State-of-the-Art on the Sulfate Radical-Advanced Oxidation Coupled with Nanomaterials: Biological and Environmental Applications
Abstract
:1. Introduction
2. Metal-Based Nanomaterials
3. Metal-Free Nanomaterials
4. Nanocomposites (Metal-Based Nanomaterials and Carrier)
5. Conclusions and Prospects
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Elehinafe, F.B.; Agboola, O.; Vershima, A.D.; Bamigboye, G.O. Insights on the advanced separation processes in water pollution analyses and wastewater treatment–a review. S. Afr. J. Chem. Eng. 2022, 42, 188–200. [Google Scholar] [CrossRef]
- Mei, L.; Zhu, S.; Liu, Y.; Yin, W.; Gu, Z.; Zhao, Y. An overview of the use of nanozymes in antibacterial applications. Chem. Eng. J. 2021, 418, 129431. [Google Scholar] [CrossRef]
- Cattoir, V.; Felden, B. Future antibacterial strategies: From basic concepts to clinical challenges. J. Infect. Dis. 2019, 220, 350–360. [Google Scholar] [CrossRef]
- Qi, M.; Li, W.; Zheng, X.; Li, X.; Sun, Y.; Wang, Y.; Li, C.; Wang, L. Cerium and its oxidant-based nanomaterials for antibacterial applications: A state-of-the-art review. Front. Mater. 2020, 7, 213. [Google Scholar] [CrossRef]
- Tipnis, N.P.; Burgess, D.J. Sterilization of implantable polymer-based medical devices: A review. Int. J. Pharm. 2018, 544, 455–460. [Google Scholar] [CrossRef]
- Barjasteh, A.; Dehghani, Z.; Lamichhane, P.; Kaushik, N.; Choi, E.H.; Kaushik, N.K. Recent progress in applications of non-thermal plasma for water purification, bio-sterilization, and decontamination. Appl. Sci. 2021, 11, 3372. [Google Scholar] [CrossRef]
- Zhang, G.; Li, W.; Chen, S.; Zhou, W.; Chen, J. Problems of conventional disinfection and new sterilization methods for antibiotic resistance control. Chemosphere 2020, 254, 126831. [Google Scholar] [CrossRef]
- Nigam, A.; Gupta, D.; Sharma, A. Treatment of infectious disease: Beyond antibiotics. Microbiol. Res. 2014, 169, 643–651. [Google Scholar] [CrossRef]
- Guo, M.-T.; Yuan, Q.-B.; Yang, J. Distinguishing effects of ultraviolet exposure and chlorination on the horizontal transfer of antibiotic resistance genes in municipal wastewater. Environ. Sci. Technol. 2015, 49, 5771–5778. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhuang, Y.; Geng, J.; Ren, H.; Zhang, Y.; Ding, L.; Xu, K. Inactivation of antibiotic resistance genes in municipal wastewater effluent by chlorination and sequential UV/chlorination disinfection. Sci. Total Environ. 2015, 512, 125–132. [Google Scholar] [CrossRef]
- Alexander, J.; Knopp, G.; Dötsch, A.; Wieland, A.; Schwartz, T. Ozone treatment of conditioned wastewater selects antibiotic resistance genes, opportunistic bacteria, and induce strong population shifts. Sci. Total Environ. 2016, 559, 103–112. [Google Scholar] [CrossRef]
- Naseem, T.; Durrani, T. The role of some important metal oxide nanoparticles for wastewater and antibacterial applications: A review. Environ. Chem. Ecotoxicol. 2021, 3, 59–75. [Google Scholar] [CrossRef]
- Omran, B.; Baek, K.-H. Graphene-derived antibacterial nanocomposites for water disinfection: Current and future perspectives. Environ. Pollut. 2022, 298, 118836. [Google Scholar] [CrossRef]
- Fahimirad, S.; Fahimirad, Z.; Sillanpää, M. Efficient removal of water bacteria and viruses using electrospun nanofibers. Sci. Total Environ. 2021, 751, 141673. [Google Scholar] [CrossRef]
- Carrera, E.; Dias, H.; Corbi, S.; Marcantonio, R.; Bernardi, A.; Bagnato, V.S.; Hamblin, M.; Rastelli, A.N.d.S. The application of antimicrobial photodynamic therapy (aPDT) in dentistry: A critical review. Laser Phys. 2016, 26, 123001. [Google Scholar] [CrossRef] [Green Version]
- Qi, M.; Chi, M.; Sun, X.; Xie, X.; Weir, M.D.; Oates, T.W.; Zhou, Y.; Wang, L.; Bai, Y.; Xu, H.H. Novel nanomaterial-based antibacterial photodynamic therapies to combat oral bacterial biofilms and infectious diseases. Int. J. Nanomed. 2019, 14, 6937. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Liu, W.; Huang, Y.; Wang, Y.; Chen, X.; Chen, Z. Bacterial biofilm microenvironment responsive copper-doped zinc peroxide nanocomposites for enhancing chemodynamic therapy. Chem. Eng. J. 2022, 446, 137214. [Google Scholar] [CrossRef]
- Gągol, M.; Przyjazny, A.; Boczkaj, G.J.C.E.J. Wastewater treatment by means of advanced oxidation processes based on cavitation–a review. Chem. Eng. J. 2018, 338, 599–627. [Google Scholar] [CrossRef]
- Ma, D.; Yi, H.; Lai, C.; Liu, X.; Huo, X.; An, Z.; Li, L.; Fu, Y.; Li, B.; Zhang, M.J.C. Critical review of advanced oxidation processes in organic wastewater treatment. Chemosphere 2021, 275, 130104. [Google Scholar] [CrossRef]
- Rekhate, C.V.; Srivastava, J.J.C.E.J.A. Recent advances in ozone-based advanced oxidation processes for treatment of wastewater-a review. Chem. Eng. J. Adv. 2020, 3, 100031. [Google Scholar] [CrossRef]
- Cuerda-Correa, E.M.; Alexandre-Franco, M.F.; Fernández-González, C.J.W. Advanced oxidation processes for the removal of antibiotics from water. An overview. Water 2019, 12, 102. [Google Scholar] [CrossRef] [Green Version]
- Mendes Carneiro Zaidan, L.E.; de Lima Sales, R.V.; de Almeida Salgado, J.B.; Ribeiro Bastos da Silva, A.M.; Napoleao, D.C.; Rodriguez-Diaz, J.M.; Marques, O.M.; Benachour, M.; da Silva, V.L. Photodegradation applied to the treatment of phenol and derived substances catalyzed by TiO2 /BiPO4 and biological toxicity analysis. Environ. Sci. Pollut. 2017, 24, 6002–6012. [Google Scholar] [CrossRef]
- Liu, L.; Chen, Z.; Zhang, J.; Shan, D.; Wu, Y.; Bai, L.; Wang, B. Treatment of industrial dye wastewater and pharmaceutical residue wastewater by advanced oxidation processes and its combination with nanocatalysts: A review. J. Water Process Eng. 2021, 42, 102122. [Google Scholar] [CrossRef]
- Napoleao, D.C.; Zaidan, L.; Rodriguez-Diaz, J.M.; Santana, R.M.D.; Montenegro, M.; Araujo, A.D.; Benachour, M.; da Silva, V.L. Use of the photo-Fenton process to discover the degradation of drugs present in water from the Wastewater Treatment Plants of the parmaceutical industry. Afinidad 2018, 75, 23–31. [Google Scholar]
- Rayaroth, M.P.; Aravindakumar, C.T.; Shah, N.S.; Boczkaj, G.J.C.E.J. Advanced oxidation processes (AOPs) based wastewater treatment-unexpected nitration side reactions-a serious environmental issue: A review. Chem. Eng. J. 2022, 430, 133002. [Google Scholar] [CrossRef]
- Miklos, D.B.; Remy, C.; Jekel, M.; Linden, K.G.; Drewes, J.E.; Hübner, U. Evaluation of advanced oxidation processes for water and wastewater treatment–a critical review. Water Res. 2018, 139, 118–131. [Google Scholar] [CrossRef]
- Mahdi, M.H.; Mohammed, T.J.; Al-Najar, J.A. In Advanced Oxidation Processes (AOPs) for treatment of antibiotics in wastewater: A review. Earth Environ. Sci. 2021, 779, 012109. [Google Scholar] [CrossRef]
- Xiao, R.; Luo, Z.; Wei, Z.; Luo, S.; Spinney, R.; Yang, W.; Dionysiou, D.D. Activation of peroxymonosulfate/persulfate by nanomaterials for sulfate radical-based advanced oxidation technologies. Curr. Opin. Chem. Eng. 2018, 19, 51–58. [Google Scholar] [CrossRef]
- Xiao, Y.; Zhang, L.; Zhang, W.; Lim, K.-Y.; Webster, R.D.; Lim, T.-T. Comparative evaluation of iodoacids removal by UV/persulfate and UV/H2O2 processes. Water Res. 2016, 102, 629–639. [Google Scholar] [CrossRef]
- Oh, W.-D.; Dong, Z.; Lim, T.-T. Generation of sulfate radical through heterogeneous catalysis for organic contaminants removal: Current development, challenges and prospects. Appl. Catal. B Environ. 2016, 194, 169–201. [Google Scholar] [CrossRef]
- Xiao, R.; Liu, K.; Bai, L.; Minakata, D.; Seo, Y.; Kaya Göktaş, R.; Dionysiou, D.D.; Tang, C.-J.; Wei, Z.; Spinney, R. Inactivation of pathogenic microorganisms by sulfate radical: Present and future. Chem. Eng. J. 2019, 371, 222–232. [Google Scholar] [CrossRef]
- Giannakis, S.; Lin, K.-Y.A.; Ghanbari, F. A review of the recent advances on the treatment of industrial wastewaters by Sulfate Radical-based Advanced Oxidation Processes (SR-AOPs). Chem. Eng. J. 2021, 406, 127083. [Google Scholar] [CrossRef]
- Wordofa, D.N.; Walker, S.L.; Liu, H. Sulfate radical-induced disinfection of pathogenic Escherichia coli O157: H7 via iron-activated persulfate. Environ. Sci. Technol. Lett. 2017, 4, 154–160. [Google Scholar] [CrossRef]
