Evaluation of a Bioabsorbable Scaffold and Interlocked Nail System for Segmental Bone Defect
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Design
2.2.1. 3D-Modeling of Bone Scaffold, Interlock Nail and Screws
2.2.2. Targeting Jig for Delivery of Interlock Nail System
2.3. Sample Preparation
2.3.1. PCL
2.3.2. PCL-Sodium Alginate
2.4. Experiments
2.4.1. Morphological Examination
2.4.2. Mechanical Tests
2.4.3. Bioactivity
- a.
- Water Absorption and Degradation Test
- b.
- Cell Cultures
- c.
- Cell Viability Assay
2.5. Targeting Jig Efficacy Tests
2.6. Statistical Analysis
3. Results
3.1. Fabrication of Bone Scaffold, Scaffolds, Interlock Nails and Screws
3.2. Surface Characterization
3.3. Mechanical Tests
3.4. Water Absorption and Degradation Test
3.5. Cell Viablity Test
3.6. Target Jig Efficacy Tests
3.6.1. Ex Vivo Demonstration
3.6.2. Cadaveric Tests
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mauffrey, C.; Barlow, B.T.; Smith, W.R. Management of segmental bone defects. J. Am. Acad. Orthop. Surg. 2015, 23, 143–153. [Google Scholar] [CrossRef] [PubMed]
- Bone Defects. Paley Orthopedic & Spine Institute. 2017. Available online: https://paleyinstitute.org/blog/conditions/bone-defects/#/ (accessed on 1 December 2021).
- Fernandes, M.B.C.; Guimarães, J.A.M.; Casado, P.L.; dos Santos Cavalcanti, A.; Gonçalves, N.N.; Ambrósio, C.E.; Rodrigues, F.; Pinot, A.C.F.; Miglino, M.A.; Duarte, M.E.L. The effect of bone allografts combined with bone marrow stromal cells on the healing of segmental bone defects in a sheep model. BMC Vet. Res. 2014, 10, 36. [Google Scholar] [CrossRef]
- Ferreira, N.; Tanwar, Y.S. Systematic approach to the management of post-traumatic segmental diaphyseal long bone defects: Treatment algorithm and comprehensive classification system. Strateg. Trauma Limb Reconstr. 2021, 15, 106–116. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.P.; Labus, K.M.; Gadomski, B.C.; Bruyas, A.; Easley, J.; Nelson, B.; Palmer, R.H.; McGilvray, K.; Regan, D.; Puttlitz, C.M.; et al. Osteoinductive 3D printed scaffold healed 5 cm segmental bone defects in the ovine metatarsus. Sci. Rep. 2021, 11, 6704. [Google Scholar] [CrossRef] [PubMed]
- Fuchs, J.R.; Nasseri, B.A.; Vacanti, J.P. Tissue engineering: A 21st century solution to surgical reconstruction. Ann. Thorac. Surg. 2001, 72, 577–591. [Google Scholar] [CrossRef]
- Murray, C.E.; Keller, G. Differentiation of embryonic stem cells to clinically relevant populations: Lessons from embryonic development. Cell 2008, 132, 661–680. [Google Scholar] [CrossRef]
- Vacanti, C.A. The history of tissue engineering. J. Cell. Mol. Med. 2006, 10, 569–576. [Google Scholar] [CrossRef]
- LeCronier, D.J.; Papakonstantinou, J.S.; Gheevarughese, V.; Beran, C.D.; Walter, N.E.; Atkinson, P.J. Development of an interlocked nail for segmental defects in the rabbit tibia. J. Eng. Med. 2012, 226, 330–336. [Google Scholar] [CrossRef]
- Yoshino, O.; Young, K.; Hardy, B.; Matthys, R.; Buxton, T.; Appleyard, R.; Balogh, Z.J. Reamed locked interlock nailing for studying femur fracture and its complications. Eur. Cells Mater. 2017, 34, 99–107. [Google Scholar] [CrossRef]
- Endo, K.; Nakamura, K.; Maeda, H.; Matsushita, T. Interlocking Interlock Nail Method for the Treatment of Femoral and Tibial Fractures in Cats and Small Dogs. J. Vet. Med. Sci. 1998, 60, 119–122. [Google Scholar] [CrossRef]
- Sudhakar, C.K.; Upadhyay, N.; Jain, A.; Verma, A.; Charyulu, R.N.; Jain, S. Hydrogels-Promising Candidates for Tissue Engineering. In Nanotechnology Applications for Tissue Engineering; Elsevier: Amsterdam, The Netherlands, 2015; Available online: https://www.sciencedirect.com/science/article/pii/B9780323328890000054 (accessed on 19 November 2021).
