The Effect of Polishing, Glazing, and Aging on Optical Characteristics of Multi-Layered Dental Zirconia with Different Degrees of Translucency
Abstract
:1. Introduction
2. Materials and Methods
2.1. Specimen Preparation
2.2. Hydrothermal Aging Protocol
2.3. Optical and Color Change Measurements
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
- Polishing and glazing, as surface treatments, influence the optical properties of zirconia; the translucency of the polished samples was higher than that of the glazed samples before and after aging.
- After aging, the mean TP and OP values were increased for all materials except polished CeZ; the super-high translucent zirconia was less affected by LTD.
- The levels of color change were between extremely slight to perceivable.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Salmang, H.; Scholze, H. Keramik Vollständing Neuarbeitete und Erweiterte Auflage; Springer: Berlin/Heidelberg, Germany, 2007; Volume 7, pp. 817–838. [Google Scholar]
- Holleman-Wiberg, E. Lehrbuch der Anorganischen Chemie, 101st ed.; Walterde Gruyter & Co.: Berlin, Germany, 1995; pp. 918–985. [Google Scholar]
- Malkondu, Ö.; Tinastepe, N.; Akan, E.; Kazazoglu, E. An overview of monolithic zirconia in dentistry. Biotechnol. Biotecnol. Equip. 2016, 30, 644–652. [Google Scholar] [CrossRef] [Green Version]
- Acar, O.; Yilmaz, B.; Altintas, S.H.; Chandrasekaran, I.; Johnston, W.M. Color Stainability of CAD/CAM and Nanocomposite Resin Materials. J. Prosthet. Dent. 2016, 115, 71–75. [Google Scholar] [CrossRef]
- Zhang, Y.; Lawn, B.R. Novel zirconia materials in dentistry. J. Dent. Res. 2018, 97, 140–147. [Google Scholar] [CrossRef]
- Scientific Documentation. Microsoft Word–WissDok IPS e.max ZirCADenglisch aktualisiert 30112017.docx. Available online: https://www.ivoclar.com/ (accessed on 3 March 2022).
- Zhang, Y. Making Yttria-stabilized tetragonal zirconia translucent. Dent. Mater. 2014, 30, 1195–1203. [Google Scholar] [CrossRef] [Green Version]
- Inokoshi, M.; Shimizu, H.; Nozaki, K.; Yoshihara, K.; Nagaoka, N.; Zhang, F.; Vleugels, J.; Van Meerbeek, B.; Minakuchi, S. Crystallographic and morphological analysis of sandblasted highly translucent dental zirconia. Dent. Mater. 2018, 34, 508–518. [Google Scholar] [CrossRef]
- Sheng, Y.; Shi, Y.; Wang, L.; Narasimhan, S.G. Translucent radiosity: Efficiently combining diffuse inter-reflection and subsurface scattering. IEEE Trans. Vis. Comput. Graph. 2014, 20, 1009–1021. [Google Scholar] [CrossRef]
- Sulaiman, T.A.; Abdulmajeed, A.A.; Donovan, T.E.; Ritter, A.V.; Vallittu, P.K.; Närhi, T.O.; Lassila, L.V. Optical properties and light irradiance of monolithic zirconia at variable thicknesses. Dent. Mater. 2015, 31, 1180–1187. [Google Scholar] [CrossRef]
- Kumari, R.V.; Nagaraj, H.; Siddaraju, K.; Poluri, R.K. Evaluation of the Effect of Surface Polishing, Oral Beverages and Food Colorants on Color Stability and Surface Roughness of Nanocomposite Resins. J. Int. Oral Health 2015, 7, 63–70. [Google Scholar]