- Oh, J.; Salcedo, D.E.; Medriano, C.A.; Kim, S. Comparison of different disinfection processes in the effective removal of antibiotic-resistant bacteria and genes. J. Environ. Sci. 2014, 26, 1238–1242. [Google Scholar] [CrossRef]
- Rodríguez-Chueca, J.; García-Cañibano, C.; Lepistö, R.-J.; Encinas, Á.; Pellinen, J.; Marugán, J. Intensification of UV-C tertiary treatment: Disinfection and removal of micropollutants by sulfate radical based Advanced Oxidation Processes. J. Hazard. Mater. 2019, 372, 94–102. [Google Scholar] [CrossRef]
- Liu, K.; Bai, L.; Shi, Y.; Wei, Z.; Spinney, R.; Göktaş, R.K.; Dionysiou, D.D.; Xiao, R. Simultaneous disinfection of E. faecalis and degradation of carbamazepine by sulfate radicals: An experimental and modelling study. Environ. Pollut. 2020, 263, 114558. [Google Scholar] [CrossRef]
- Garkusheva, N.; Matafonova, G.; Tsenter, I.; Beck, S.; Batoev, V.; Linden, K. Simultaneous atrazine degradation and E. coli inactivation by simulated solar photo-Fenton-like process using persulfate. J. Environ. Sci. Health Part A 2017, 52, 849–855. [Google Scholar] [CrossRef]
- Rodríguez-Chueca, J.; Silva, T.; Fernandes, J.R.; Lucas, M.S.; Puma, G.L.; Peres, J.A.; Sampaio, A. Inactivation of pathogenic microorganisms in freshwater using HSO5−/UV-A LED and HSO5−/Mn+/UV-A LED oxidation processes. Water Res. 2017, 123, 113–123. [Google Scholar] [CrossRef] [Green Version]
- Sun, P.; Tyree, C.; Huang, C.-H. Inactivation of Escherichia coli, bacteriophage MS2, and Bacillus spores under UV/H2O2 and UV / peroxydisulfate advanced disinfection conditions. Environ. Sci. Technol. 2016, 50, 4448–4458. [Google Scholar] [CrossRef]
- Marjanovic, M.; Giannakis, S.; Grandjean, D.; de Alencastro, L.F.; Pulgarin, C. Effect of μM Fe addition, mild heat and solar UV on sulfate radical-mediated inactivation of bacteria, viruses, and micropollutant degradation in water. Water Res. 2018, 140, 220–231. [Google Scholar] [CrossRef]
- Rodríguez-Chueca, J.; Barahona-García, E.; Blanco-Gutiérrez, V.; Isidoro-García, L.; Dos santos-García, A. Magnetic CoFe2O4 ferrite for peroxymonosulfate activation for disinfection of wastewater. Chem. Eng. J. 2020, 398, 125606. [Google Scholar] [CrossRef]
- Zhang, L.; Jin, H.; Ma, H.; Gregory, K.; Qi, Z.; Wang, C.; Wu, W.; Cang, D.; Li, Z. Oxidative damage of antibiotic resistant E. coli and gene in a novel sulfidated micron zero-valent activated persulfate system. Chem. Eng. J. 2020, 381, 122787. [Google Scholar] [CrossRef]
- Xiao, R.; Bai, L.; Liu, K.; Shi, Y.; Minakata, D.; Huang, C.-H.; Spinney, R.; Seth, R.; Dionysiou, D.D.; Wei, Z. Elucidating sulfate radical-mediated disinfection profiles and mechanisms of Escherichia coli and Enterococcus faecalis in municipal wastewater. Water Res. 2020, 173, 115552. [Google Scholar] [CrossRef] [PubMed]
- Ho, S.-H.; Li, R.; Zhang, C.; Ge, Y.; Cao, G.; Ma, M.; Duan, X.; Wang, S.; Ren, N.-q. N-doped graphitic biochars from C-phycocyanin extracted Spirulina residue for catalytic persulfate activation toward nonradical disinfection and organic oxidation. Water Res. 2019, 159, 77–86. [Google Scholar] [CrossRef]
- Wang, S.; He, F.; Zhao, X.; Zhang, J.; Ao, Z.; Wu, H.; Yin, Y.; Shi, L.; Xu, X.; Zhao, C. Phosphorous doped carbon nitride nanobelts for photodegradation of emerging contaminants and hydrogen evolution. Appl. Catal. B Environ. 2019, 257, 117931. [Google Scholar] [CrossRef]
- Xiao, R.; He, L.; Luo, Z.; Spinney, R.; Wei, Z.; Dionysiou, D.D.; Zhao, F. An experimental and theoretical study on the degradation of clonidine by hydroxyl and sulfate radicals. Sci. Total Environ. 2020, 710, 136333. [Google Scholar] [CrossRef]
- Cui, C.; Jin, L.; Han, Q.; Lin, K.; Lu, S.; Zhang, D.; Cao, G. Removal of trace level amounts of twelve sulfonamides from drinking water by UV-activated peroxymonosulfate. Sci. Total Environ. 2016, 572, 244–251. [Google Scholar] [CrossRef]
- Rodríguez-Chueca, J.; Moreira, S.I.; Lucas, M.S.; Fernandes, J.R.; Tavares, P.B.; Sampaio, A.; Peres, J.A. Disinfection of simulated and real winery wastewater using sulphate radicals: Peroxymonosulphate/transition metal/UV-A LED oxidation. J. Clean. Prod. 2017, 149, 805–817. [Google Scholar] [CrossRef] [Green Version]
- Chakraborty, N.; Gandhi, S.; Verma, R.; Roy, I. Emerging prospects of nanozymes for antibacterial and anticancer applications. Biomedicines 2022, 10, 1378. [Google Scholar] [CrossRef]
- González-González, R.B.; Parra-Arroyo, L.; Parra-Saldívar, R.; Ramirez-Mendoza, R.A.; Iqbal, H.M. Nanomaterial-based catalysts for the degradation of endocrine-disrupting chemicals–a way forward to environmental remediation. Mater. Lett. 2022, 308, 131217. [Google Scholar] [CrossRef]
- Huang, J.; Zhang, H. Mn-based catalysts for sulfate radical-based advanced oxidation processes: A review. Environ. Int. 2019, 133, 105141. [Google Scholar] [CrossRef] [PubMed]
- Han, M.; Zhu, W.; Hossain, M.S.A.; You, J.; Kim, J. Recent progress of functional metal–organic framework materials for water treatment using sulfate radicals. Environ. Res. 2022, 211, 112956. [Google Scholar] [CrossRef]
- Xiong, Z.; Jiang, Y.; Wu, Z.; Yao, G.; Lai, B. Synthesis strategies and emerging mechanisms of metal-organic frameworks for sulfate radical-based advanced oxidation process: A review. Chem. Eng. J. 2021, 421, 127863. [Google Scholar] [CrossRef]
- Tian, W.; Chen, S.; Zhang, H.; Wang, H.; Wang, S. Sulfate radical-based advanced oxidation processes for water decontamination using biomass-derived carbon as catalysts. Curr. Opin. Chem. Eng. 2022, 37, 100838. [Google Scholar] [CrossRef]
- Zhao, C.; Shao, B.; Yan, M.; Liu, Z.; Liang, Q.; He, Q.; Wu, T.; Liu, Y.; Pan, Y.; Huang, J.; et al. Activation of peroxymonosulfate by biochar-based catalysts and applications in the degradation of organic contaminants: A review. Chem. Eng. J. 2021, 416, 128829. [Google Scholar] [CrossRef]
- Ushani, U.; Lu, X.; Wang, J.; Zhang, Z.; Dai, J.; Tan, Y.; Wang, S.; Li, W.; Niu, C.; Cai, T.; et al. Sulfate radicals-based advanced oxidation technology in various environmental remediation: A state-of-the–art review. Chem. Eng. J. 2020, 402, 126232. [Google Scholar] [CrossRef]
- Kurian, M. Advanced oxidation processes and nanomaterials-a review. Clean. Eng. Technol. 2021, 2, 100090. [Google Scholar] [CrossRef]
- Song, X.; Zhao, L.; Luo, C.; Ren, X.; Yang, L.; Wei, Q. Peptide-based biosensor with a luminescent copper-based metal–organic framework as an electrochemiluminescence emitter for trypsin assay. Anal. Chem. 2021, 28, 9704–9710. [Google Scholar] [CrossRef]
- Gao, Q.; Wang, G.; Chen, Y.; Han, B.; Xia, K.; Zhou, C. Utilizing cobalt-doped materials as heterogeneous catalysts to activate peroxymonosulfate for organic pollutant degradation: A critical review. Environ. Sci. Water Res. Technol. 2021, 7, 1197–1211. [Google Scholar] [CrossRef]
- Yun, W.-C.; Lin, K.-Y.A.; Tong, W.-C.; Lin, Y.-F.; Du, Y. Enhanced degradation of paracetamol in water using sulfate radical-based advanced oxidation processes catalyzed by 3-dimensional Co3O4 nanoflower. Chem. Eng. J. 2019, 373, 1329–1337. [Google Scholar] [CrossRef]
- Wang, Q.; Xu, Z.; Wang, S.; Wang, Z.; Jia, J.; Li, H.; Cao, Y.; Chen, Y.; Qin, Y.; Cui, F. Rapid synthesis of amorphous CoO nanosheets: Highly efficient catalyst for parachlorophenol degradation by peroxymonosulfate activation. Sep. Purif. Technol. 2021, 263, 118369. [Google Scholar] [CrossRef]
- Hu, J.; Zeng, X.; Wang, G.; Qian, B.; Liu, Y.; Hu, X.; He, B.; Zhang, L.; Zhang, X. Modulating mesoporous Co3O4 hollow nanospheres with oxygen vacancies for highly efficient peroxymonosulfate activation. Chem. Eng. J. 2020, 400, 125869. [Google Scholar] [CrossRef]
- Ma, Q.; Zhang, Y.; Zhu, X.; Chen, B. Hollow multi-shelled Co3O4 as nanoreactors to activate peroxymonosulfate for highly effective degradation of Carbamazepine: A novel strategy to reduce nano-catalyst agglomeration. J. Hazard. Mater. 2022, 427, 127890. [Google Scholar] [CrossRef]
- Zhou, X.; Luo, M.; Xie, C.; Wang, H.; Wang, J.; Chen, Z.; Xiao, J.; Chen, Z. Tunable S doping from Co3O4 to Co9S8 for peroxymonosulfate activation: Distinguished radical/nonradical species and generation pathways. Appl. Catal. B Environ. 2021, 282, 119605. [Google Scholar] [CrossRef]
