Crystallographic and Physicochemical Analysis of Bovine and Human Teeth Using X-ray Diffraction and Solid-State Nuclear Magnetic Resonance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. XRD Experiment for Crystallographic Structure
2.3. Solid-State NMR Experiment for Physicochemical Properties
3. Results
3.1. XRD Experiment for Crystallographic Structure
3.2. Solid-State NMR Experiment for Physicochemical Properties
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mellberg, J.R. Hard-tissue substrates for evaluation of cariogenic and anti-cariogenic activity in situ. J. Dent. Res. 1992, 71, 913–919. [Google Scholar] [CrossRef]
- Fincham, A.G.; Belcourt, A.B.; Lyaruu, D.M.; Termine, J.D. Comparative protein biochemistry of developing dental enamel matrix from five mammalian species. Calcif. Tissue Int. 1982, 34, 182–189. [Google Scholar] [CrossRef]
- Sydney-Zax, M.; Mayer, I.; Deutsch, D. Carbonate content in developing human and bovine enamel. J. Dent. Res. 1991, 70, 913–916. [Google Scholar] [CrossRef]
- Ortiz-Ruiz, A.J.; de Dios Teruel-Fernández, J.; Alcolea-Rubio, L.A.; Hernández-Fernández, A.; Martínez-Beneyto, Y.; Gispert-Guirado, F. Structural differences in enamel and dentin in human, bovine, porcine, and ovine teeth. Ann. Anat. Anat. Anz. Off. Organ Anat. Ges. 2018, 218, 7–17. [Google Scholar] [CrossRef]
- Putt, M.S.; Kleber, C.J.; Muhler, J.C. A comparison of the polishing properties of human and bovine enamel. J. Dent. Res. 1980, 59, 1177. [Google Scholar] [CrossRef] [PubMed]
- Kielbassa, A.M.; Hellwig, E.; Meyer-Lueckel, H. Effects of irradiation on in situ remineralization of human and bovine enamel demineralized in vitro. Caries Res. 2006, 40, 130–135. [Google Scholar] [CrossRef] [PubMed]
- Amaechi, B.T.; Higham, S.M.; Edgar, W.M. Factors influencing the development of dental erosion in vitro: Enamel type, temperature and exposure time. J. Oral Rehabil. 1999, 26, 624–630. [Google Scholar] [CrossRef]
- Hara, A.T.; Queiroz, C.S.; Leme, A.P.; Serra, M.D.; Cury, J.A. Caries progression and inhibition in human and bovine root dentine in situ. Caries Res. 2003, 37, 339–344. [Google Scholar] [CrossRef] [PubMed]
- Souza-Gabriel, A.E.; Colucci, V.; Turssi, C.P.; Serra, M.C.; Corona, S.A. Microhardness and SEM after CO(2) laser irradiation or fluoride treatment in human and bovine enamel. Microsc. Res. Tech. 2010, 73, 1030–1035. [Google Scholar] [CrossRef]
- Meurman, J.H.; Frank, R.M. Progression and surface ultrastructure of in vitro caused erosive lesions in human and bovine enamel. Caries Res. 1991, 25, 81–87. [Google Scholar] [CrossRef]
- Rios, D.; Honorio, H.M.; Magalhaes, A.C.; Silva, S.M.; Delbem, A.C.; Machado, M.A.; Buzalaf, M.A. Scanning electron microscopic study of the in situ effect of salivary stimulation on erosion and abrasion in human and bovine enamel. Braz. Oral Res. 2008, 22, 132–138. [Google Scholar] [CrossRef] [Green Version]
- Sanches, R.P.; Otani, C.; Damião, A.J.; Miyakawa, W. AFM characterization of bovine enamel and dentine after acid-etching. Micron 2009, 40, 502–506. [Google Scholar] [CrossRef] [PubMed]
- Katz, J.L.; Misra, A.; Spencer, P.; Wang, Y.; Bumrerraj, S.; Nomura, T.; Eppell, S.J.; Tabib-Azar, M. Multiscale mechanics of hierarchical structure/property relationships in calcified tissues and tissue/material interfaces. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 2007, 27, 450–468. [Google Scholar] [CrossRef] [PubMed]