- Pereira, G.K.R.; Guilardi, L.F.; Dapieve, K.S.; Kleverlaan, C.J.; Rippe, M.P.; Valandro, L.F. Mechanical reliability, fatigue strength and survival analysis of new polycrystalline translucent zirconia ceramics for monolithic restorations. J. Mech. Behav. Biomed. Mater. 2018, 85, 57–65. [Google Scholar] [CrossRef]
- Ueda, K.; Güth, J.F.; Erdelt, K.; Stimmelmayr, M.; Kappert, H.; Beuer, F. Light transmittance by a multi-coloured zirconia material. Dent. Mater. J. 2015, 34, 310–314. [Google Scholar] [CrossRef] [Green Version]
- Kolakarnprasert, N.; Kaiser, M.R.; Kim, D.K.; Zhang, Y. New multi-layered zirconia: Composition, microstructure and translucency. Dent. Mater. 2019, 35, 797–806. [Google Scholar] [CrossRef] [PubMed]
- Gomez, I.; Lopez, L.P.; Fonseca, M.; Portugal, J. Effect of zirconia pigmentation on translucency. Eur. J. Proshodont. Restor. Dent. 2018, 26, 136–142. [Google Scholar]
- Zhang, F.; Vanmeensel, K.; Inokoshi, M.; Batuk, M.; Hadermann, J.; Van Meerbeek, B.; Naert, I.; Vleugels, J. Critical influence of alumina content on the low temperature degradation of 2–3 mol% yttria-stabilized TZP for dental restorations. J. Eur. Ceram. Soc. 2015, 35, 741–750. [Google Scholar] [CrossRef]
- Hallmann, L.; Ulmer, P.; Reusser, E.; Louvel, M.; Hämmerle, C.H. Effect of dopants and sintering temperature on microstructure and low temperature degradation of dental Y-TZP zirconia. J. Eur. Ceram. Soc. 2012, 32, 4091–4104. [Google Scholar] [CrossRef]
- Holz, L.; Macias, J.; Vitorino, N.; Fernandes, A.J.S.; Costa, F.M.; Almeida, M.M. Effect of Fe2O3 doping on colour and mechanical properties of Y-TZP ceramics. Ceram. Int. 2018, 44, 17962–17971. [Google Scholar] [CrossRef]
- Standard, O.C.; Sorrell, C.C. Densification of zirconia—Conventional methods. Key Eng. Mater. 1998, 153–154, 251–300. [Google Scholar]
- Powell, L.J.; Paulsen, P.J. Determination of hafnium in zirconium metal and zircaloy 4 metal standard reference materials by isotope dilution spark source mass spectrometry. Anal. Chem. 1984, 58, 376–378. [Google Scholar] [CrossRef]
- Aykent, F.; Yondem, I.; Ozyesil, A.G.; Gunal, S.K.; Avunduk, M.C.; Ozkan, S. Effect of different finishing techniques for restaurative materials on surface roughness and bacterial adhesion. J. Prosthet. Dent. 2010, 103, 221–227. [Google Scholar] [CrossRef]
- Alghazzawi, T.F.; Lemons, J.; Liu, P.R.; Essig, M.E.; Bartoluccci, A.A.; Janowski, G.M. Influence of low-temperature environmental exposure on the mechanical properties and structural stability of dental zirconia. J. Prosthodont. 2012, 21, 362–368. [Google Scholar] [CrossRef]
- Anusavice, K.J.; Shen, C.; Rawls, H.R. Phillip’s Science of Dental Materials, 12th ed.; Elsevier: St. Luis, MO, USA, 2012; pp. 231–255. [Google Scholar]
- Sarac, D.; Sarac, Y.S.; Yuzbasioglu, E. The effect of porcelain polishing systems on the color and surface texture of feldspathic porcelain. J. Prosthet. Dent. 2006, 96, 122–128. [Google Scholar] [CrossRef]