- Osias, J.; Chen, Y.; Lin, D.; Shih, Y.; Caparanga, A.; Chen, B. In degradation of methylene blue utilizing cobalt-impregnated zeolite beta via sulfate radical-based advanced oxidation process. Earth Environ. Sci. 2019, 344, 012041. [Google Scholar] [CrossRef]
- Mohammadi, S.; Moussavi, G.; Shekoohiyan, S.; Marín, M.L.; Boscá, F.; Giannakis, S. A continuous-flow catalytic process with natural hematite-alginate beads for effective water decontamination and disinfection: Peroxymonosulfate activation leading to dominant sulfate radical and minor non-radical pathways. Chem. Eng. J. 2021, 411, 127738. [Google Scholar] [CrossRef]
- Xia, D.; Li, Y.; Huang, G.; Yin, R.; An, T.; Li, G.; Zhao, H.; Lu, A.; Wong, P.K. Activation of persulfates by natural magnetic pyrrhotite for water disinfection: Efficiency, mechanisms, and stability. Water Res. 2017, 112, 236–247. [Google Scholar] [CrossRef] [Green Version]
- Garcia, A.N.; Boparai, H.K.; Chowdhury, A.I.; de Boer, C.V.; Kocur, C.M.; Passeport, E.; Lollar, B.S.; Austrins, L.M.; Herrera, J.; O’Carroll, D.M. Sulfidated nano zerovalent iron (S-nZVI) for in situ treatment of chlorinated solvents: A field study. Water Res. 2020, 174, 115594. [Google Scholar] [CrossRef]
- Yu, Z.; Rabiee, H.; Guo, J. Synergistic effect of sulfidated nano zerovalent iron and persulfate on inactivating antibiotic resistant bacteria and antibiotic resistance genes. Water Res. 2021, 198, 117141. [Google Scholar] [CrossRef]
- Li, R.; Dong, H.; Tian, R.; Chen, J.; Xie, Q. Activation of sulfite by different Fe0-based nanomaterials for oxidative removal of sulfamethazine in aqueous solution. Sep. Purif. Technol. 2020, 250, 117230. [Google Scholar] [CrossRef]
- Wang, Z.; Qiu, W.; Pang, S.; Gao, Y.; Zhou, Y.; Cao, Y.; Jiang, J. Relative contribution of ferryl ion species (Fe (IV)) and sulfate radical formed in nanoscale zero valent iron activated peroxydisulfate and peroxymonosulfate processes. Water Res. 2020, 172, 115504. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Yin, H.; Peng, H.; Wei, X.; Yu, X.; Xie, D.; Lu, G.; Dang, Z. Removal of triphenyl phosphate by nanoscale zerovalent iron (nZVI) activated bisulfite: Performance, surface reaction mechanism and sulfate radical-mediated degradation pathway. Environ. Pollut. 2020, 260, 113983. [Google Scholar] [CrossRef]
- Wang, M.; Fang, G.; Liu, P.; Zhou, D.; Ma, C.; Zhang, D.; Zhan, J. Fe3O4 @β-CD nanocomposite as heterogeneous Fenton-like catalyst for enhanced degradation of 4-chlorophenol (4-CP). Appl. Catal. B Environ. 2016, 188, 113–122. [Google Scholar] [CrossRef]
- Niu, H.; Zhang, D.; Zhang, S.; Zhang, X.; Meng, Z.; Cai, Y. Humic acid coated Fe3O4 magnetic nanoparticles as highly efficient Fenton-like catalyst for complete mineralization of sulfathiazole. Journal of Hazardous Materials 2011, 190, 559–565. [Google Scholar] [CrossRef] [PubMed]
- Tan, C.; Jian, X.; Dong, Y.; Lu, X.; Liu, X.; Xiang, H.; Cui, X.; Deng, J.; Gao, H. Activation of peroxymonosulfate by a novel EGCE @Fe3O4 nanocomposite: Free radical reactions and implication for the degradation of sulfadiazine. Chem. Eng. J. 2019, 359, 594–603. [Google Scholar] [CrossRef]
- Wu, S.; Wang, P.; Qin, J.; Pei, Y.; Wang, Y. GSH-depleted nanozymes with dual-radicals enzyme activities for tumor synergic therapy. Adv. Funct. Mater. 2021, 31, 2102160. [Google Scholar] [CrossRef]
- Liu, Y.; Zhen, W.; Wang, Y.; Song, S.; Zhang, H. Na2S2O8 nanoparticles trigger antitumor immunotherapy through reactive oxygen species storm and surge of tumor osmolarity. J. Am. Chem. Soc. 2020, 142, 21751–21757. [Google Scholar] [CrossRef]
- Yue, D.; Guo, C.; Yan, X.; Wang, R.; Fang, M.; Wu, Y.; Qian, X.; Zhao, Y. Secondary battery inspired NiO nanosheets with rich Ni (III) defects for enhancing persulfates activation in phenolic waste water degradation. Chem. Eng. J. 2019, 360, 97–103. [Google Scholar] [CrossRef]
- Wang, Q.; Li, Y.; Shen, Z.; Liu, X.; Jiang, C. Facile synthesis of three-dimensional Mn3O4 hierarchical microstructures for efficient catalytic phenol oxidation with peroxymonosulfate. Appl. Surf. Sci. 2019, 495, 143568. [Google Scholar] [CrossRef]
- Bi, X.; Huang, Y.; Liu, X.; Yao, N.; Zhao, P.; Meng, X.; Astruc, D. Oxidative degradation of aqueous organic contaminants over shape-tunable MnO2 nanomaterials via peroxymonosulfate activation. Sep. Purif. Technol. 2021, 275, 119141. [Google Scholar] [CrossRef]
- Zhu, S.; Xiao, P.; Wang, X.; Liu, Y.; Yi, X.; Zhou, H. Efficient peroxymonosulfate (PMS) activation by visible-light-driven formation of polymorphic amorphous manganese oxides. J. Hazard. Mater. 2022, 427, 127938. [Google Scholar] [CrossRef] [PubMed]
- Shah, N.S.; Khan, J.A.; Sayed, M.; Khan, Z.U.H.; Ali, H.S.; Murtaza, B.; Khan, H.M.; Imran, M.; Muhammad, N. Hydroxyl and sulfate radical mediated degradation of ciprofloxacin using nano zerovalent manganese catalyzed S2O82−. Chem. Eng. J. 2019, 356, 199–209. [Google Scholar] [CrossRef]
- Wei, J.; Li, X.; Yang, Q.; Wu, Y.; Huang, X.; Tao, Z.; Xu, Q.; Zhu, X.; Wang, D. Sulfate radical-mediated degradation of phenol and methylene blue by manganese oxide octahedral molecular sieve (OMS-2) activation of peroxymonosulfate. Environ. Sci. Pollut. Res. 2019, 26, 12963–12974. [Google Scholar] [CrossRef]
- Zhou, H.; Lai, L.; Wan, Y.; He, Y.; Yao, G.; Lai, B. Molybdenum disulfide (MoS2): A versatile activator of both peroxymonosulfate and persulfate for the degradation of carbamazepine. Chem. Eng. J. 2020, 384, 123264. [Google Scholar] [CrossRef]
- Chen, Y.; Ji, Q.; Zhang, G.; Liu, H.; Qu, J. Synergetic lipid extraction with oxidative damage amplifies cell-membrane-destructive stresses and enables rapid sterilization. Angew. Chem. 2021, 133, 7823–7830. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Y.; Ren, W.; Zhang, D.; Ju, P.; Dou, K. “Nano Killers” Activation by permonosulfate enables efficient anaerobic microorganisms disinfection. J. Hazard. Mater. 2022, 440, 129742. [Google Scholar] [CrossRef]
- Li, R.; Yang, L.; Xiong, T.; Wu, Y.; Cao, L.; Yuan, D.; Zhou, W. Nitrogen doped MoS2 nanosheets synthesized via a low-temperature process as electrocatalysts with enhanced activity for hydrogen evolution reaction. J. Power Sources 2017, 356, 133–139. [Google Scholar] [CrossRef]
- Qin, S.; Lei, W.; Liu, D.; Chen, Y. Advanced N-doped mesoporous molybdenum disulfide nanosheets and the enhanced lithium-ion storage performance. J. Mater. Chem. A 2016, 4, 1440–1445. [Google Scholar] [CrossRef]
- Dai, X.; Du, K.; Li, Z.; Liu, M.; Ma, Y.; Sun, H.; Zhang, X.; Yang, Y. Co-doped MoS2 nanosheets with the dominant CoMoS phase coated on carbon as an excellent electrocatalyst for hydrogen evolution. ACS Appl. Mater. Interfaces 2015, 7, 27242–27253. [Google Scholar] [CrossRef]
- Roger, I.; Moca, R.; Miras, H.N.; Crawford, K.G.; Moran, D.A.; Ganin, A.Y.; Symes, M.D. The direct hydrothermal deposition of cobalt-doped MoS2 onto fluorine-doped SnO2 substrates for catalysis of the electrochemical hydrogen evolution reaction. J. Mater. Chem. A 2017, 5, 1472–1480. [Google Scholar] [CrossRef] [Green Version]
- Zeng, L.; Li, X.; Fan, S.; Yin, Z.; Mu, J.; Qin, M.; Chen, A. Solar-driven bio-electro-chemical system for synergistic hydrogen evolution and pollutant elimination simultaneously over defect-rich CoN–MoS2/biomass nanosheets. J. Power Sources 2020, 478, 228755. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, G.; Ji, Q.; Liu, H.; Qu, J. Triggering of low-valence molybdenum in multiphasic MoS2 for effective reactive oxygen species output in catalytic Fenton-like reactions. ACS Appl. Mater. Interfaces 2019, 11, 26781–26788. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Han, Q.; Wang, L.; Liu, B.; Wang, K.; Wang, Z. Dual roles of MoS2 nanosheets in advanced oxidation Processes: Activating permonosulfate and quenching radicals. Chem. Eng. J. 2022, 440, 135866. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, G.; Liu, H.; Qu, J. Confining free radicals in close vicinity to contaminants enables ultrafast fenton-like processes in the interspacing of MoS2 membranes. Angew. Chem. Int. Ed. 2019, 58, 8134–8138. [Google Scholar] [CrossRef] [PubMed]
