (p = 0.304). Cl-II restorations with EverX had significantly lower strength (652.48 ± 314.04 N) compared to MOD (773.02 ± 261.18 N) and EC (p < 0.05). The experimental composite showed a similar trend, with MOD having the lowest strength (408.6 ± 168.85 N). Significant differences were noted between materials in the MOD group (p = 0.009). Scanning electron microscopy revealed distinct fracture patterns. Conclusions: Endocrowns using direct fibre-reinforced composites provided protection for endodontically treated teeth with higher fracture resistance compared to teeth with MOD and Cl-II cavities. This gives direct composite endocrowns a potential for high-stress applications, though design and material selection remain critical.
Full article
(This article belongs to the Special Issue Advanced Dental Restorative Composite Materials)
►▼
Show Figures

Figure 1
Open AccessArticle
Sustainable Thermal Post-Processing of PLA 3D Prints: Increased Dimensional Precision and Autoclave Compatibility
by
Florina Chiscop, Carmen-Cristiana Cazacu, Dragos-Alexandru Cazacu and Costel Emil Cotet
J. Funct. Biomater. 2025, 16(9), 334; https://doi.org/10.3390/jfb16090334 - 8 Sep 2025
Abstract
This study investigates the thermal properties and sterilization efficacy of polylactic acid (PLA) components fabricated via fused deposition modeling (FDM), focusing on PLA’s compatibility with autoclave sterilization protocols. While PLA is extensively recognized for its biobased and biodegradable characteristics, its limited thermal stability
[...] Read more.
This study investigates the thermal properties and sterilization efficacy of polylactic acid (PLA) components fabricated via fused deposition modeling (FDM), focusing on PLA’s compatibility with autoclave sterilization protocols. While PLA is extensively recognized for its biobased and biodegradable characteristics, its limited thermal stability has traditionally restricted its application in high-temperature sterilization settings, such as in medical contexts. In our research, we examined three distinct specimen geometries—cylindrical, rectangular, and curved—subjecting them to thermal post-processing through constrained annealing, employing salt or silicone as the embedding medium. Following this process, we exposed the specimens to elevated temperatures, simulating typical sterilization conditions. The outcomes indicated that the annealed PLA specimens exhibited dimensional stability at temperatures exceeding 170 °C, thereby demonstrating their viability for steam sterilization procedures. To translate these findings into practical applications, we selected a small, complex geometrically relevant component, the Easy Bone Collector (EBC) shell, for autoclave testing at 134 °C. Post-sterilization, the part successfully retained its shape and functionality, indicating that, with appropriate thermal conditioning, PLA can be effectively utilized to manufacture cost-efficient, autoclavable components suitable for medical use. These results reveal a promising and sustainable approach to producing reusable, sterilization-compatible PLA devices, particularly in low-volume or single-use applications where biodegradability is advantageous.
Full article
(This article belongs to the Section Synthesis of Biomaterials via Advanced Technologies)
►▼
Show Figures

Figure 1
Open AccessArticle
Finite Element Analysis of Trabecular-Surfaced Implants and Implant Angulation in Different Mandibular Arch Forms
by
Ahmet İlter Atay, Bahattin Alper Gültekin and Serdar Yalçın
J. Funct. Biomater. 2025, 16(9), 333; https://doi.org/10.3390/jfb16090333 - 8 Sep 2025
Abstract
Finite element analysis is commonly used to evaluate implant biomechanics, yet limited data exist on arch form and trabecular-surfaced implants. This study aimed to investigate the biomechanical impact of a designed trabecular surface compared with a standard implant surface in full-arch, four-implant-supported restorations,
[...] Read more.
Finite element analysis is commonly used to evaluate implant biomechanics, yet limited data exist on arch form and trabecular-surfaced implants. This study aimed to investigate the biomechanical impact of a designed trabecular surface compared with a standard implant surface in full-arch, four-implant-supported restorations, using two mandibular arch forms and four placement configurations. Finite element analyses were conducted under a 250-N oblique load applied at 30° to the posterior segment. The prosthesis was modeled as a titanium–acrylic hybrid structure. Stress distribution was evaluated in cortical and cancellous bones, implants, and prosthetic frameworks. Implants with a trabecular surface demonstrated lower stress concentrations in both bone and implant structures. The von Mises stress at the neck of the posterior implant decreased from 383.3 MPa (standard implant, hyperbolic arch, configuration 1) to 194.9 MPa (trabecular-surfaced implant, U-shaped arch, configuration 4). Similarly, the average maximum principal tensile stress in cortical bone reduced from 44.32 to 40.99 MPa with the trabecular design. Among placement strategies, Configuration 3 (all implants tilted distally) yielded the highest bone stress, whereas Configurations 2 and 4 provided more favorable load distribution. Stress concentrations were also higher in hyperbolic arches, whereas U-shaped arches exhibited a more uniform distribution. These findings emphasized the biomechanical advantage of the designed trabecular surface in reducing stress across bone and implant components, indicating that trabecular titanium may represent a more reliable and cost-effective alternative for clinical applications, potentially enhancing long-term stability. Independently, the arch form and placement strategy also significantly influenced load distribution. Despite assumptions such as isotropic, homogeneous, and linearly elastic material properties, and the use of a single oblique loading condition, this study offers valuable biomechanical insights such as the stress-reducing effect of the trabecular surface, the influence of three-dimensional arch anatomy on stress concentration sites, and the necessity of selecting implant configurations according to arch forms, which may inform future full-arch implant rehabilitations.
Full article
(This article belongs to the Section Dental Biomaterials)
►▼
Show Figures

