Acid-Triggered Release of Eugenol and Fluoride by Desensitizing Macro- and Nanoparticles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation and Stabilization of Particles
2.1.1. Calcium Carbonate Microspheres
2.1.2. Calcium Carbonate Nanospheres
2.1.3. Calcium Carbonate/Hydroxyapatite Microplatelets
2.1.4. Hydroxyapatite Particles
2.1.5. Mesoporous Hydroxyapatite Particles
2.2. Conjugation of Particles with Casein
3. Results
3.1. Preparation and Stabilization of Particles
3.1.1. Calcium Carbonate Microspheres
3.1.2. Calcium Carbonate Nanospheres
3.1.3. Calcium Carbonate/Hydroxyapatite Microplatelets
3.1.4. Hydroxyapatite Particles
3.2. Adhesion of Particles to Dentin
3.3. Loading and Release of Eugenol by Aqueous Suspensions of Particles
3.4. Release of Fluoride by Casein-Coated Calcium Carbonate Microspheres
3.5. Release of Eugenol by Particles Adhered to Dentin
4. Discussion
4.1. Preparation and Stabilization of Particles
4.1.1. Calcium Carbonate Microspheres
4.1.2. Calcium Carbonate Nanospheres
4.1.3. Calcium Carbonate/Hydroxyapatite Microplatelets
4.1.4. Hydroxyapatite Particles
4.2. Adhesion of Particles to Dentin
4.3. Loading and Release of Eugenol by Aqueous Suspensions of Particles
4.4. Release of Fluoride by Casein-Coated Calcium Carbonate Microspheres
4.5. Release of Eugenol by Particles Adhered to Dentin
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed consent statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vos, T.; Abajobir, A.A.; Abate, K.H.; Abbafati, C.; Abbas, K.M.; Abd-Allah, F.; Abdulkader, R.S.; Abdulle, A.M.; Abebo, T.A.; Abera, S.F. Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet 2017, 390, 1211–1259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sachdev, J.; Bansal, K.; Chopra, R. Effect of comprehensive dental rehabilitation on growth parameters in pediatric patients with severe early childhood caries. Int. J. Clin. Pediatr. Dent. 2016, 9, 15–20. [Google Scholar] [CrossRef] [PubMed]
- Global $36+ Billion Toothpaste Market, 2024: Growth, Trends and Forecast Analysis from 2019. Available online: https://www.businesswire.com/news/home/20190509005698/en/Global-36-Billion-Toothpaste-Market-2024-Growth (accessed on 8 December 2022).
- Verma, G.; Barick, K.; Manoj, N.; Sahu, A.; Hassan, P. Rod-like micelle templated synthesis of porous hydroxyapatite. Ceram. Int. 2013, 39, 8995–9002. [Google Scholar] [CrossRef]
- Neelakandeswari, N.; Sangami, G.; Dharmaraj, N. Preparation and characterization of nanostructured hydroxyapatite using a biomaterial. Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 2011, 41, 513–516. [Google Scholar] [CrossRef]
- Dorozhkin, S.V. Calcium orthophosphate-based bioceramics. Materials 2013, 6, 3840–3842. [Google Scholar] [CrossRef] [Green Version]
- Tschoppe, P.; Zandim, D.L.; Martus, P.; Kielbassa, A.M. Enamel and dentine remineralization by nano-hydroxyapatite toothpastes. J. Dent. 2011, 39, 430–437. [Google Scholar] [CrossRef] [Green Version]
- Izuegbunam, C.L.; Wijewantha, N.; Wone, B.; Ariyarathne, M.A.; Sereda, G.; Wone, B.W.M. A nano-biomimetic transformation system enables in planta expression of a reporter gene in mature plants and seeds. Nanoscale Adv. 2021, 3, 3240–3250. [Google Scholar] [CrossRef]