- Loch, C.; Swain, M.V.; Fraser, S.J.; Gordon, K.C.; Kieser, J.A.; Fordyce, R.E. Elemental and chemical characterization of dolphin enamel and dentine using X-ray and Raman microanalyzes (Cetacea: Delphinoidea and Inioidea). J. Struct. 2014, 185, 58–68. [Google Scholar] [CrossRef]
- Pasteris, J.D.; Wopenka, B.; Freeman, J.J.; Rogers, K.; Valsami-Jones, E.; van der Houwen, J.A.; Silva, M.J. Lack of OH in nanocrystalline apatite as a function of degree of atomic order: Implications for bone and biomaterials. Biomaterials 2004, 25, 229–238. [Google Scholar] [CrossRef]
- Kallistová, A.; Horáček, I.; Šlouf, M.; Skála, R.; Fridrichová, M. Mammalian enamel maturation: Crystallographic changes prior to tooth eruption. PLoS ONE 2017, 12, e0171424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Mosawi, M.; Davis, G.R.; Bushby, A.; Montgomery, J.; Beaumont, J.; Al-Jawad, M. Crystallographic texture and mineral concentration quantification of developing and mature human incisal enamel. Sci. Rep. 2018, 8, 14449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Y.; Ackerman, J.L.; Kim, H.M.; Rey, C.; Barroug, A.; Glimcher, M.J. Nuclear magnetic resonance spin-spin relaxation of the crystals of bone, dental enamel, and synthetic hydroxyapatites. J. Bone Miner. Res. 2002, 17, 472–480. [Google Scholar] [CrossRef]
- Sun, Y.; Brauckmann, O.; Nixdorf, D.R.; Kentgens, A.; Garwood, M.; Idiyatullin, D.; Heerschap, A. Imaging human teeth by phosphorus magnetic resonance with nuclear Overhauser enhancement. Sci. Rep. 2016, 6, 30756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kolmas, J.; Slosarczyk, A.; Wojtowicz, A.; Kolodziejski, W. Estimation of the specific surface area of apatites in human mineralized tissues using 31P MAS NMR. Solid State Nucl. Magn. Reson. 2007, 32, 53–58. [Google Scholar] [CrossRef]
- Kolmas, J.; Kolodziejski, W. Concentration of hydroxyl groups in dental apatites: A solid-state 1H MAS NMR study using inverse 31P --> 1H cross-polarization. Chem. Commun. 2007, 4390–4392. [Google Scholar] [CrossRef] [PubMed]
- Dorozhkin, S.V. Calcium orthophosphates: Occurrence, properties, biomineralization, pathological calcification and biomimetic applications. Biomatter 2011, 1, 121–164. [Google Scholar] [CrossRef]
- Cazalbou, S.; Eichert, D.; Ranz, X.; Drouet, C.; Combes, C.; Harmand, M.F.; Rey, C. Ion exchanges in apatites for biomedical application. J. Mater. Sci. Mater. Med. 2005, 16, 405–409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rietveld, H.M. Line Profiles of Neutron Powder-Diffraction Peaks for Structure Refinement. Acta Crystallogr. 1967, 22, 151–152. [Google Scholar] [CrossRef]
- Cho, G.; Wu, Y.; Ackerman, J.L. Detection of hydroxyl ions in bone mineral by solid-state NMR spectroscopy. Science 2003, 300, 1123–1127. [Google Scholar] [CrossRef] [PubMed]
- Habraken, W.J.; Tao, J.; Brylka, L.J.; Friedrich, H.; Bertinetti, L.; Schenk, A.S.; Verch, A.; Dmitrovic, V.; Bomans, P.H.; Frederik, P.M.; et al. Ion-association complexes unite classical and non-classical theories for the biomimetic nucleation of calcium phosphate. Nat. Commun. 2013, 4, 1507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Izumi, F.; Momma, K. Three-Dimensional Visualization in Powder Diffraction. Solid State Phenom. 2007, 130, 15–20. [Google Scholar] [CrossRef]
- Momma, K.; Izumi, F. VESTA: A three-dimensional visualization system for electronic and structural analysis. J. Appl. Crystallogr. 2008, 41, 653–658. [Google Scholar] [CrossRef]
- Momma, K.; Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011, 44, 1272–1276. [Google Scholar] [CrossRef]