Figure 1
Open AccessReview
Micro- and Nanoplastics and the Oral Cavity: Implications for Oral and Systemic Health, Dental Practice, and the Environment—A Narrative Review
by
Federica Di Spirito, Veronica Folliero, Maria Pia Di Palo, Giuseppina De Benedetto, Leonardo Aulisio, Stefano Martina, Luca Rinaldi and Gianluigi Franci
J. Funct. Biomater. 2025, 16(9), 332; https://doi.org/10.3390/jfb16090332 - 6 Sep 2025
Abstract
Background: Micro- and nanoplastics (MNPs) have emerged as increasing environmental and public health concerns. Dentistry contributes to this exposure through polymer-based materials and personal oral care products. This review summarizes the current evidence on the sources, release mechanisms, physicochemical properties, and toxicological and
[...] Read more.
Background: Micro- and nanoplastics (MNPs) have emerged as increasing environmental and public health concerns. Dentistry contributes to this exposure through polymer-based materials and personal oral care products. This review summarizes the current evidence on the sources, release mechanisms, physicochemical properties, and toxicological and biological effects of MNPs derived from dental sources and oral care products, as well as the synergistic effects of MNP oral exposure with environmental exposure. Methods: An electronic search was performed across the PubMed/MEDLINE, Scopus, and Web of Science databases to identify studies investigating the source, release mechanisms, physico/chemical properties, and toxicological/biological impact of MNPs related to dental materials, oral care products, and the synergic effects of MNPs oral and environmental exposure. Results: MNPs are released in the dental setting from resin-based composites, clear aligners, and prosthetic and impression materials through degradation, wear, and handling processes. Home-use products like toothpastes, toothbrushes, floss, and mouthwashes contribute to chronic oral exposure. Evidence from in vitro, in vivo, and human biomonitoring studies supports the biological activity and systemic distribution of MNPs. Despite this, clinical awareness remains limited, and regulatory oversight insufficient. Conclusions: Dentistry is both a source and vector of MNP exposure. Encouraging the use of safer, MNP-free materials, and raising awareness among dental professionals, may support more responsible and health-conscious practices. Further research and alignment with global policy strategies could help guide future innovation and risk mitigation in the dental field.
Full article
(This article belongs to the Special Issue Biomaterials in Dentistry: Current Status and Advances)
►▼
Show Figures