- Yin, R.; Jing, B.; He, S.; Hu, J.; Lu, G.; Ao, Z.; Wang, C.; Zhu, M. Near-infrared light to heat conversion in peroxydisulfate activation with MoS2: A new photo-activation process for water treatment. Water Res. 2021, 190, 116720. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Wu, Q.; Wang, C.; Pu, Y.; Zhou, M.; Zhang, M. 3D flower-like MoS2 nanomaterial as signal-promoter of PTC-PEI / S2O82− system for fabricating a sensitive electrochemiluminescence methotrexate sensor. J. Electrochem. Soc. 2020, 167, 107505. [Google Scholar] [CrossRef]
- Wang, P.; Wu, Q.; Wang, C.; Yang, X.; Wei, M.; Pu, Y.; Zhou, M.; Zhang, M. Prussian blue functionalized partial reduced graphene oxide enhanced electrochemiluminescence of perylenetetracarboxylic acid for folic acid determination. J. Electroanal. Chem. 2019, 848, 113324. [Google Scholar] [CrossRef]
- Du, Y.; Li, X.; Ren, X.; Wang, H.; Wu, D.; Ma, H.; Fan, D.; Wei, Q. Signal-off electrochemiluminescence immunosensors based on the quenching effect between curcumin-conjugated Au nanoparticles encapsulated in ZIF-8 and CdS-decorated TiO2 nanobelts for insulin detection. Analyst 2020, 145, 1858–1864. [Google Scholar] [CrossRef]
- Ding, H.; Hu, J. Degradation of ibuprofen by UVA-LED/TiO2/persulfate process: Kinetics, mechanism, water matrix effects, intermediates and energy consumption. Chem. Eng. J. 2020, 397, 125462. [Google Scholar] [CrossRef]
- Monteagudo, J.; Durán, A.; San Martín, I.; Vellón, B. Photocatalytic degradation of aniline by solar / TiO2 system in the presence of the electron acceptors Na2S2O8 and H2O2. Sep. Purif. Technol. 2020, 238, 116456. [Google Scholar] [CrossRef]
- Zhang, T.; Liu, Y.; Rao, Y.; Li, X.; Yuan, D.; Tang, S.; Zhao, Q. Enhanced photocatalytic activity of TiO2 with acetylene black and persulfate for degradation of tetracycline hydrochloride under visible light. Chem. Eng. J. 2020, 384, 123350. [Google Scholar] [CrossRef]
- Yang, L.; Hao, X.; Yu, D.; Zhou, P.; Peng, Y.; Jia, Y.; Zhao, C.; He, J.; Zhan, C.; Lai, B. High visible-light catalytic activity of Bis-PDI-T @TiO2 for activating persulfate toward efficient degradation of carbamazepine. Sep. Purif. Technol. 2021, 263, 118384. [Google Scholar] [CrossRef]
- Jia, J.; Liu, D.; Wang, S.; Li, H.; Ni, J.; Li, X.; Tian, J.; Wang, Q. Visible-light-induced activation of peroxymonosulfate by TiO2 nano-tubes arrays for enhanced degradation of bisphenol A. Sep. Purif. Technol. 2020, 253, 117510. [Google Scholar] [CrossRef]
- Cai, J.; Zhou, M.; Pan, Y.; Du, X.; Lu, X. Extremely efficient electrochemical degradation of organic pollutants with co-generation of hydroxyl and sulfate radicals on Blue-TiO2 nanotubes anode. Appl. Catal. B Environ. 2019, 257, 117902. [Google Scholar] [CrossRef]
- Chen, L.; Ji, H.; Qi, J.; Huang, T.; Wang, C.-C.; Liu, W. Degradation of acetaminophen by activated peroxymonosulfate using Co(OH)2 hollow microsphere supported titanate nanotubes: Insights into sulfate radical production pathway through CoOH+ activation. Chem. Eng. J. 2021, 406, 126877. [Google Scholar] [CrossRef]
- Xia, D.; Tang, Z.; Wang, Y.; Yin, R.; He, H.; Xie, X.; Sun, J.; He, C.; Wong, P.K.; Zhang, G. Piezo-catalytic persulfate activation system for water advanced disinfection: Process efficiency and inactivation mechanisms. Chem. Eng. J. 2020, 400, 125894. [Google Scholar] [CrossRef]
- Ren, X.; Liu, Y.; Guo, W. Morphology and crystal facet-dependent activation mechanism of persulfate by V2O5 nanomaterials for organic pollutants degradation. Sep. Purif. Technol. 2020, 253, 117501. [Google Scholar] [CrossRef]
- Lim, J.; Lee, J.M.; Kim, C.; Hwang, S.-J.; Lee, J.; Choi, W. Two-dimensional RuO2 nanosheets as robust catalysts for peroxymonosulfate activation. Environ. Sci. Nano 2019, 6, 2084–2093. [Google Scholar] [CrossRef]
- Hu, J.; Zeng, X.; Yin, Y.; Liu, Y.; Li, Y.; Hu, X.; Zhang, L.; Zhang, X. Accelerated alkaline activation of peroxydisulfate by reduced rubidium tungstate nanorods for enhanced degradation of bisphenol A. Environ. Sci. Nano 2020, 7, 3547–3556. [Google Scholar] [CrossRef]
- Aljadaani, A.H.A.; Khan, Z.; AL-Thabaiti, S.A. CuNPs as an activator of K2S2O8 for the decolorization of diazo dye in aqueous solution. J. Saudi Chem. Soc. 2022, 26, 101443. [Google Scholar] [CrossRef]
- Ding, D.; Mei, Z.; Huang, H.; Feng, W.; Chen, L.; Chen, Y.; Zhou, J. Oxygen-independent sulfate radical for stimuli-responsive tumor nanotherapy. Adv. Sci. 2022, 2200974. [Google Scholar]
- Oh, W.-D.; Lua, S.-K.; Dong, Z.; Lim, T.-T. Rational design of hierarchically-structured CuBi2O4 composites by deliberate manipulation of the nucleation and growth kinetics of CuBi2O4 for environmental applications. Nanoscale 2016, 8, 2046–2054. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Zhao, S.; Peng, Z.; Li, Z.; Chen, L.; Gan, P. Cu2O nanoparticles anchored on carbon for the efficient removal of propofol from operating room wastewater via peroxymonosulfate activation: Efficiency, mechanism, and pathway. RSC Adv. 2021, 11, 20983–20991. [Google Scholar] [CrossRef]
- Sisi, A.J.; Khataee, A.; Fathinia, M.; Vahid, B. Ultrasonic-assisted degradation of a triarylmethane dye using combined peroxydisulfate and MOF-2 catalyst: Synergistic effect and role of oxidative species. J. Mol. Liq. 2020, 297, 111838. [Google Scholar] [CrossRef]
- Yi, X.-H.; Ji, H.; Wang, C.-C.; Li, Y.; Li, Y.-H.; Zhao, C.; Wang, A.; Fu, H.; Wang, P.; Zhao, X. Photocatalysis-activated SR-AOP over PDINH/MIL-88A (Fe) composites for boosted chloroquine phosphate degradation: Performance, mechanism, pathway and DFT calculations. Appl. Catal. B Environ. 2021, 293, 120229. [Google Scholar] [CrossRef]
- Sisi, A.J.; Fathinia, M.; Khataee, A.; Orooji, Y. Systematic activation of potassium peroxydisulfate with ZIF-8 via sono-assisted catalytic process: Mechanism and ecotoxicological analysis. J. Mol. Liq. 2020, 308, 113018. [Google Scholar] [CrossRef]
- Peng, Y.; Tang, H.; Yao, B.; Gao, X.; Yang, X.; Zhou, Y. Activation of peroxymonosulfate (PMS) by spinel ferrite and their composites in degradation of organic pollutants: A review. Chem. Eng. J. 2021, 414, 128800. [Google Scholar] [CrossRef]
- Long, X.; Feng, C.; Ding, D.; Chen, N.; Yang, S.; Chen, H.; Wang, X.; Chen, R. Oxygen vacancies-enriched CoFe2O4 for peroxymonosulfate activation: The reactivity between radical-nonradical coupling way and bisphenol A. J. Hazard. Mater. 2021, 418, 126357. [Google Scholar] [CrossRef]
- Ma, Y.; Chen, F.; Yang, Q.; Zhong, Y.; Shu, X.; Yao, F.; Xie, T.; Li, X.; Wang, D.; Zeng, G. Sulfate radical induced degradation of Methyl Violet azo dye with CuFe layered doubled hydroxide as heterogeneous photoactivator of persulfate. J. Environ. Manag. 2018, 227, 406–414. [Google Scholar] [CrossRef]
- Wang, J.; Guo, H.; Liu, Y.; Li, W.; Yang, B. Peroxymonosulfate activation by porous BiFeO3 for the degradation of bisphenol AF: Non-radical and radical mechanism. Appl. Surf. Sci. 2020, 507, 145097. [Google Scholar] [CrossRef]
- Kong, L.; Fang, G.; Chen, Y.; Xie, M.; Zhu, F.; Ma, L.; Zhou, D.; Zhan, J. Efficient activation of persulfate decomposition by Cu2FeSnS4 nanomaterial for bisphenol A degradation: Kinetics, performance and mechanism studies. Appl. Catal. B Environ. 2019, 253, 278–285. [Google Scholar] [CrossRef]
- Yang, Y.; Sun, M.; Zhou, J.; Ma, J.; Komarneni, S. Degradation of orange II by Fe @Fe2O3 core shell nanomaterials assisted by NaHSO3. Chemosphere 2020, 244, 125588. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Han, C.; Liu, Y.; Nadagouda, M.N.; Machala, L.; O’Shea, K.E.; Sharma, V.K.; Dionysiou, D.D. Degradation of atrazine by ZnxCu1−xFe2O4 nanomaterial-catalyzed sulfite under UV-vis light irradiation: Green strategy to generate SO4−. Appl. Catal. B Environ. 2018, 221, 380–392. [Google Scholar] [CrossRef]
- Chen, Y.; Li, M.; Tong, Y.; Liu, Z.; Fang, L.; Wu, Y.; Fang, Z.; Wu, F.; Huang, L.-Z. Radical generation via sulfite activation on NiFe2O4 surface for estriol removal: Performance and mechanistic studies. Chem. Eng. J. 2019, 368, 495–503. [Google Scholar] [CrossRef]
- Fang, G.; Zhang, T.; Cui, H.; Dionysiou, D.D.; Liu, C.; Gao, J.; Wang, Y.; Zhou, D. Synergy between iron and selenide on FeSe2(111) surface driving peroxymonosulfate activation for efficient degradation of pollutants. Environ. Sci. Technol. 2020, 54, 15489–15498. [Google Scholar] [CrossRef]