- Kohorst, P.; Borchers, L.; Strempel, J.; Stiesch, M.; Hassel, T.; Bach, F.W.; Hubsch, C. Low-temperature degradation of different zirconia ceramics for dental application. Acta Biomater. 2012, 8, 1213–1220. [Google Scholar] [CrossRef]
- Park, C.; Vang, M.S.; Park, S.W.; Lim, H.P. Effect of various polishing system on the surface roughness and phase transformation of zirconia and the durability of the polishing systems. J. Prosthet. Dent. 2017, 117, 430–437. [Google Scholar] [CrossRef]
- Hjerppe, J.; Narhi, T.O.; Vallittu, P.K.; Lassila, L.V. Surface roughness and the flexural and bend strength of zirconia after different surface treatments. J. Prosthet. Dent. 2016, 116, 577–583. [Google Scholar] [CrossRef]
- Amaral, M.; Valandro, L.F.; Bottino, M.A.; Souza, R.O. Low-temperature degradation of a Y-TPZ ceramic after surface treatments. J. Biomed. Mater. Res. B Appl. Biomater. 2013, 101, 1387–1392. [Google Scholar] [CrossRef]
- Pereira, G.K.R.; Venturini, A.B.; Silvestri, T.; Dapieve, K.S.; Montagner, A.F.; Soares, F.Z.M.; Valandro, L.F. Low-temperature degradation of Y-TZP ceramics: A systematic review and meta-analysis. Mech. Behav. Biomed. Mater. 2015, 55, 151–163. [Google Scholar] [CrossRef]
- Deville, S.; Gremillard, L.; Chevalier, J.; Fantozzi, G. A critical comparison of methods for the determination of aging sensitivity in biomedical grade yttria-stabilized zirconia. J. Biomed. Mater. Res. Part B Appl. Biomater. 2005, 72, 239–245. [Google Scholar] [CrossRef]
- Kelly, J.; Denry, I. Stabilized zirconia as a structural ceramic: An overview. Dent. Mater. 2008, 24, 289–298. [Google Scholar] [CrossRef]
- Harada, A.; Shishido, S.; Barkarmo, S.; Inagaki, R.; Kanno, T.; Örtengren, U.; Egusa, H.; Nakamura, K. Mechanical and microstructural properties of ultra-translucent zirconia ceramic stabilized with 5 mol % yttria. J. Mech. Behav. Biomed. Mater. 2020, 111, 103974. [Google Scholar] [CrossRef]
- Ivoclar-Vivadent IPS e.max ZirCAD Labside Gebrauchsinformation 2019-06-27, Rev3a. Available online: https://www.cadstar.dental/download/87/materialdokumentation-de/5667919/ipse-maxzircadlabside.pdf (accessed on 18 February 2022).
- Kuraray Noritake—Technical Guide Katana Zirconia Multi-Layered Series. 201805-brochure-katana-zirconia-technical-guide-web-en_2.pdf. Available online: https://www.kuraraynoritake.eu/ (accessed on 21 February 2022).
- Amann Girrbach-Verarbaitungstehnik—Zolid DNA Generation. 976109DE, 03/2021. Indikationsleitfaden_Zirkon_DE.pdf. Available online: https://www.Amanngirrbach.com (accessed on 25 January 2022).
- Chevalier, J.; Cales, B.; Drouin, J.M. Low-temperature aging of Y-TZP ceramics. J. Am. Ceram. Soc. 1999, 82, 2150–2154. [Google Scholar] [CrossRef]
- Akl, M.A.; Sim, C.P.C.; Nunn, M.E.; Zeng, L.L.; Hamza, T.A.; Wee, A.G. Validation of two clinical color measuring instruments for use in dental research. J. Dent. 2022, 125, 104223. [Google Scholar] [CrossRef]