- Wei, Q.; Zhou, J.; An, Y.; Li, M.; Zhang, J.; Yang, S. Modification, 3D printing process and application of sodium alginate based hydrogels in soft tissue engineering: A review. Int. J. Biol. Macromol. 2023, 232, 123450. [Google Scholar] [CrossRef] [PubMed]
- Di Liddo, R.; Grandi, C.; Paganin, P.; Lora, S.; Dalzoppo, D.; Feltrin, G.; Giraudo, C.; Tommasini, M.; Conconi, M.T.; Parnigotto, P.P. Porous alginate/poly(ε-caprolactone) scaffolds: Preparation, characterization and in vitro biological activity. Int. J. Mol. Med. 2010, 27, 455–467. [Google Scholar] [CrossRef]
- Coombes AG, A.; Rizzi, S.C.; Williamson, M.; Barralet, J.E.; Downes, S.; Wallace, W.A. Precipitation casting of polycaprolactone for applications in tissue engineering and drug delivery. Biomaterials 2004, 25, 315–325. [Google Scholar] [CrossRef] [PubMed]
- Bakici, C.; Akgun, R.O.; Ekim, O.; Batur, B.; Bakici, M.; Ozen, D.; Soydal, C. Three dimensional modeling and quantitative analysis of long bone parameters of rabbit using micro-computed tomography. Iran. J. Vet. Res. 2021, 22, 140–145. [Google Scholar] [CrossRef] [PubMed]
- Wong, H.M.; Wu, S.; Chu, P.K.; Cheng, S.H.; Luk, K.D.; Cheung, K.M.; Yeung, K.W. Low-modulus Mg/PCL hybrid bone substitute for osteoporotic fracture fixation. Biomaterials 2013, 34, 7016–7032. [Google Scholar] [CrossRef]
- Ramos, M. Rabbit Tibia (v1), [CAD File]. 2014. Available online: https://grabcad.com/library/rabbit-tibia-1 (accessed on 12 October 2021).
- Laurencin, C.; Khan, Y.; El-Amin, S.F. Bone graft substitutes. Expert Rev. Med. Devices 2006, 3, 49–57. [Google Scholar] [CrossRef]
- Sasso, R.C.; LeHuec, J.C.; Shaffrey, C. Iliac crest bone graft donor site pain after anterior lumbar interbody fusion: A prospective patient satisfaction outcome assessment. J. Spinal Disord. Tech. 2005, 18, S77–S81. [Google Scholar] [CrossRef]
- Rampersad, S.N. Multiple applications of Alamar Blue as an indicator of metabolic function and cellular health in cell viability bioassays. Sensors 2012, 12, 12347–12360. [Google Scholar] [CrossRef]
- Uzarski, J.S.; DiVito, M.D.; Wertheim, J.A.; Miller, W.M. Essential design considerations for the resazurin reduction assay to noninvasively quantify cell expansion within perfused extracellular matrix scaffolds. Biomaterials. 2017, 129, 163–175. [Google Scholar] [CrossRef]
- Lavogina, D.; Lust, H.; Tahk, M.J.; Laasfeld, T.; Vellama, H.; Nasirova, N.; Vardja, M.; Eskla, K.L.; Salumets, A.; Rinken, A.; et al. Revisiting the Resazurin-Based Sensing of Cellular Viability: Widening the Application Horizon. Biosensors 2022, 12, 196. [Google Scholar] [CrossRef]
- Frohbergh, M.E.; Katsman, A.; Botta, G.P.; Lazarovici, P.; Schauer, C.L.; Wegst, U.G.; Lelkes, P.I. Electrospun hydroxyapatite-containing chitosan nanofibers crosslinked with genipin for bone tissue engineering. Biomaterials. 2012, 33, 9167–9178. [Google Scholar] [CrossRef] [PubMed]