- Geng, G.; Cai, M.; Fang, R.; Luan, Q.; Zhang, Z.; Song, J.; Zhang, J. Metal-organic frameworks-derived perovskite catalysts for efficient degradation of 2, 4-dichlorophenol via peroxymonosulfate activation. Appl. Surf. Sci. 2020, 534, 147467. [Google Scholar] [CrossRef]
- Chen, H.; Xu, Y.; Zhu, K.; Zhang, H. Understanding oxygen-deficient La2CuO4-δperovskite activated peroxymonosulfate for bisphenol A degradation: The role of localized electron within oxygen vacancy. Appl. Catal. B Environ. 2021, 284, 119732. [Google Scholar] [CrossRef]
- Huang, L.-Z.; Zhou, C.; Shen, M.; Gao, E.; Zhang, C.; Hu, X.-M.; Chen, Y.; Xue, Y.; Liu, Z. Persulfate activation by two-dimensional MoS2 confining single Fe atoms: Performance, mechanism and DFT calculations. J. Hazard. Mater. 2020, 389, 122137. [Google Scholar] [CrossRef]
- Missaoui, K.; Ouertani, R.; Jbira, E.; Boukherroub, R.; Bessaïs, B. Morphological influence of BiVO4 nanostructures on peroxymonosulfate activation for highly efficient catalytic degradation of rhodamine B. Environ. Sci. Pollut. Res. 2021, 28, 52236–52246. [Google Scholar] [CrossRef]
- Dong, C.-D.; Huang, C.P.; Nguyen, T.-B.; Hsiung, C.-F.; Wu, C.-H.; Lin, Y.-L.; Chen, C.-W.; Hung, C.-M. The degradation of phthalate esters in marine sediments by persulfate over iron–cerium oxide catalyst. Sci. Total Environ. 2019, 696, 133973. [Google Scholar] [CrossRef]
- Nguyen, N.T.T.; Nguyen, A.Q.K.; Kim, M.S.; Lee, C.; Kim, S.; Kim, J. Degradation of aqueous organic pollutants using an Fe2O3/WO3 composite photocatalyst as a magnetically separable peroxymonosulfate activator. Sep. Purif. Technol. 2021, 267, 118610. [Google Scholar] [CrossRef]
- Ma, J.; Chen, L.; Liu, Y.; Xu, T.; Ji, H.; Duan, J.; Sun, F.; Liu, W. Oxygen defective titanate nanotubes induced by iron deposition for enhanced peroxymonosulfate activation and acetaminophen degradation: Mechanisms, water chemistry effects, and theoretical calculation. J. Hazard. Mater. 2021, 418, 126180. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Long, Y.; Su, Y.; Wang, S.; Zhang, Z.; Zhang, X. Cobalt-enhanced mass transfer and catalytic production of sulfate radicals in MOF-derived CeO2 • Co3O4 nanoflowers for efficient degradation of antibiotics. Small 2021, 17, 2101393. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.; Yang, Y.; Hoffmann, M.R. Activation of peroxymonosulfate by oxygen vacancies-enriched cobalt-doped black TiO2 nanotubes for the removal of organic pollutants. Environ. Sci. Technol. 2019, 53, 6972–6980. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Golshan, M.; Kakavandi, B.; Ahmadi, M.; Azizi, M. Photocatalytic activation of peroxymonosulfate by TiO2 anchored on cupper ferrite (TiO2 @CuFe2O4) into 2,4-D degradation: Process feasibility, mechanism and pathway. J. Hazard. Mater. 2018, 359, 325–337. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Wu, J.; Peng, W.; Fang, Z.; Liu, J. Peroxymonosulfate activation for efficient sulfamethoxazole degradation by Fe3O4 / β-FeOOH nanocomposites: Coexistence of radical and non-radical reactions. Chem. Eng. J. 2019, 356, 904–914. [Google Scholar] [CrossRef]
- Wang, A.; Chen, Z.; Zheng, Z.; Xu, H.; Wang, H.; Hu, K.; Yan, K. Remarkably enhanced sulfate radical-based photo-Fenton-like degradation of levofloxacin using the reduced mesoporous MnO @MnOx microspheres. Chem. Eng. J. 2020, 379, 122340. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, C.; Zhang, Y.; Meng, W.; Yu, B.; Pu, S.; Yuan, D.; Qi, F.; Xu, B.; Chu, W. Sulfate radical-based photo-Fenton reaction derived by CuBi2O4 and its composites with α-Bi2O3 under visible light irradiation: Catalyst fabrication, performance and reaction mechanism. Appl. Catal. B Environ. 2018, 235, 264–273. [Google Scholar] [CrossRef]
- Ye, Q.; Wu, J.; Wu, P.; Wang, J.; Niu, W.; Yang, S.; Chen, M.; Rehman, S.; Zhu, N. Enhancing peroxymonosulfate activation of Fe-Al layered double hydroxide by dissolved organic matter: Performance and mechanism. Water Res. 2020, 185, 116246. [Google Scholar] [CrossRef]
- Liu, F.; Cao, J.; Yang, Z.; Xiong, W.; Xu, Z.; Song, P.; Jia, M.; Sun, S.; Zhang, Y.; Zhong, X. Heterogeneous activation of peroxymonosulfate by cobalt-doped MIL-53(Al) for efficient tetracycline degradation in water: Coexistence of radical and non-radical reactions. J. Colloid Interface Sci. 2021, 581, 195–204. [Google Scholar] [CrossRef]
- Sabri, M.; Habibi-Yangjeh, A.; Vadivel, S. Novel ZnO/Ag6Si2O7 nanocomposites for activation of persulfate ions in photocatalytic removal of organic contaminants under visible light. Mater. Chem. Phys. 2020, 239, 121988. [Google Scholar] [CrossRef]
- Pang, F.; Lan, D.; Ge, J. Core–shell or dimer heterostructures? synergistic catalysis of an advanced oxidation process at the exposed interface under illumination. ACS Appl. Mater. Interfaces 2019, 11, 28996–29003. [Google Scholar] [CrossRef] [PubMed]
- Tang, Q.; An, X.; Lan, H.; Liu, H.; Qu, J. Polyoxometalates/TiO2 photocatalysts with engineered facets for enhanced degradation of bisphenol A through persulfate activation. Appl. Catal. B Environ. 2020, 268, 118394. [Google Scholar] [CrossRef]
- Chen, F.; Yang, Q.; Wang, D.; Yao, F.; Ma, Y.; Li, X.; Wang, J.; Jiang, L.; Wang, L.; Yu, H. Highly-efficient degradation of amiloride by sulfate radicals-based photocatalytic processes: Reactive kinetics, degradation products and mechanism. Chem. Eng. J. 2018, 354, 983–994. [Google Scholar] [CrossRef]
- Zhong, X.; Wu, W.-T.; Jie, H.-N.; Tang, W.-Y.; Chen, D.-Y.; Ruan, T.; Bai, H.-P. Degradation of norfloxacin by copper-doped Bi2WO6-induced sulfate radical-based visible light-Fenton reaction. RSC Adv. 2020, 10, 38024–38032. [Google Scholar] [CrossRef] [PubMed]
- Bacha, A.-U.-R.; Nabi, I.; Cheng, H.; Li, K.; Ajmal, S.; Wang, T.; Zhang, L. Photoelectrocatalytic degradation of endocrine-disruptor bisphenol-A with significantly activated peroxymonosulfate by Co-BiVO4 photoanode. Chem. Eng. J. 2020, 389, 124482. [Google Scholar] [CrossRef]
- Huang, Y.; Kou, S.; Zhang, X.; Wang, L.; Lu, P.; Zhang, D. Facile fabrication of Z-Scheme Bi2WO6/WO3 composites for efficient photodegradation of bisphenol A with peroxymonosulfate activation. Nanomaterials 2020, 10, 724. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sabri, M.; Habibi-Yangjeh, A.; Chand, H.; Krishnan, V. Activation of persulfate by novel TiO2/FeOCl photocatalyst under visible light: Facile synthesis and high photocatalytic performance. Sep. Purif. Technol. 2020, 250, 117268. [Google Scholar] [CrossRef]
- Sabri, M.; Habibi-Yangjeh, A.; Ghosh, S. Novel ZnO/CuBi2O4 heterostructures for persulfate-assisted photocatalytic degradation of dye contaminants under visible light. J. Photochem. Photobiol. A Chem. 2020, 391, 112397. [Google Scholar] [CrossRef]
- Sabri, M.; Habibi-Yangjeh, A.; Chand, H.; Krishnan, V. Heterogeneous photocatalytic activation of persulfate ions with novel ZnO/AgFeO2 nanocomposite for contaminants degradation under visible light. J. Mater. Sci. Mater. Electron. 2021, 32, 4272–4289. [Google Scholar] [CrossRef]
- Rao, Y.; Zhang, Y.; Li, A.; Zhang, T.; Jiao, T. Photocatalytic activity of G-TiO2 @Fe3O4 with persulfate for degradation of alizarin red S under visible light. Chemosphere 2021, 266, 129236. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Lai, Y.; Fang, Q.; Li, Z.; Ou, P.; Wu, P.; Duan, Y.; Chen, Z.; Li, S.; Zhang, Y. Facile fabricate of novel Co (OH)F @MXenes catalysts and their catalytic activity on bisphenol A by peroxymonosulfate activation: The reaction kinetics and mechanism. Appl. Catal. B Environ. 2020, 262, 118099. [Google Scholar] [CrossRef]
- Ding, M.; Chen, W.; Xu, H.; Lu, C.; Lin, T.; Shen, Z.; Tao, H.; Zhang, K. Synergistic features of superoxide molecule anchoring and charge transfer on two-dimensional Ti3C2Tx MXene for efficient peroxymonosulfate activation. ACS Appl. Mater. Interfaces 2020, 12, 9209–9218. [Google Scholar] [CrossRef] [PubMed]
- Ding, M.; Chen, W.; Xu, H.; Shen, Z.; Lin, T.; Hu, K.; Kong, Q.; Yang, G.; Xie, Z. Heterogeneous Fe2CoTi3O10-MXene composite catalysts: Synergistic effect of the ternary transition metals in the degradation of 2, 4-dichlorophenoxyacetic acid based on peroxymonosulfate activation. Chem. Eng. J. 2019, 378, 122177. [Google Scholar] [CrossRef]