Figure 1
Open AccessArticle
Polydatin Modulates Inflammatory Cytokine Expression in Lipoteichoic Acid-Stimulated Human Dental-Pulp Stem Cells
by
Rawan Al-Ateeq, Mona Elsafadi, Manikandan Muthurangan and Solaiman Al-Hadlaq
J. Funct. Biomater. 2025, 16(9), 331; https://doi.org/10.3390/jfb16090331 - 5 Sep 2025
Abstract
Gram-positive bacteria are responsible for initiating dental caries. In this process, lipoteichoic acid (LTA), which is expressed on Gram-positive bacteria cell walls, binds to the dental pulp cells, triggering an immune response, followed by inflammation and eventually pulp necrosis. Polydatin is a polyphenolic
[...] Read more.
Gram-positive bacteria are responsible for initiating dental caries. In this process, lipoteichoic acid (LTA), which is expressed on Gram-positive bacteria cell walls, binds to the dental pulp cells, triggering an immune response, followed by inflammation and eventually pulp necrosis. Polydatin is a polyphenolic compound that has been shown to modulate inflammatory mediators in a manner favorable to healing. The purpose of this study was to assess levels of expression of the most prevalent cytokines in the inflamed pulp after polydatin treatment of LTA-stimulated human dental-pulp stem cells (hDPSCs). LTA-stimulated hDPSCs were treated with polydatin in three different concentrations (0.01 µM, 0.1 µM, and 1 µM). Interleukin-6 (IL-6), interleukin-8 (IL-8), interleukin-10 (IL-10), and tumor necrosis factor-α (TNF-α) levels were measured using reverse transcription–quantitative polymerase chain reaction (RT-qPCR) and enzyme-linked immunosorbent assay (ELISA) were quantified. Treatment with all concentrations of polydatin significantly decreased IL-6 and TNF-α levels as evaluated by ELISA and RT-qPCR, respectively. In addition, a significant reduction was observed in IL-8 levels of mRNA and in ELISA, with 0.01 µM and with 1 µM of polydatin in RT-qPCR. On the other hand, IL-10 levels increased with all of the concentrations. In conclusion, polydatin treatment of LTA-stimulated hDPSCs modulated inflammatory cytokine production by suppressing IL-6, IL-8, and TNF-α levels while elevating IL-10 levels.
Full article
(This article belongs to the Section Dental Biomaterials)
►▼
Show Figures

Figure 1
Open AccessArticle
Fracture Resistance of 3-Unit Zirconia Fixed Dental Prostheses Differing in Wall Thickness Fabricated by Either 3D-Printing or Milling
by
Stefan Rues, Jannis Crocoll, Sebastian Hetzler, Johannes Rossipal, Peter Rammelsberg and Andreas Zenthöfer
J. Funct. Biomater. 2025, 16(9), 330; https://doi.org/10.3390/jfb16090330 - 5 Sep 2025
Abstract
Background: To evaluate the fracture resistance of 3D-printed 3-unit fixed dental prostheses (FDPs) made from tetragonal zirconia polycrystal (3Y-TZP). Methods: Based on a maxillary typodont model with a missing first molar and neighboring teeth with full crown preparations, FDPs differing in wall thickness
[...] Read more.
Background: To evaluate the fracture resistance of 3D-printed 3-unit fixed dental prostheses (FDPs) made from tetragonal zirconia polycrystal (3Y-TZP). Methods: Based on a maxillary typodont model with a missing first molar and neighboring teeth with full crown preparations, FDPs differing in wall thickness (d = 0.6 mm / d = 0.8 mm / d = 1.0 mm) were designed. For all test groups, 12 samples were fabricated from 3Y-TZP by either 3D-printing or milling. For 3D-printing, pontic designs were modified by basal slots to enable regular firing times. After luting on CoCr dies, samples underwent artificial aging. Loads tilted by 30° were applied on the mesio-buccal cusp of the pontic, and fracture resistance Fu was assessed. Welch ANOVA and Dunnett-T3 tests were used for statistical evaluation. Results: Significant differences in Fu were identified (Welch ANOVA, p < 0.001). For milled FDPs, fracture originated from connector areas, and Fu increased with increasing wall thickness (d = 0.6 mm: 1536 ± 131 N, d = 0.8 mm: 2226 ± 145 N, d = 1.0 mm: 2686 ± 127 N, significant differences but for the comparison d = 0.8 mm vs. d = 1.0 mm). For 3D-printed FDPs, the loaded cusp fractured, and Fu did not change with FDP wall thicknesses (p > 0.779, Fu = 1110 ± 26 N for all PZ FDPs). Milled FDPs showed significantly higher Fu when compared to 3D-printed FDPs with identical wall thickness. Conclusions: Although 3D-printed zirconia FDPs still show lower fracture resistance values than their milled counterparts, all tested FDP configurations clearly exceed the clinical reference thresholds and can therefore be recommended for clinical use.
Full article
(This article belongs to the Section Dental Biomaterials)
►▼
Show Figures