- Ida, T.; Shimazaki, S.; Hibino, H.; Toraya, H. Diffraction peak profiles from spherical crystallites with lognormal size distribution. J. Appl. Crystallogr. 2003, 36, 1107–1115. [Google Scholar] [CrossRef]
- Toby, B.H. R factors in Rietveld analysis: How good is good enough? Powder Diffr. 2006, 21, 67–70. [Google Scholar] [CrossRef] [Green Version]
- Iline-Vul, T.; Matlahov, I.; Grinblat, J.; Keinan-Adamsky, K.; Goobes, G. Changes to the Disordered Phase and Apatite Crystallite Morphology during Mineralization by an Acidic Mineral Binding Peptide from Osteonectin. Biomacromolecules 2015, 16, 2656–2663. [Google Scholar] [CrossRef] [PubMed]
- Bazin, D.; Chappard, C.; Combes, C.; Carpentier, X.; Rouziere, S.; Andre, G.; Matzen, G.; Allix, M.; Thiaudiere, D.; Reguer, S.; et al. Diffraction techniques and vibrational spectroscopy opportunities to characterise bones. Osteoporos. Int. 2009, 20, 1065–1075. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leroy, N.; Bres, E.; Jones, D.B.; Downes, S. Structure and substitutions in fluorapatite. Eur. Cells Mater. 2001, 2, 36–48. [Google Scholar] [CrossRef] [PubMed]
- Aoba, T. The effect of fluoride on apatite structure and growth. Crit. Rev. Oral Biol. Med. 1997, 8, 136–153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, W.E.; Eidelman, N.; Tomazic, B. Octacalcium phosphate as a precursor in biomineral formation. Adv. Dent. Res. 1987, 1, 306–313. [Google Scholar] [CrossRef] [PubMed]
- Eichert, D.; Sfihi, H.; Combes, C.; Rey, C. Specific characteristics of wet nanocrystalline apatites. Consequences on biomaterials and bone tissue. Key Eng. Mater. 2004, 254, 927–930. [Google Scholar] [CrossRef]
- Yesinowski, J.P.; Eckert, H. Hydrogen environments in calcium phosphates: Proton MAS NMR at high spinning speeds. J. Am. Chem. Soc. 1987, 109, 6274–6282. [Google Scholar] [CrossRef]
- Yoder, C.H.; Pasteris, J.D.; Worcester, K.N.; Schermerhorn, D.V. Structural water in carbonated hydroxylapatite and fluorapatite: Confirmation by solid state (2)H NMR. Calcif. Tissue Int. 2012, 90, 60–67. [Google Scholar] [CrossRef] [PubMed]
- Wilson, E.E.; Awonusi, A.; Morris, M.D.; Kohn, D.H.; Tecklenburg, M.M.; Beck, L.W. Three structural roles for water in bone observed by solid-state NMR. Biophys. J. 2006, 90, 3722–3731. [Google Scholar] [CrossRef]
- Kaflak-Hachulska, A.; Samoson, A.; Kolodziejski, W. 1H MAS and 1H --> 31P CP/MAS NMR study of human bone mineral. Calcif. Tissue Int. 2003, 73, 476–486. [Google Scholar] [CrossRef] [PubMed]
- Wilson, E.E.; Awonusi, A.; Morris, M.D.; Kohn, D.H.; Tecklenburg, M.M.; Beck, L.W. Highly ordered interstitial water observed in bone by nuclear magnetic resonance. J. Bone Miner. Res. 2005, 20, 625–634. [Google Scholar] [CrossRef] [PubMed]
- Ash, M.M.; Wheeler, R.C. Wheeler’s Dental Anatomy, Physiology, and Occlusion, 6th ed.; Saunders: Philadelphia, PA, USA, 1984; p. 9. [Google Scholar]
- Sugiura, K.; Ito, K.; Yokoyama, R.; Kumagai, S.; Onodera, T. A model to assess the risk of the introduction into Japan of the bovine spongiform encephalopathy agent through imported animals, meat and meat-and-bone meal. Rev. Sci. Tech. 2003, 22, 777–794. [Google Scholar] [CrossRef] [Green Version]
- Yassen, G.H.; Platt, J.A.; Hara, A.T. Bovine teeth as substitute for human teeth in dental research: A review of literature. J. Oral Sci. 2011, 53, 273–282. [Google Scholar] [CrossRef] [PubMed]
Lattice Parameters | a/Å | b/Å | c/Å |
---|---|---|---|
Bovine dentin | 9.425 | =a | 6.8735 |
Bovine enamel | 9.4366 | =a | 6.8798 |
Human dentin | 9.4250 | =a | 6.8789 |
Human enamel | 9.4374 | =a | 6.8780 |