- Yang, Q.; Ma, Y.; Chen, F.; Yao, F.; Sun, J.; Wang, S.; Yi, K.; Hou, L.; Li, X.; Wang, D. Recent advances in photo-activated sulfate radical-advanced oxidation process (SR-AOP) for refractory organic pollutants removal in water. Chem. Eng. J. 2019, 378, 122149. [Google Scholar] [CrossRef]
- Duan, X.; Sun, H.; Tade, M.; Wang, S. Metal-free activation of persulfate by cubic mesoporous carbons for catalytic oxidation via radical and nonradical processes. Catal. Today 2018, 307, 140–146. [Google Scholar] [CrossRef]
- Addison, F.; Offiong, N.-A.; Han, Q.; Wang, R.; Liu, N. Nitrogen-doped mesoporous carbon material (NCMK-3) as a catalyst for the removal of 4-chlorophenol during persulfate oxidation and its efficiency after reuse. Environ. Technol. 2022, 43, 192–198. [Google Scholar] [CrossRef]
- Liu, S.; Lai, C.; Li, B.; Zhang, C.; Zhang, M.; Huang, D.; Qin, L.; Yi, H.; Liu, X.; Huang, F. Role of radical and non-radical pathway in activating persulfate for degradation of p-nitrophenol by sulfur-doped ordered mesoporous carbon. Chem. Eng. J. 2020, 384, 123304. [Google Scholar] [CrossRef]
- Han, C.; Duan, X.; Zhang, M.; Fu, W.; Duan, X.; Ma, W.; Liu, S.; Wang, S.; Zhou, X. Role of electronic properties in partition of radical and nonradical processes of carbocatalysis toward peroxymonosulfate activation. Carbon 2019, 153, 73–80. [Google Scholar] [CrossRef]
- Peng, Y.; Xie, G.; Shao, P.; Ren, W.; Li, M.; Hu, Y.; Yang, L.; Shi, H.; Luo, X. A comparison of SMX degradation by persulfate activated with different nanocarbons: Kinetics, transformation pathways, and toxicity. Appl. Catal. B Environ. 2022, 310, 121345. [Google Scholar] [CrossRef]
- Song, H.; Yan, L.; Wang, Y.; Jiang, J.; Ma, J.; Li, C.; Wang, G.; Gu, J.; Liu, P. Electrochemically activated PMS and PDS: Radical oxidation versus nonradical oxidation. Chem. Eng. J. 2020, 391, 123560. [Google Scholar] [CrossRef]
- Duan, X.; Indrawirawan, S.; Kang, J.; Tian, W.; Zhang, H.; Duan, X.; Zhou, X.; Sun, H.; Wang, S. Synergy of carbocatalytic and heat activation of persulfate for evolution of reactive radicals toward metal-free oxidation. Catal. Today 2020, 355, 319–324. [Google Scholar] [CrossRef]
- Tang, Q.; An, X.; Zhou, J.; Lan, H.; Liu, H.; Qu, J. One-step exfoliation of polymeric C3N4 by atmospheric oxygen doping for photocatalytic persulfate activation. J. Colloid Interface Sci. 2020, 579, 455–462. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Li, Y.; Zhang, G.; Yang, F.; He, P. NiO-NiFe2O4-rGO magnetic nanomaterials for activated peroxymonosulfate degradation of Rhodamine B. Water 2019, 11, 384. [Google Scholar] [CrossRef] [Green Version]
- Gu, M.; Sui, Q.; Farooq, U.; Zhang, X.; Qiu, Z.; Lyu, S. Degradation of phenanthrene in sulfate radical based oxidative environment by nZVI-PDA functionalized rGO catalyst. Chem. Eng. J. 2018, 354, 541–552. [Google Scholar] [CrossRef]
- Ye, S.; Xiong, W.; Liang, J.; Yang, H.; Wu, H.; Zhou, C.; Du, L.; Guo, J.; Wang, W.; Xiang, L.; et al. Refined regulation and nitrogen doping of biochar derived from ramie fiber by deep eutectic solvents (DESs) for catalytic persulfate activation toward non-radical organics degradation and disinfection. J. Colloid Interface Sci. 2021, 601, 544–555. [Google Scholar] [CrossRef]
- Zhang, J.; Jing, B.; Tang, Z.; Ao, Z.; Xia, D.; Zhu, M.; Wang, S. Experimental and DFT insights into the visible-light driving metal-free C3N5 activated persulfate system for efficient water purification. Appl. Catal. B Environ. 2021, 289, 120023. [Google Scholar] [CrossRef]
- Solís, R.R.; Dinc, Ö.; Fang, G.; Nadagouda, M.N.; Dionysiou, D.D. Activation of inorganic peroxides with magnetic graphene for the removal of antibiotics from wastewater. Environ. Sci. Nano 2021, 8, 960–977. [Google Scholar] [CrossRef]
- Yang, L.; Xu, L.; Bai, X.; Jin, P. Enhanced visible-light activation of persulfate by Ti3+ self-doped TiO2/graphene nanocomposite for the rapid and efficient degradation of micropollutants in water. J. Hazard. Mater. 2019, 365, 107–117. [Google Scholar] [CrossRef]
- Monteagudo, J.; Durán, A.; San Martín, I.; Carrillo, P. Effect of sodium persulfate as electron acceptor on antipyrine degradation by solar TiO2 or TiO2/rGO photocatalysis. Chem. Eng. J. 2019, 364, 257–268. [Google Scholar] [CrossRef]
- Chen, Y.; Bai, X.; Ji, Y.; Shen, T. Reduced graphene oxide-supported hollow Co3O4 @N-doped porous carbon as peroxymonosulfate activator for sulfamethoxazole degradation. Chem. Eng. J. 2022, 430, 132951. [Google Scholar] [CrossRef]
- Zhu, C.; Liu, F.; Ling, C.; Jiang, H.; Wu, H.; Li, A. Growth of graphene-supported hollow cobalt sulfide nanocrystals via MOF-templated ligand exchange as surface-bound radical sinks for highly efficient bisphenol A degradation. Appl. Catal. B Environ. 2019, 242, 238–248. [Google Scholar] [CrossRef]
- Xu, L.; Yang, L.; Bai, X.; Du, X.; Wang, Y.; Jin, P. Persulfate activation towards organic decomposition and Cr (VI) reduction achieved by a novel CQDs-TiO2-x/rGO nanocomposite. Chem. Eng. J. 2019, 373, 238–250. [Google Scholar] [CrossRef]
- Huang, Z.; Wu, P.; Liu, C.; Chen, M.; Yang, S.; Dang, Z.; Zhu, N. Multiple catalytic reaction sites induced non-radical/radical pathway with graphene layers encapsulated Fe-NC toward highly efficient peroxymonosulfate (PMS) activation. Chem. Eng. J. 2021, 413, 127507. [Google Scholar] [CrossRef]
- Yuan, R.; Hu, L.; Yu, P.; Wang, Z.; Wang, H.; Fang, J. Co3O4 nanocrystals/3D nitrogen-doped graphene aerogel: A synergistic hybrid for peroxymonosulfate activation toward the degradation of organic pollutants. Chemosphere 2018, 210, 877–888. [Google Scholar] [CrossRef]
- Sudhaik, A.; Raizada, P.; Thakur, S.; Saini, A.K.; Singh, P.; Hosseini-Bandegharaei, A.; Lim, J.-H.; Jeong, D.Y.; Nguyen, V.-H. Peroxymonosulphate-mediated metal-free pesticide photodegradation and bacterial disinfection using well-dispersed graphene oxide supported phosphorus-doped graphitic carbon nitride. Appl. Nanosci. 2020, 10, 4115–4137. [Google Scholar] [CrossRef]
- Li, G.; Cao, X.-Q.; Meng, N.; Huang, Y.-M.; Wang, X.-D.; Gao, Y.-Y.; Li, X.; Yang, T.-S.; Li, B.-L.; Zhang, Y.-Z.; et al. Fe3O4 supported on water caltrop-derived biochar toward peroxymonosulfate activation for urea degradation: The key role of sulfate radical. Chem. Eng. J. 2022, 433, 133595. [Google Scholar] [CrossRef]
- Zhu, K.; Bin, Q.; Shen, Y.; Huang, J.; He, D.; Chen, W. In-situ formed N-doped bamboo-like carbon nanotubes encapsulated with Fe nanoparticles supported by biochar as highly efficient catalyst for activation of persulfate (PS) toward degradation of organic pollutants. Chem. Eng. J. 2020, 402, 126090. [Google Scholar] [CrossRef]
- Chen, C.; Xie, M.; Kong, L.; Lu, W.; Feng, Z.; Zhan, J. Mn3O4 nanodots loaded g-C3N4 nanosheets for catalytic membrane degradation of organic contaminants. J. Hazard. Mater. 2020, 390, 122146. [Google Scholar] [CrossRef]
- Fu, H.; Ma, S.; Zhao, P.; Xu, S.; Zhan, S. Activation of peroxymonosulfate by graphitized hierarchical porous biochar and MnFe2O4 magnetic nanoarchitecture for organic pollutants degradation: Structure dependence and mechanism. Chem. Eng. J. 2019, 360, 157–170. [Google Scholar] [CrossRef]
- Sun, X.; Zhou, A.; Li, S.; Li, M. Fe3C/Carbon-coated Fe3O4 core–shell nanoparticles as recyclable catalysts for ciprofloxacin degradation in water. ACS Appl. Nano Mater. 2021, 4, 13655–13663. [Google Scholar] [CrossRef]
- Gong, Y.; Zhao, X.; Zhang, H.; Yang, B.; Xiao, K.; Guo, T.; Zhang, J.; Shao, H.; Wang, Y.; Yu, G. MOF-derived nitrogen doped carbon modified g-C3N4 heterostructure composite with enhanced photocatalytic activity for bisphenol A degradation with peroxymonosulfate under visible light irradiation. Appl. Catal. B Environ. 2018, 233, 35–45. [Google Scholar] [CrossRef]
- Yang, L.; Bai, X.; Shi, J.; Du, X.; Xu, L.; Jin, P. Quasi-full-visible-light absorption by D35-TiO2/g-C3N4 for synergistic persulfate activation towards efficient photodegradation of micropollutants. Appl. Catal. B Environ. 2019, 256, 117759. [Google Scholar] [CrossRef]
- Du, W.; Zhang, Q.; Shang, Y.; Wang, W.; Li, Q.; Yue, Q.; Gao, B.; Xu, X. Sulfate saturated biosorbent-derived Co-S @NC nanoarchitecture as an efficient catalyst for peroxymonosulfate activation. Appl. Catal. B Environ. 2020, 262, 118302. [Google Scholar] [CrossRef]