Figure 1
Open AccessArticle
Comparative Analysis of the Effects of Acidic and Alkaline Beverages on the Optical Properties, Surface Topography, and Bacterial Activity of Zirconia Materials
by
Nasser M. Alahmari
J. Funct. Biomater. 2025, 16(9), 329; https://doi.org/10.3390/jfb16090329 - 5 Sep 2025
Abstract
This study aimed to evaluate how acidic and alkaline staining solutions affect the optical properties (mean color change, ΔE*), geometric characteristics (surface roughness, Ra), and bacterial adhesion of zirconia Ceramill Zolid PS computer-aided design/computer-aided manufacture (CAD/CAM) material after 21 days of immersion. Ninety-six
[...] Read more.
This study aimed to evaluate how acidic and alkaline staining solutions affect the optical properties (mean color change, ΔE*), geometric characteristics (surface roughness, Ra), and bacterial adhesion of zirconia Ceramill Zolid PS computer-aided design/computer-aided manufacture (CAD/CAM) material after 21 days of immersion. Ninety-six zirconia CAD/CAM Ceramill Zolid multilayer PS specimens were prepared and allocated to eight groups based on the pH values of the immersion solutions; the acidic solutions included Mirinda Citrus, CodeRed, yerba mate tea, Saudi coffee, and Nescafe (A–E), and the alkaline solutions included artificial saliva, DZRT (tobacco-free nicotine pouches), and smokeless tobacco (F–H). The specimens were immersed for 21 days at 37 °C, with the solutions replaced every 12 h to ensure consistency. Color changes were measured using a VITA Easyshade V spectrophotometer, and Ra was evaluated via white-light interferometric microscopy. The bacterial adhesion of Streptococcus mutans was quantified by counting colony-forming units (CFUs, CFU/mm2). Statistical analyses included the Shapiro–Wilk test for normality, one-way ANOVA with Tukey’s HSD post hoc test for group comparisons, and paired t-tests, with significance set at <0.05. The recorded pH values of the staining materials ranged from acidic (Mirinda Citrus: 3.23) to alkaline (smokeless tobacco: 8.54). Smokeless tobacco caused the most unacceptable mean color change (ΔE* = 6.84), followed by DZRT (ΔE* = 6.46), whereas artificial saliva produced the least discoloration (ΔE* = 2.15), with statistically significant differences among the solutions (p < 0.001). The Ra measurements varied significantly (p < 0.001), with Nescafe demonstrating the lowest value (0.486 µm) and DZRT the highest (0.748 µm). S. mutans adhesion was the highest for CodeRed (546.75 CFU) and the lowest for smokeless tobacco (283.92 CFU), demonstrating significant variation across groups (ANOVA, p < 0.001). The acidic and alkaline solutions significantly altered the optical properties, Ra, and bacterial adhesion of zirconia Ceramill Zolid PS CAD/CAM, with acidic solutions leading to higher bacterial adhesion.
Full article
(This article belongs to the Section Dental Biomaterials)
►▼
Show Figures

Figure 1
Open AccessReview
Recent Advances in 3D Bioprinting of Porous Scaffolds for Tissue Engineering: A Narrative and Critical Review
by
David Picado-Tejero, Laura Mendoza-Cerezo, Jesús M. Rodríguez-Rego, Juan P. Carrasco-Amador and Alfonso C. Marcos-Romero
J. Funct. Biomater. 2025, 16(9), 328; https://doi.org/10.3390/jfb16090328 - 4 Sep 2025
Abstract
3D bioprinting has emerged as a key tool in tissue engineering by facilitating the creation of customized scaffolds with properties tailored to specific needs. Among the design parameters, porosity stands out as a determining factor, as it directly influences critical mechanical and biological
[...] Read more.
3D bioprinting has emerged as a key tool in tissue engineering by facilitating the creation of customized scaffolds with properties tailored to specific needs. Among the design parameters, porosity stands out as a determining factor, as it directly influences critical mechanical and biological properties such as nutrient diffusion, cell adhesion and structural integrity. This review comprehensively analyses the state of the art in scaffold design, emphasizing how porosity-related parameters such as pore size, geometry, distribution and interconnectivity affect cellular behavior and mechanical performance. It also addresses advances in manufacturing methods, such as additive manufacturing and computer-aided design (CAD), which allow the development of scaffolds with hierarchical structures and controlled porosity. In addition, the use of computational modelling, in particular finite element analysis (FEA), as an essential predictive tool to optimize the design of scaffolds under physiological conditions is highlighted. This narrative review analyzed 112 core articles retrieved primarily from Scopus (2014–2025) to provide a comprehensive and up-to-date synthesis. Despite recent progress, significant challenges persist, including the lack of standardized methodologies for characterizing and comparing porosity parameters across different studies. This review identifies these gaps and suggests future research directions, such as the development of unified characterization and classification systems and the enhancement of nanoscale resolution in bioprinting technologies. By integrating structural design with biological functionality, this review underscores the transformative potential of porosity research applied to 3D bioprinting, positioning it as a key strategy to meet current clinical needs in tissue engineering.
Full article
(This article belongs to the Special Issue Bio-Additive Manufacturing in Materials Science)
►▼
Show Figures