- CIE. Colorimetry; CIE 15:2004; Commission Internationale de l′Eclairage: Vienna, Austria, 2004. [Google Scholar]
- Elsaka, S.E. Optical and Mechanical Properties of Newly Developed Multilayer Zirconia. J. Prosthodont. 2019, 28, 279–284. [Google Scholar] [CrossRef] [Green Version]
- Paravina, R.; Powers, J. Esthetic Color Training in Dentistry; Mosby: St. Louis, MO, USA, 2004; pp. 51–78. [Google Scholar]
- De Araújo-Júnior, E.N.S.; Bergamo, E.T.P.; Bastos, T.M.C.; Benalcázar Jalkh, E.B.; Lopes, A.C.O.; Monteiro, K.N.; Cesar, P.F.; Tognolo, F.C.; Migliati, R.; Tanaka, R.; et al. Ultra-translucent zirconia processing and aging effect on microstructural, optical, and mechanical properties. Dent. Mater. 2022, 38, 587–600. [Google Scholar] [CrossRef]
- Kim, H.K.; Kim, S.H.; Lee, J.B.; Han, J.S.; Yeo, I.S. Effect of polishing and glazing on the color and spectral distribution of monolithic zirconia. J. Adv. Prosthodont. 2013, 5, 296–304. [Google Scholar] [CrossRef]
- Toma, F.R.; Birdeanu, M.I.; Utu, I.D.; Vasiliu, R.D.; Moleriu, L.C.; Porojan, L. Surface characteristics of high translucent zirconia related to aging. Materials 2022, 15, 3606. [Google Scholar] [CrossRef]
- Sedda, M.; Vichi, A.; Carrabba, M.; Capperucci, A.; Louca, C.; Ferrari, M. Influence of coloring procedure on flexural resistance of zirconia blocks. J. Prosthet. Dent. 2015, 114, 98–102. [Google Scholar] [CrossRef]
- Al-Juaila, E.; Osman, E.; Segaan, L.; Shrebaty, M.; Farghaly, E.A. Comparison of translucency for different thickness of recent types of esthetic zirconia ceramics versus conventional ceramics… (in vitro study). Future Dent. J. 2018, 4, 297–301. [Google Scholar] [CrossRef]
- Lee, Y.K. Translucency of human teeth and dental restorative materials and its clinical relevance. J. Biomed. Opt. 2015, 20, 45002. [Google Scholar] [CrossRef]
- Wang, F.; Takahasi, H.; Iwasaki, N. Translucency of dental ceramics with different thicknesses. J. Prosthet. Dent. 2013, 110, 14–20. [Google Scholar] [CrossRef]
- Liu, M.-C.; Aquilino, S.A.; Lund, P.S.; Vargas, M.A.; Diaz-Arnold, A.M.; Gratton, D.G.; Qian, F. Human perception of dental porcelain translucency correlated to spectrophotometric measurements. J. Prosthodont. 2010, 19, 187–193. [Google Scholar] [CrossRef]
- Juntavee, N.; Attashu, S. Effect of sintering process on color parameters of nano-sized yttria partially stabilized tetragonal monolithic zirconia. J. Clin. Exp. Dent. 2018, 10, e794–e804. [Google Scholar] [CrossRef]
- Camposilvan, E.; Leone, R.; Gremillard, L.; Sorrentino, R.; Zarone, F.; Ferrari, M.; Chevalier, J. Aging resistance, mechanical properties and translucency of different yttria-stabilized zirconia ceramics for monolithic dental crown applications. Dent. Mater. 2018, 34, 879–890. [Google Scholar] [CrossRef] [PubMed]
- Alghazzawi, T.F. The effect of extended aging on the optical properties of different zirconia materials. J. Prosthodont. Res. 2017, 61, 305–314. [Google Scholar] [CrossRef] [PubMed]