- Mondal, S.; Dorozhkin, S.V.; Pal, U. Nanobiotechnology, Recent progress on fabrication and drug delivery applications of nanostructured hydroxyapatite. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2018, 10, e1504. [Google Scholar] [CrossRef] [PubMed]
- Feng, Q.L.; Kim, T.N.; Wu, J.; Park, E.S.; Kim, J.O.; Lim, D.Y.; Cui, F.Z. Antibacterial effects of Ag-HAp thin films on alumina substrates. Thin Solid Films 1998, 335, 214–219. [Google Scholar] [CrossRef]
- Ciobanu, C.S.; Iconaru, S.L.; Le Coustumer, P.; Constantin, L.V.; Predoi, D. Antibacterial activity of silver-doped hydroxyapatite nanoparticles against gram-positive and gram-negative bacteria. Nanoscale Res. Lett. 2012, 7, 1–9. [Google Scholar] [CrossRef]
- Sadat-Shojai, M.; Khorasani, M.T.; Dinpanah-Khoshdargi, E.; Jamshidi, A. Synthesis methods for nanosized hydroxyapatite with diverse structures. Acta Biomater. 2013, 9, 7591–7621. [Google Scholar] [CrossRef] [PubMed]
- Clark, D.; Levin, L. Non-surgical management of tooth hypersensitivity. Int. Dent. J. 2016, 66, 249–256. [Google Scholar] [CrossRef] [Green Version]
- Vano, M.; Derchi, G.; Barone, A.; Covani, U. Effectiveness of nano-hydroxyapatite toothpaste in reducing dentin hypersensitivity: A double-blind randomized controlled trial. Quintessence Int. 2014, 45, 703–711. [Google Scholar] [CrossRef] [PubMed]
- Kulal, R.; Jayanti, I.; Sambashivaiah, S.; Bilchodmath, S. An In-vitro Comparison of Nano Hydroxyapatite, Novamin and Proargin Desensitizing Toothpastes—A SEM Study. J. Clin. Diagn. Res. 2016, 10, ZC51-4. [Google Scholar] [CrossRef] [PubMed]
- Aljabo, A.A.; Neel, E.A.; Knowles, J.C.; Young, A.M. Development of dental composites with reactive fillers that promote precipitation of antibacterial-hydroxyapatite layers. J. Mater. Sci. Eng. C 2016, 60, 285–292. [Google Scholar] [CrossRef] [PubMed]
- Liao, J.; Mo, A.C.; Wu, H.K.; Zhang, J.C.; Li, Y.B.; Lv, G.Y. In Antibacterial activity of silver-hydroxyapatite/titania nanoparticles on oral bacteria, Key engineering materials. Trans. Tech. Publ. 2007, 330, 299–302. [Google Scholar] [CrossRef]
- Rashwan, K.; Sereda, G. Applications of Nanoparticles through Surface Functionalization. In Nanotechnology: Delivering on the Promise, Volume 2, ACS Symposium Series; Cheng, H., Doemeny, L., Geraci, C.H., Schmidt, D., Eds.; The American Chemical Society: Washington, DC, USA, 2016; Chapter 5; Volume 1224, pp. 95–105, ISBN13: 9780841231467; eISBN: 9780841231450. [Google Scholar]
- Pepla, E.; Besharat, L.; Palaia, G.; Tenore, G.; Migliau, G. Nano-hydroxyapatite and its applications in preventive, restorative and regenerative dentistry: A review of literature. Ann. Stomatol. 2014, 5, 108–114. [Google Scholar] [CrossRef]
- Sereda, G.; Rashwan, K.; Saeedi, S.; Christianson, D.; Fraser, S.; Jordan, B. Functionalized silk dental floss as a vehicle for delivery of bioactive minerals and ions to the tooth surface. Am. J. Dent. 2019, 32, 118–123. [Google Scholar]
- Boyjoo, Y.; Pareek, V.; Liu, J. Synthesis of Micro and Nano-Sized Calcium Carbonate Particles and Their Applications. J. Mater. Chem. A 2014, 2, 14270–14278. [Google Scholar] [CrossRef]
- Markowitz, K.; Moynihan, M.; Liu, M.; Kim, S. Biological properties of eugenol and zinc-oxide eugenol. Oral Surg. Oral Med. Oral Pathol. 1992, 73, 729–737. [Google Scholar] [CrossRef]
- Jaganathan, S.; Supriyanto, E. Antiproliferative and Molecular Mechanism of Eugenol-Induced Apoptosis in Cancer Cells. Molecules 2012, 17, 6290–6304. [Google Scholar] [CrossRef] [PubMed]