Figure 1

Journal Menu
► ▼ Journal Menu-
- JFB Home
- Aims & Scope
- Editorial Board
- Topical Advisory Panel
- Instructions for Authors
- Special Issues
- Topics
- Sections & Collections
- Article Processing Charge
- Indexing & Archiving
- Editor’s Choice Articles
- Most Cited & Viewed
- Journal Statistics
- Journal History
- Journal Awards
- Conferences
- Editorial Office
Journal Browser
► ▼ Journal BrowserHighly Accessed Articles
Latest Books
E-Mail Alert
News
12 September 2025
Meet Us at the 2025 Chinese Biomaterials Congress (CSBM 2025), 9–12 October 2025, Shaoxing, China
Meet Us at the 2025 Chinese Biomaterials Congress (CSBM 2025), 9–12 October 2025, Shaoxing, China

3 September 2025
Join Us at the MDPI at the University of Toronto Career Fair, 23 September 2025, Toronto, ON, Canada
Join Us at the MDPI at the University of Toronto Career Fair, 23 September 2025, Toronto, ON, Canada

Topics
Topic in
Applied Sciences, Bioengineering, Coatings, Metals, JFB, Materials
Towards Load-Bearing Biomedical Titanium-Based Alloys: From Essential Requirements to Future Developments
Topic Editors: Liqiang Wang, Yanhua ChenDeadline: 31 December 2025
Topic in
JFB, Materials, Prosthesis, IJMS, Oral, JCM
New Technological and Clinical Advances for Controlling Peri-Implantitis
Topic Editors: Javier Gil, Eugenio Velasco-Ortega, Aritza Brizuela-Velasco, Conrado AparicioDeadline: 31 March 2026
Topic in
Coatings, Lubricants, Materials, Surfaces, JFB
Engineered Surfaces and Tribological Performance
Topic Editors: Andrew Naylor, Min LiDeadline: 31 May 2026
Topic in
Applied Nano, Bioengineering, Coatings, JFB, Materials, Surfaces
Functional and Antiseptic Biomedical Surfaces and Interfaces
Topic Editors: Annett Dorner-Reisel, Aneta Zima, Nick Tucker, Tao WangDeadline: 31 August 2026

Conferences
Special Issues
Special Issue in
JFB
Biomaterials in Dentistry: Current Status and Advances
Guest Editors: Maria Pia Di Palo, Federica Di Spirito, Francesco GiordanoDeadline: 30 September 2025
Special Issue in
JFB
Biomaterials and Biomechanics Modelling in Dental Implantology
Guest Editors: Miquel Ferrer-Ballester, Miguel Cerrolaza, Oriol Canto-Naves, Raúl Medina-GálvezDeadline: 30 September 2025
Special Issue in
JFB
Biomaterials in Conservative Dentistry and Prosthodontics (2nd Edition)
Guest Editor: Dimitrios DionysopoulosDeadline: 30 September 2025
Special Issue in
JFB
Advances in Bone Substitute Biomaterials
Guest Editors: Michael Seidenstuecker, Hermann MayrDeadline: 30 September 2025
Topical Collections
Topical Collection in
JFB
Biocements for Medical/Dental Purposes
Collection Editor: James Kit-Hon Tsoi
Topical Collection in
JFB
Feature Papers in Biomaterials for Healthcare Applications
Collection Editor: Dimitrios Karamichos
Topical Collection in
JFB
Feature Papers in Biomaterials for Tissue Engineering and Regenerative Medicine
Collection Editor: Daniel Chen