- Lumkemann, N.; Stawarczyk, B. Impact of hydrothermal aging on the light transmittance and flexural strength of colored yttria-stabilized zirconia materials of different formulations. J. Prosthet. Dent. 2021, 125, 518–526. [Google Scholar] [CrossRef] [PubMed]
- Baldi, A.; Comba, A.; Ferrero, G.; Italia, E.; Dds, R.M.T.; Paolone, G.; Mazzoni, A.; Breschi, L.; Scotti, N. External gap progression after cyclic fatigue of adhesive overlays and crowns made with high translucency zirconia or lithium silicate. J. Esthet. Restor. Dent. 2022, 34, 557–564. [Google Scholar] [CrossRef]
- Ziyad, T.A.; Abu-Naba’a, L.A.; Almohammed, S.N. Optical properties of CAD/CAM monolithic system compared: Three multi-layered zirconia and one lithium disilicate system. J. Heliyon 2021, 7, e08151. [Google Scholar] [CrossRef] [PubMed]
Material/Manufacturer | Y2O3 Content | Other Components | Grain Size | Shade/Translucency |
---|---|---|---|---|
Ceramill Zolid fx ML/ Amman Girrbach, AG, Koblach, Austria (CeZ) | 5 mol% (8.5–9.5 wt%) | Hf O2 ≤ 5.0 wt% Al2O3 ≤ 0.5 wt% other oxides ≤ 1.0 wt% | - | Super-high translucency (A2/A3) |
STML/Katana, Kuraray Noritake Dental, Tokio, Japan (STM) | 4 mol% (7–10.0 wt%) | Hf O2 ≤ 5.0 wt% Al2O3 0.26 wt% other oxides < 2% | 0.2–0.5 µm | Super translucency (A2) |
IPS e.max Zir CAD/ Ivoclar Vivadent AG, Schaan, Liechtenstein (IPZ) | 4 mol%-cervical (7.10 wt%) 4 + 5 mol%-transition 5 mol%-incisal (8.80 wt%) | Hf O2 ≤ 5.0 wt% Al2O3 ≤ 0.05 wt% other oxides ≤ 1.0 wt% | 0.65 µm 0.85 µm | Super-high translucency + Super translucency (A2) |
Variable | Area | CeZ pc | CeZ gc | STM pc | STM gc | IPZ pc | IPZ gc |
---|---|---|---|---|---|---|---|
L* | c | 78.213 ± 0.271 | 80.813 ± 0.217 | 76.650 ± 0.288 | 83.613 ± 0.187 | 83.288 ± 0.289 | 83.613 ± 0.278 |
m | 77.888 ± 0.267 | 81.700 ± 0.269 | 78.613 ± 0.289 | 83.988 ± 0.278 | 82.100 ± 0.234 | 83.988 ± 0.348 | |
i | 79.825 ± 0.288 | 82.825 ± 0.219 | 80.488 ± 0.219 | 84.075 ± 0.234 | 83.463 ± 0.267 | 84.075 ± 0.234 | |
a* | c | 0.013 ± 0.054 | −0.075 ± 0.005 | −0.738 ± 0.005 | 0.438 ± 0.005 | 0.413 ± 0.005 | 0.438 ± 0.005 |
m | −0.850 ± 0.024 | −0.938 ± 0.054 | −1.363 ± 0.003 | 0.175 ± 0.109 | 0.275 ± 0.109 | 0.175 ± 0.004 | |
i | −1.113 ± 0.005 | −1.025 ± 0.101 | −2.388 ± 0.014 | −1.413 ± 0.102 | −1.613 ± 0.109 | −1.413 ± 0.109 | |
b* | c | 10.675 ± 0.218 | 10.413 ± 0.250 | 26.000 ± 0.207 | 16.638 ± 0.218 | 17.125 ± 0.280 | 16.638 ± 0.267 |
m | 5.700 ± 0.250 | 5.850 ± 0.187 | 20.763 ± 0.267 | 15.738 ± 0.234 | 17.825 ± 0.267 | 15.738 ± 0.207 | |
i | 1.825 ± 0.207 | 1.938 ± 0.207 | 12.738 ± 0.280 | 5.575 ± 0.278 | 4.538 ± 0.188 | 5.575 ± 0.256 | |
TP | c | 13.996 ± 0.158 | 13.656 ± 0.25 | 13.274 ± 0.185 | 13.083 ± 0.271 | 13.491 ± 0.191 | 13.284 ± 0.197 |
m | 14.139± 0.119 | 13.929 ± 0.166 | 13.353 ± 0.16 | 13.178 ± 0.215 | 13.366 ± 0.147 | 13.188 ± 0.16 | |