Syn-HAp | 9.4569 | =a | 6.8752 |
Bovine Dentin | Bovine Enamel | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Site | Occ | x | y | z | Uiso | Occ | x | y | z | Uiso |
Ca1 | 0.949 | 1/3 | 2/3 | 0.0106 | 0.0036 | 0.950 | 1/3 | 2/3 | 0.0096 | 0.0036 |
Ca2 | 1 | 0.2344 | 0.9840 | ¼ | 0.0082 | 1 | 0.2386 | 0.9857 | ¼ | 0.0082 |
P | 0.811 | 0.4072 | 0.3785 | ¼ | 0.00253 | 0.872 | 0.4020 | 0.3754 | ¼ | 0.00253 |
O1 | 1 | 0.351 | 0.507 | ¼ | 0.011 | 1 | 0.351 | 0.505 | ¼ | 0.011 |
O2 | 1 | 0.5926 | 0.456 | ¼ | 0.011 | 1 | 0.5877 | 0.457 | ¼ | 0.011 |
O3 | 1 | 0.3437 | 0.2668 | 0.0734 | 0.011 | 1 | 0.3468 | 0.2652 | 0.0721 | 0.011 |
O4 | 0.5 | 0 | 0 | 0.072 | 0.005 | 0.5 | 0 | 0 | 0.102 | 0.005 |
Human dentin | Human enamel | |||||||||
Site | Occ | x | y | z | Uiso | Occ | x | y | z | Uiso |
Ca1 | 0.983 | 1/3 | 2/3 | 0.0042 | 0.0036 | 0.969 | 1/3 | 2/3 | 0.0029 | 0.0036 |
Ca2 | 1 | 0.2478 | 0.9916 | ¼ | 0.0082 | 0.969 | 0.2482 | 0.9918 | ¼ | 0.0082 |
P | 0.945 | 0.3974 | 0.3674 | ¼ | 0.00253 | 0.916 | 0.3981 | 0.3682 | ¼ | 0.00253 |
O1 | 1 | 0.3357 | 0.4886 | ¼ | 0.011 | 1 | 0.3322 | 0.4858 | ¼ | 0.011 |
O2 | 1 | 0.5833 | 0.4647 | ¼ | 0.011 | 1 | 0.5840 | 0.4634 | ¼ | 0.011 |
O3 | 1 | 0.3441 | 0.2630 | 0.0672 | 0.011 | 1 | 0.3412 | 0.2603 | 0.0701 | 0.011 |
O4 | 0.5 | 0 | 0 | 0.167 | 0.005 | 0.5 | 0 | 0 | 0.176 | 0.005 |
Syn-HAp | ||||||||||
Site | Occ | x | y | z | Uiso | |||||
Ca1 | 0.979 | 1/3 | 2/3 | 0.0022 | 0.0036 | |||||
Ca2 | 0.978 | 0.2458 | 0.990 | ¼ | 0.0082 | |||||
P | 1 | 0.3946 | 0.3687 | ¼ | 0.00253 | |||||
O1 | 1 | 0.3399 | 0.4949 | ¼ | 0.011 | |||||
O2 | 1 | 0.5859 | 0.4644 | ¼ | 0.011 | |||||
O3 | 1 | 0.3414 | 0.2571 | 0.0733 | 0.011 | |||||
O 4 | 0.5 | 0 | 0 | 0.186 | 0.005 |
Crystallite Size (nm) | Microstrains (%) | |
---|---|---|
Bovine dentin | 5.5 | 0.90% |
Bovine enamel | 22.1 | 0.14% |
Human dentin | 5.9 | 0.25% |
Human enamel | 36.7 | 0.08% |
Bovine Dentin | Bovine Enamel | Human Dentin | Human Enamel | |
---|---|---|---|---|
31P cross-peak at 2D HETCOR (ppm) | 3.04 | 3.06 | 3.12 | 3.13 |
FWHM on 31P axis (kHz) | 1.31 | 0.72 | 1.16 | 0.54 |
Core peak on 1H axis (ppm) | 0.48 | 0.57 | 0.65 | 0.48 |
Surface peak on 1H axis (ppm) | 5.67 | 5.92 | 5.92 | 6.59 |
Intensity ratio of [core 0.5 ppm]/[surface 6 ppm] | 0.67 | 6.38 | 1.19 | 13.57 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hiraishi, N.; Gondo, T.; Shimada, Y.; Hill, R.; Hayashi, F. Crystallographic and Physicochemical Analysis of Bovine and Human Teeth Using X-ray Diffraction and Solid-State Nuclear Magnetic Resonance. J. Funct. Biomater. 2022, 13, 254. https://doi.org/10.3390/jfb13040254
Hiraishi N, Gondo T, Shimada Y, Hill R, Hayashi F. Crystallographic and Physicochemical Analysis of Bovine and Human Teeth Using X-ray Diffraction and Solid-State Nuclear Magnetic Resonance. Journal of Functional Biomaterials. 2022; 13(4):254. https://doi.org/10.3390/jfb13040254
Chicago/Turabian StyleHiraishi, Noriko, Tadamu Gondo, Yasushi Shimada, Robert Hill, and Fumiaki Hayashi. 2022. "Crystallographic and Physicochemical Analysis of Bovine and Human Teeth Using X-ray Diffraction and Solid-State Nuclear Magnetic Resonance" Journal of Functional Biomaterials 13, no. 4: 254. https://doi.org/10.3390/jfb13040254
APA StyleHiraishi, N., Gondo, T., Shimada, Y., Hill, R., & Hayashi, F. (2022). Crystallographic and Physicochemical Analysis of Bovine and Human Teeth Using X-ray Diffraction and Solid-State Nuclear Magnetic Resonance. Journal of Functional Biomaterials, 13(4), 254. https://doi.org/10.3390/jfb13040254