- Hughes, J.; West, N.; Addy, M. The protective effect of fluoride treatments against enamel erosion in vitro. J. Oral Rehabil. 2004, 31, 357–363. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Lui, C.H.; Liang, Y.; Lin, W.K. Hollow mesoporous hydroxyapatite nanoparticles (hmHANPs) with enhanced drug loading and pH-responsive release properties for intracellular drug delivery. J. Mater. Chem. B 2013, 1, 2447–2450. [Google Scholar] [CrossRef]
- Huang, F.; Shen, Y.; Xie, A.; Zhu, J.; Zhang, C.; Li, S.; Zhu, J. Study on synthesis and properties of hydroxyapatite nanorods and its complex containing biopolymer. Mater. Sci. 2007, 42, 8599–8605. [Google Scholar] [CrossRef]
- Wu, K.; Yang, Y.; Liang, Y.; Chen, H.; Sung, E.; Yamauchi, Y.; Lin, F. Facile synthesis of hollow mesoporous hydroxyapatite nanoparticles for intracellular bio-imaging. Curr. Nanosci. 2011, 7, 926–931. [Google Scholar] [CrossRef]
- Walker, J. The bicinchoninic acid (BCA) assay for protein quantitation. In The Protein Protocols Handbook; Springer: New York, NY, USA, 2009; pp. 11–15. [Google Scholar] [CrossRef]
- Hong, J.; Hyung, W.; Kyung, J.; Sang, C. Modification of Hydroxyapatite Nanosurfaces for Enhanced Colloidal Stability and Improved Interfacial Adhesion in Nanocomposites. Chem. Mater. 2006, 18, 5111–5118. [Google Scholar] [CrossRef]
- Sukhorukov, G.; Volodkin, D.; Gunther, A.; Petrov, A.; Shenoya, D.; Mohwald, H. Porous calcium carbonate microparticles as templates for encapsulation of bioactive compounds. J. Mater. Chem. 2004, 14, 2073–2081. [Google Scholar] [CrossRef]
- Volodkin, D.; Petrov, A.; Prevot, M.; Sukhorukov, G. Matrix Polyelectrolyte Microcapsules: New System for Macromolecule Encapsulation. Langmuir 2004, 20, 3398–3406. [Google Scholar] [CrossRef]
- Da Silva, F.; Monte, F.; de Lemos, T.; do Nascimento Garcia, P.; de Medeiros Costa, A.; de Paiva, L. Eugenol derivatives: Synthesis, characterization, and evaluation of antibacterial and antioxidant activities. Chem. Cent. J. 2018, 12, 34–42. [Google Scholar] [CrossRef] [Green Version]
- França, C.; Tahayeri, A.; Rodrigues, N.; Ferdosian, S.; Rontani, R.; Sereda, G.; Ferracane, J.; Bertassoni, L. The tooth on-a-chip: A microphysiologic model system mimicking the biologic interface of the tooth with biomaterials. Lab Chip 2020, 20, 405–413. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sereda, G.; Ahammadullah, A.; Wijewantha, N.; Solano, Y.A. Acid-Triggered Release of Eugenol and Fluoride by Desensitizing Macro- and Nanoparticles. J. Funct. Biomater. 2023, 14, 42. https://doi.org/10.3390/jfb14010042
Sereda G, Ahammadullah A, Wijewantha N, Solano YA. Acid-Triggered Release of Eugenol and Fluoride by Desensitizing Macro- and Nanoparticles. Journal of Functional Biomaterials. 2023; 14(1):42. https://doi.org/10.3390/jfb14010042
Chicago/Turabian StyleSereda, Grigoriy, Abu Ahammadullah, Nisitha Wijewantha, and Yulia Almiron Solano. 2023. "Acid-Triggered Release of Eugenol and Fluoride by Desensitizing Macro- and Nanoparticles" Journal of Functional Biomaterials 14, no. 1: 42. https://doi.org/10.3390/jfb14010042
APA StyleSereda, G., Ahammadullah, A., Wijewantha, N., & Solano, Y. A. (2023). Acid-Triggered Release of Eugenol and Fluoride by Desensitizing Macro- and Nanoparticles. Journal of Functional Biomaterials, 14(1), 42. https://doi.org/10.3390/jfb14010042