- Noorisepehr, M.; Kakavandi, B.; Isari, A.A.; Ghanbari, F.; Dehghanifard, E.; Ghomi, N.; Kamrani, F. Sulfate radical-based oxidative degradation of acetaminophen over an efficient hybrid system: Peroxydisulfate decomposed by ferroferric oxide nanocatalyst anchored on activated carbon and UV light. Sep. Purif. Technol. 2020, 250, 116950. [Google Scholar] [CrossRef]
- Chen, M.-M.; Niu, H.-Y.; Niu, C.-G.; Guo, H.; Liang, S.; Yang, Y.-Y. Metal-organic framework-derived CuCo/carbon as an efficient magnetic heterogeneous catalyst for persulfate activation and ciprofloxacin degradation. J. Hazard. Mater. 2022, 424, 127196. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, X.; Zhang, H.; Zhu, G.; Gao, Y.; Cheng, Q.; Cheng, X. Synthesis of magnetic nickel ferrite/carbon sphere composite for levofloxacin elimination by activation of persulfate. Sep. Purif. Technol. 2019, 215, 528–539. [Google Scholar] [CrossRef]
- Duan, X.; Kang, J.; Tian, W.; Zhang, H.; Ho, S.-H.; Zhu, Y.-A.; Ao, Z.; Sun, H.; Wang, S. Interfacial-engineered cobalt @carbon hybrids for synergistically boosted evolution of sulfate radicals toward green oxidation. Appl. Catal. B Environ. 2019, 256, 117795. [Google Scholar] [CrossRef]
- Guo, R.; Chen, Y.; Nengzi, L.-c.; Meng, L.; Song, Q.; Gou, J.; Cheng, X. In situ preparation of carbon-based Cu-Fe oxide nanoparticles from CuFe Prussian blue analogues for the photo-assisted heterogeneous peroxymonosulfate activation process to remove lomefloxacin. Chem. Eng. J. 2020, 398, 125556. [Google Scholar] [CrossRef]
- Duan, P.; Chen, D.; Hu, X. Tin dioxide decorated on Ni-encapsulated nitrogen-doped carbon nanotubes for anodic electrolysis and persulfate activation to degrade cephalexin: Mineralization and degradation pathway. Chemosphere 2021, 269, 128740. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Zhang, H.; Zeng, T.; Chen, J.; Song, S. Synergistically enhanced heterogeneous activation of persulfate for aqueous carbamazepine degradation using Fe3O4 @SBA-15. Sci. Total Environ. 2021, 760, 144027. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Hu, E.; Xu, D.; Guo, Q. Activation of peroxymonosulfate by bimetallic CoMn oxides loaded on coal fly ash-derived SBA-15 for efficient degradation of Rhodamine B. Sep. Purif. Technol. 2021, 274, 119081. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, Y.; Wei, J.; Liu, W. Perovskite LaFexCo1-xO3-λ deposited SiO2 catalytic membrane for deeply cleaning wastewater. Chem. Eng. J. 2021, 403, 126386. [Google Scholar] [CrossRef]
- Fauzi, A.; Jalil, A.; Hitam, C.; Aziz, F.; Chanlek, N. Superior sulfate radicals-induced visible-light-driven photodegradation of pharmaceuticals by appropriate Ce loading on fibrous silica ceria. J. Environ. Chem. Eng. 2020, 8, 104484. [Google Scholar] [CrossRef]
- Wang, F.; Fu, H.; Wang, F.-X.; Zhang, X.-W.; Wang, P.; Zhao, C.; Wang, C.-C. Enhanced catalytic sulfamethoxazole degradation via peroxymonosulfate activation over amorphous CoSx @SiO2 nanocages derived from ZIF-67. J. Hazard. Mater. 2022, 423, 126998. [Google Scholar] [CrossRef]
- Xie, J.; Liao, Z.; Zhang, M.; Ni, L.; Qi, J.; Wang, C.; Sun, X.; Wang, L.; Wang, S.; Li, J. Sequential ultrafiltration-catalysis membrane for excellent removal of multiple pollutants in water. Environ. Sci. Technol. 2020, 55, 2652–2661. [Google Scholar] [CrossRef]
- Jing, L.; Yang, W.; Wang, T.; Wang, J.; Kong, X.; Lv, S.; Li, X.; Quan, R.; Zhu, H. Porous boron nitride micro-nanotubes efficiently anchor CoFe2O4 as a magnetic recyclable catalyst for peroxymonosulfate activation and oxytetracycline rapid degradation. Sep. Purif. Technol. 2022, 290, 120925. [Google Scholar] [CrossRef]
- Zhu, Z.-S.; Qu, J.; Hao, S.-M.; Han, S.; Jia, K.-L.; Yu, Z.-Z. α-Fe2O3 nanodisk/bacterial cellulose hybrid membranes as high-performance sulfate-radical-based visible light photocatalysts under stirring/flowing states. ACS Appl. Mater. Interfaces 2018, 10, 30670–30679. [Google Scholar] [CrossRef] [PubMed]
- Hou, C.; Chen, W.; Fu, L.; Zhang, S.; Liang, C.; Wang, Y. Facile synthesis of a Co/Fe bi-MOFs/CNF membrane nanocomposite and its application in the degradation of tetrabromobisphenol A. Carbohydr. Polym. 2020, 247, 116731. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wang, C.; Qi, J.; Yan, Y.; Zhang, M.; Yan, X.; Sun, X.; Wang, L.; Li, J. Spiderweb-like Fe-Co Prussian blue analogue nanofibers as efficient catalyst for bisphenol-A Degradation by activating peroxymonosulfate. Nanomaterials 2019, 9, 402. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Cheng, P.; Yao, Y.; Yamauchi, Y.; Yan, X.; Li, J.; Na, J. In-situ fabrication of nanoarchitectured MOF filter for water purification. J. Hazard. Mater. 2020, 392, 122164. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Yin, J.; Tang, H.; Wang, H.; Liu, S.; Huang, T.; Fang, S.; Zhu, K.; Xie, Z. Fabrication of ZIF-67 @PVDF ultrafiltration membrane with improved antifouling and separation performance for dye wastewater treatment via sulfate radical enhancement. Sep. Purif. Technol. 2021, 279, 119755. [Google Scholar] [CrossRef]
- Guo, R.; Li, Y.; Chen, Y.; Liu, Y.; Niu, B.; Gou, J.; Cheng, X. Efficient degradation of sulfamethoxazole by CoCu LDH composite membrane activating peroxymonosulfate with decreased metal ion leaching. Chem. Eng. J. 2021, 417, 127887. [Google Scholar] [CrossRef]
- Dong, X.; Ren, B.; Sun, Z.; Li, C.; Zhang, X.; Kong, M.; Zheng, S.; Dionysiou, D.D. Monodispersed CuFe2O4 nanoparticles anchored on natural kaolinite as highly efficient peroxymonosulfate catalyst for bisphenol A degradation. Appl. Catal. B Environ. 2019, 253, 206–217. [Google Scholar] [CrossRef]
- Sun, Z.; Liu, X.; Dong, X.; Zhang, X.; Tan, Y.; Yuan, F.; Zheng, S.; Li, C. Synergistic activation of peroxymonosulfate via in situ growth FeCo2O4 nanoparticles on natural rectorite: Role of transition metal ions and hydroxyl groups. Chemosphere 2021, 263, 127965. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Chen, G.; Wang, X.; Yang, G.; Liu, Y.; Zhang, C. Performance of L-Cu&Mn-nZVFe @B nanomaterial on nitrate selective reduction under UV irradiation and persulfate activation in the presence of oxalic acid. J. Hazard. Mater. 2021, 401, 123378. [Google Scholar] [PubMed]
- Wang, J.-S.; Yi, X.-H.; Xu, X.; Ji, H.; Alanazi, A.M.; Wang, C.-C.; Zhao, C.; Kaneti, Y.V.; Wang, P.; Liu, W. Eliminating tetracycline antibiotics matrix via photoactivated sulfate radical-based advanced oxidation process over the immobilized MIL-88A: Batch and continuous experiments. Chem. Eng. J. 2022, 431, 133213. [Google Scholar] [CrossRef]
- Zhu, L.; Ji, J.; Liu, J.; Mine, S.; Matsuoka, M.; Zhang, J.; Xing, M. Designing 3D-MoS2 sponge as excellent cocatalysts in advanced oxidation processes for pollutant control. Angew. Chem. 2020, 132, 14072–14080. [Google Scholar] [CrossRef]
- Lv, S.-W.; Liu, J.-M.; Li, C.-Y.; Zhao, N.; Wang, Z.-H.; Wang, S. Two novel MOFs @COFs hybrid-based photocatalytic platforms coupling with sulfate radical-involved advanced oxidation processes for enhanced degradation of bisphenol A. Chemosphere 2020, 243, 125378. [Google Scholar] [CrossRef]
- Duan, X.; Yang, S.; Wacławek, S.; Fang, G.; Xiao, R.; Dionysiou, D.D. Limitations and prospects of sulfate-radical based advanced oxidation processes. J. Environ. Chem. Eng. 2020, 8, 103849. [Google Scholar] [CrossRef]
- Kavarthapu, A.; Gurumoorthy, K. Linking chronic periodontitis and oral cancer: A review. Oral Oncol. 2021, 121, 105375. [Google Scholar] [CrossRef] [PubMed]
- Kwon, T.; Lamster, I.B.; Levin, L. Current concepts in the management of periodontitis. Int. Dent. J. 2021, 71, 462–476. [Google Scholar] [CrossRef] [PubMed]
Material System | Morphological Structure | Performances | Reusability | References |
---|---|---|---|---|
CoFe2O4/PMS | Spherome, polyhedral | 100% degradation of BPA in 40 min | 3 recycles | [118] |
CuFe-LDH/PDS/Vis | Lamellar | 100% degradation of MV in 18 min | 4 recycles | [119] |
BiFeO3/PMS | Irregular crystal | 94.7% degradation of bisphenol AF in 60 min | / | [120] |
Cu2FeSnS4/PDS | Nano flower | 98.6% degradation of BPA in 45 min | 4 recycles | [121] |