i | 14.587 ± 0.167 | 14.258 ± 0.168 | 13.846 ± 0.24 | 13.612 ± 0.165 | 14.108 ± 0.189 | 13.838 ± 0.175 | |
CR | c | 0.688 ± 0.002 | 0.695 ± 0.002 | 0.723 ± 0.004 | 0.736 ± 0.007 | 0.711 ± 0.004 | 0.716 ± 0.002 |
m | 0.677 ± 0.004 | 0.686 ± 0.003 | 0.711 ± 0.001 | 0.718 ± 0.003 | 0.724 ± 0.01 | 0.720 ± 0.007 | |
i | 0.66 ± 0.005 | 0.675 ± 0.006 | 0.692 ± 0.006 | 0.706 ± 0.006 | 0.689 ± 0.007 | 0.688 ± 0.006 | |
OP | c | 5.802 ± 0.192 | 5.581 ± 0.236 | 7.486 ± 0.273 | 7.555 ± 0.203 | 6.207 ± 0.201 | 6.239 ± 0.177 |
m | 5.218 ± 0.18 | 4.791 ± 0.296 | 6.929 ± 0.298 | 6.651 ± 0.143 | 6.867 ± 0.350 | 6.486 ± 0.237 | |
i | 3.787 ± 0.217 | 3.529 ± 0.189 | 5.704 ± 0.222 | 5.855 ± 0.116 | 5.159 ± 0.279 | 4.706 ± 0.268 |
Variable | Area | CeZ pa | CeZ ga | STM pa | STM ga | IPZ pa | IPZ ga |
---|---|---|---|---|---|---|---|
L* | c | 77.688 ± 0.213 | 81.038 ± 0.217 | 76.938 ± 0.269 | 79.075 ± 0.267 | 77.688 ± 0.218 | 84.025 ± 0.219 |
m | 78.463 ± 0.326 | 81.463 ± 0.278 | 78.575 ± 0.187 | 80.513 ± 0.288 | 78.463 ± 0.348 | 83.225 ± 0.278 | |
i | 79.863 ± 0.234 | 83.175 ± 0.219 | 82.025 ± 0.267 | 82.925 ± 0.218 | 79.863 ± 0.289 | 83.563 ± 0.219 | |
a* | c | −0.025 ± 0.015 | 0.038 ± 0.005 | −0.550 ± 0.005 | −0.525 ± 0.028 | −0.025 ± 0.008 | 0.275 ± 0.102 |
m | −0.088 ± 0.028 | −0.675 ± 0.003 | −1.413 ± 0.024 | −1.875 ± 0.109 | −0.888 ± 0.102 | 0.100 ± 0.014 | |
i | −1.088 ± 0.109 | −1.013 ± 0.005 | −1.988 ± 0.054 | −2.663 ± 0.101 | −1.088 ± 0.004 | −1.538 ± 0.005 | |
b* | c | 9.538 ± 0.267 | 11.000 ± 0.188 | 27.613 ± 0.185 | 26.950 ± 0.26 | 9.538 ± 0.317 | 16.375 ±0.280 |
m | 5.125 ± 0.234 | 5.925 ± 0.207 | 23.550 ± 0.218 | 21.700 ± 0.187 | 5.125 ± 0.218 | 16.725 ±0.250 | |
i | 1.625 ± 0.154 | 2.200 ± 0.250 | 15.425 ± 0.207 | 12.200 ± 0.267 | 1.625 ± 0.280 | 5.525 ± 0.280 | |
TP | c | 13.854 ± 0.142 | 13.766 ± 0.21 | 13.551 ± 0.132 | 13.277 ± 0.26 | 13.749 ± 0.153 | 13.462 ± 0.187 |
m | 14.022 ± 0.163 | 14.007 ± 0.166 | 13.617 ± 0.188 | 13.351 ± 0.109 | 13.636 ± 0.165 | 13.374 ± 0.188 | |
i | 14.486 ± 0.176 | 14.325 ± 0.14 | 14.034 ± 0.174 | 13.773 ± 0.158 | 14.135 ± 0.182 | 13.929 ± 0.128 | |
CR | c | 0.693 ± 0.005 | 0.696 ± 0.003 | 0.727 ± 0.006 | 0.732 ± 0.004 | 0.701 ± 0.003 | 0.714 ± 0.002 |
m | 0.692 ± 0.008 | 0.692 ± 0.004 | 0.721 ± 0.004 | 0.722 ± 0.004 | 0.702 ± 0.004 | 0.715 ± 0.002 | |
i | 0.676 ± 0.003 | 0.678 ± 0.005 | 0.693 ± 0.008 | 0.704 ± 0.005 | 0.676 ± 0.005 | 0.691 ± 0.003 | |
OP | c | 5.071 ± 0.269 | 5.842 ± 0.267 | 8.184 ± 0.187 | 7.619 ± 0.126 | 6.405 ± 0.154 | 6.314 ± 0.218 |
m | 4.186 ± 0.250 | 5.896 ± 0.185 | 8.170 ± 0.218 | 7.452 ± 0.234 | 6.540 ± 0.217 | 6.383 ± 0.277 | |
i | 3.313 ± 0.207 | 4.135 ± 0.126 | 5.852 ± 0.248 | 6.109 ± 0.236 | 4.179 ± 0.248 | 4.865 ± 0.213 |
Material | L* | a* | b* |
---|---|---|---|
STM p, c | very weak, r = 0.196 | moderate, r = 0.547 | weak, r = 0.235 |
r2 = 0.038 = 3.84% | r2 = 0.299 = 29.9% | r2 = 0.055 = 5.5% | |
p = 0.043 | p = 0.003 | p = 0.026 | |
STM p, m | weak, r = −0.341 | weak, r = − 0.235 | moderate, r = 0.460 |