Fe @Fe2O3/NaHSO3 | Linear nuclear-shell nanostructures | >99% degradation of Orange II in 30 s | / | [122] |
ZnCuFe2O4/XHSO3/UV-vis | 27 nm nanoparticle | 98.6% degradation of Aatrex in 30 min | 5 recycles | [123] |
NiFe2O4/XHSO3 | Graininess | 87.6% degradation of estriol in 60 min | 5 recycles | [124] |
FeSe2/PMS | 5–10 nm nanoparticle | 82.7% degradation of PCB in 120 min, 100%degradation of PFOA in 180 min | 5 recycles | [125] |
LaCoO3/PMS | Nano stick | 99.8% degradation of 2, 4-DCP in 25 min | 3 recycles | [126] |
La2CuO4-δ/PMS | Irregular aggregates | 96% degradation of BPA in 60 min | / | [127] |
FexMo1-xS2/PDS | Nanosheet | 100% degradation of aminobenzene in 20 min | 5 recycles | [128] |
BiVO4/PMS | Nanoflower-like blooming peony | 100% degradation of RhB in 17 min | 5 recycles | [129] |
Fe-Ce/PDS | Anamorphous congeries and rod-shaped morphology | 86% degradation of PAE in 6 h | / | [130] |
Fe2O3/WO3/PMS/vis | Cluster | 85.3% degradation of 4-CP in 1 h | 5 recycles | [131] |
Fe/TNTs/PMS | Asperous multi-layer tubular structure | 95.2% degradation of APAP in 30 min | 5 recycles | [132] |
CeO2•Co3O4/PMS | Nanoflower | 99% degradation of norfloxacin in 20 min | / | [133] |
Co-Black TNT/PMS | Nanotubes | 100% degradation of BPA and 4-CP in 15 min | 10 recycles | [134] |
TiO2 @CuFe2O4/PMS/UV | Spherical or cube | 97.2% degradation of 2,4-D in 60 min | 5 recycles | [135] |
Fe3O4/β-FeOOH/PMS | Small cubic crystals of Fe3O4 are decorated on spindle-shaped-FeOOH | 94% degradation of SMX in 30 min | / | [136] |
MnO @MnOx/PMS | Uniform, spherical morphology of the porous structure | 98.1% degradation of LEV in 30 min | 3 recycles | [137] |
α-Bi2O3/CuBi2O4/PMS/vis | Polyhedral, nanosphere | 90% degradation of RhB in 60 min | / | [138] |
DOM-FeAl-LDH/PMS | Flower-shaped | 93% degradation of PBA in 60 min | / | [139] |
Co-MIL-53(Al)/PMS | Cube strip | 94.0% degradation of TC in 120 min | 4 recycles | [140] |
Material System | Morphological Structure | Performances | Reusability | References |
---|---|---|---|---|
ZnO/Ag6Si2O7/PDS | The spherical particles of Ag6Si2O7 were located around the spindle-shaped ZnO particles | 100% degradation of RhB in 150 min | 5 recycles | [141] |
ZnO-NiNC/PMS/vis | Dimeric particles | 100% degradation of RhB in 20 min | / | [142] |
Fe-POMs/TiO2/PDS/vis | Nanoparticles 1–2 nm in size were evenly distributed on the surface of the TiO2 nanosheets | 100% degradation of BPA in 30 min | 4 recycles | [143] |
Pd/BiVO4/PDS/vis | The Pd nanoparticles were located on the BV nanosheets | 96.43% degradation of AML in 30 min | 5 recycles | [144] |
Cu-Bi2WO6/PMS/LED | Cu particles were deposited on the surface of Bi2WO6 nanoparticles (porous) with damaged nanorod fragments | 89.27% degradation of NOF in 60 min | 5 recycles | [145] |
Co-BiVO4/PMS | Particles of an irregular shape | 99.16% degradation of BPA in 60 min | 4 recycles | [146] |
Bi2WO6/WO3/PMS | Layered construction; the WO3 NR is completely wrapped in ultrathin Bi2WO6 nanosheets | 94.7% degradation of BPA in 30 min | 3 recycles | [147] |
TiO2/FeOCl/PDS/vis | Highly clustered near-spherical particle composition | 100% degradation of RhB in 90 min | 4 recycles | [148] |
ZnO/CuBi2O4/PDS/vis | Sphelar CuBi2O4 particles were seen around the rice-shaped ZnO particles | 100% degradation of RhB in 210 min | 4 recycles | [149] |
Material System | Morphological Structure | Performances | Reusability | References |
---|---|---|---|---|
Fe3O4 @BC/PMS | Layered porous structure | 100% degradation of urea in 15 min | 3 recycles | [177] |
MnFe2O4/MS/PMS | Porous fish squamous structure, the MnFe2O4 nanoclusters on the MS surface were evenly distributed | 100% degradation of orange II in 6 min | 3 recycles | [180] |
Fe3C/Fe3O4 @NC/PMS | Nuclear shell structure | 87.0% degradation of CIP in 20 min | 5 recycles | [181] |
ZIF-NC/g-C3N4/PMS/vis | ZIF-NC: diamond-shaped dodecahedral shape, g-C3N4: lamellar | 97% degradation of BPA in 10 min | 5 recycles | [182] |
Mn3O4-g-C3N4/PMS | Mn3O4 nanodots (5–10nm) were evenly distributed on the CNNS (g-C3N4 nanosheet) | 100% degradation of 4-CP in 60 min | 6 recycles | [179] |
D35-TiO2/g-C3N4/PDS/vis | TiO2 particles with an average size of 20–52nm were distributed in the clustered, massive, and layered g-C3N4 | 100% degradation of BPA in 15 min | 5 recycles | [183] |
Co-S @NC/PMS | Nanoparticles 50–100 nm in diameter were wrapped in a graphite layer | 100% degradation of DIA in 90 min | 4 recycles | [184] |
FON @AC/PDS/UV | FON with a spherical or cubic structure and an average size of 30 nm existed on the carbon surface | 100% degradation of ACP in 60 min | 5 recycles | [185] |
Cu @Co-MOF/C/PMS | Small particles were dispersed on the spherical surface of Co-MOF-71; the surface of the CuCo/C structure was somewhat rough and showed a polyhedral structure | 90% degradation of CIP in 30 min | 4 recycles | [186] |
NiFe2O4/CS/PDS | The NiFe2O4/CS particles had a larger mean diameter and a rougher sphere | 67% degradation of Levofloxacin in 60 min | 4 recycles | [187] |
CoP @carbonand Co3O4 @carbon/PMS | Nuclear shell structure | 100% degradation of phenol in 10 min | 4 recycles | [188] |
CuFeO @C/PMS/Vis | Irregular shape, mesoporous | 89.7% degradation of LOM in 40 min | 4 recycles | [189] |
Ni @NCNT and SnO2/Ni @NCNT/PDS | Bamboo-shaped hollow shapes and delimited nanotubes, and the uniformly coated SnO2/Ni @NCNT exhibited an ideal porous network structure | 100% degradation of CPX in 30 min | 4 recycles | [190] |
Advantages, Prospects, and Opportunities [28,29,30,32,49,50,111] | Disadvantages, Limitations, and Pitfalls [32,50,76,177,210] |
---|---|
SO4−· has a higher oxidation potential (2.5–3.1 V) then •OH (1.8–2.7 V). | It can cause an increase in residual cations (such as Na, K) and changes in the osmotic pressure in biology. |
SO4−· has a longer lifetime (30~40 µs for SO4−· and 1 µs for •OH). | It can result in residual sulfate ions. |
SO4−· has wider application conditions (such as pH) and a higher treatment efficiency. | It could cause an increase in the possibility of toxic by-products forming in the presence of Cl− (such as during a saline rinse). |
Nanomaterials have a specific nanostructure and larger specific area | The inevitable quenching reaction occurs when OH− or Cl− coexists with SO4−· (such as during a saline rinse and alkaline environments). |
Nanomaterials have advantages, including high selectivity, high recoveries, and widespread optical properties. | It can convert SO4−· into an inefficient •OH in an alkaline environment (such as periodontitis). |
Nanomaterials have an adjustable catalytic activity due to changes in its morphology and the application of external stimuli. | Nanomaterials gather during the preparation and activation process, resulting in a reduction in the activation efficiency |
It is independent of the oxygen environment. | Metal leaching can occur, which could eventually lead to inactivation of the catalyst and biological toxicity. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Qi, M.; Yang, Q.; Shi, F.; Liu, C.; Du, J.; Sun, Y.; Li, C.; Dong, B. State-of-the-Art on the Sulfate Radical-Advanced Oxidation Coupled with Nanomaterials: Biological and Environmental Applications. J. Funct. Biomater. 2022, 13, 227. https://doi.org/10.3390/jfb13040227
Li S, Qi M, Yang Q, Shi F, Liu C, Du J, Sun Y, Li C, Dong B. State-of-the-Art on the Sulfate Radical-Advanced Oxidation Coupled with Nanomaterials: Biological and Environmental Applications. Journal of Functional Biomaterials. 2022; 13(4):227. https://doi.org/10.3390/jfb13040227
Chicago/Turabian StyleLi, Sijia, Manlin Qi, Qijing Yang, Fangyu Shi, Chengyu Liu, Juanrui Du, Yue Sun, Chunyan Li, and Biao Dong. 2022. "State-of-the-Art on the Sulfate Radical-Advanced Oxidation Coupled with Nanomaterials: Biological and Environmental Applications" Journal of Functional Biomaterials 13, no. 4: 227. https://doi.org/10.3390/jfb13040227
APA StyleLi, S., Qi, M., Yang, Q., Shi, F., Liu, C., Du, J., Sun, Y., Li, C., & Dong, B. (2022). State-of-the-Art on the Sulfate Radical-Advanced Oxidation Coupled with Nanomaterials: Biological and Environmental Applications. Journal of Functional Biomaterials, 13(4), 227. https://doi.org/10.3390/jfb13040227