r2= 0.116 = 11.6%, | r2 = 0.055 = 5.5%, | r2 = 0.211 =21.1%, | |
p = 0.913 | p = 0.026 | p = 0.002 | |
IPZ p, c | very strong, r = −0.867 | moderate, r = −0.435 | very strong, r = 0.800 |
r2 = 0.751 = 75.1% | r2 = 0.189 | r2 = 0.640 =64% | |
p < 0.001 | p < 0.001 | p < 0.001 | |
IPZ p, m | very weak, r = −0.180 | very weak, r = −0.116 | very weak, r = 0.068 |
r2= 0.032 = 3.2% | r2 = 0.013 = 1.3% | r2 = 0.004 = 0.4% | |
p = 0.233 | p = 0.150 | p = 0.055 |
Material | a* | b* |
---|---|---|
CeZ p, c | weak, r = −0.203, r2 = 0.041 = 4.1%, p = 0.830 | moderate, r = 0.567, r2 = −0.321 = 32.1%, p = 0.001 |
CeZ p, m | moderate, r = −0.044, r2 = 0.002 = 0.2%, p = 0.246 | weak, r = −0.313, r2 = 0.098 = 0.98%, p = 0.820 |
STM p, c | moderate, r = 0.547, r2= 0.299 = 29.9%, p = 0.003 | weak, r = 0.235, r2 = 0.055 = 5.5%, p = 0.026 |
STM p, m | weak, r = −0.235, r2 = 0.055 = 5.5%, p = 0.026 | moderate, r = 0.460, r2= 0.211 = 21.1%, p = 0.002 |
IPZ p, i | very weak, r = −0.096, r2 = 0.009= 0.9%, p = 0.147 | moderate, r = 0.424, r2 = 0.180 = 18%, p = 0.053 |
CeZ g, m | weak, r = 0.020, r2 < 0.001 p < 0.001 | very weak, r = 0.009, r2 < 0.001, p < 0.001 |
STM g, m | weak, r = −0.323, r2 = 0.104 = 10.4%, p = 0.662 | strong, r = 623, r2 = 0.389 = 38.9%, p = 0.031 |
ΔE | CeZ p | CeZ p | STM p | STM g | IPZ p | IPZ g | |
---|---|---|---|---|---|---|---|
black | c | 1.152 | 0.587 | 1.517 | 0.872 | 2.239 | 0.573 |
m | 0.748 | 0.337 | 2.564 | 1.162 | 2.473 | 1.15 | |
i | 0.188 | 0.402 | 2.871 | 1.132 | 2.474 | 0.486 | |
white | c | 1.486 | 0.635 | 1.644 | 0.922 | 2.259 | 0.598 |
m | 0.938 | 0.465 | 2.642 | 1.381 | 1.989 | 1.114 | |
i | 0.141 | 0.289 | 2.964 | 1.07 | 2.141 | 0.952 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toma, F.R.; Porojan, S.D.; Vasiliu, R.D.; Porojan, L. The Effect of Polishing, Glazing, and Aging on Optical Characteristics of Multi-Layered Dental Zirconia with Different Degrees of Translucency. J. Funct. Biomater. 2023, 14, 68. https://doi.org/10.3390/jfb14020068
Toma FR, Porojan SD, Vasiliu RD, Porojan L. The Effect of Polishing, Glazing, and Aging on Optical Characteristics of Multi-Layered Dental Zirconia with Different Degrees of Translucency. Journal of Functional Biomaterials. 2023; 14(2):68. https://doi.org/10.3390/jfb14020068
Chicago/Turabian StyleToma, Flavia Roxana, Sorin Daniel Porojan, Roxana Diana Vasiliu, and Liliana Porojan. 2023. "The Effect of Polishing, Glazing, and Aging on Optical Characteristics of Multi-Layered Dental Zirconia with Different Degrees of Translucency" Journal of Functional Biomaterials 14, no. 2: 68. https://doi.org/10.3390/jfb14020068
APA StyleToma, F. R., Porojan, S. D., Vasiliu, R. D., & Porojan, L. (2023). The Effect of Polishing, Glazing, and Aging on Optical Characteristics of Multi-Layered Dental Zirconia with Different Degrees of Translucency. Journal of Functional Biomaterials, 14(2), 68. https://doi.org/10.3390/jfb14020068