- Polo-Corrales, L.; Latorre-Esteves, M.; Ramirez-Vick, J.E. Scaffold design for bone regeneration. J. Nanosci. Nanotechnol. 2014, 14, 15–56. [Google Scholar] [CrossRef]
- Dorozhkin, S.V. Medical Application of Calcium Orthophosphate Bioceramics. BIO 2011, 1, 1–51. [Google Scholar] [CrossRef]
- Descamps, M.; Hornez, J.C.; Leriche, A.; Descamps, M. Manufacture of hydroxyapatite beads for medical applications. J. Eur. Ceram. Soc. 2009, 29, 369–375. [Google Scholar] [CrossRef]
- Levengood, S.L.; Zhang, M. Chitosan-based scaffolds for bone tissue engineering. J. Mater. Chem. B 2014, 2, 3161–3184. [Google Scholar] [CrossRef]
- Tampieri, A.; Celotti, G.; Landi, E. From biomimetic apatites to biologically inspired composites. Anal. Bioanal. Chem. 2005, 381, 568–576. [Google Scholar] [CrossRef]
- Pilia, M.; Guda, T.; Appleford, M. Review Article Development of Composite Scaffolds for Load-Bearing Segmental Bone Defects. BioMed Res. Int. 2013, 2013, 458253. [Google Scholar] [CrossRef]
- Le Nihouannen, D.; Le Guehennec, L.; Rouillon, T.; Pilet, P.; Melitta Bilban, M.; Layrolle, P.; Daculsi, G. Micro-architecture of calcium phosphate granules and fibrin glue composites for bone tissue engineering. Biomaterials 2006, 27, 2716–2722. [Google Scholar] [CrossRef]
Experimental Parameters | PCL | PCL-Alg |
---|---|---|
Compressive Strength (MPa) | 9.51 ± 0.24 | 10.34 ± 0.95 |
Compressive Modulus (MPa) | 17.34 ± 1.39 | 23.41 ± 4.28 |
Sample Type | Water Absorption (%) | Degradation after 7 Days |
---|---|---|
PCL | 14.54 ± 5.51% | −0.08 ± 0.10% |
PCL-Alg | 35.53 ± 0.92% * | −1.18 ± 0.26% * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khandaker, M.; Lane, R.; Yeakley, S.; Alizereej, H.; Nikfarjam, S.; Ait Moussa, A.; Vaughan, M.B.; Haleem, A.M. Evaluation of a Bioabsorbable Scaffold and Interlocked Nail System for Segmental Bone Defect. J. Funct. Biomater. 2023, 14, 183. https://doi.org/10.3390/jfb14040183
Khandaker M, Lane R, Yeakley S, Alizereej H, Nikfarjam S, Ait Moussa A, Vaughan MB, Haleem AM. Evaluation of a Bioabsorbable Scaffold and Interlocked Nail System for Segmental Bone Defect. Journal of Functional Biomaterials. 2023; 14(4):183. https://doi.org/10.3390/jfb14040183
Chicago/Turabian StyleKhandaker, Morshed, Reuben Lane, Shannon Yeakley, Hussein Alizereej, Sadegh Nikfarjam, Abdellah Ait Moussa, Melville B. Vaughan, and Amgad M. Haleem. 2023. "Evaluation of a Bioabsorbable Scaffold and Interlocked Nail System for Segmental Bone Defect" Journal of Functional Biomaterials 14, no. 4: 183. https://doi.org/10.3390/jfb14040183
APA StyleKhandaker, M., Lane, R., Yeakley, S., Alizereej, H., Nikfarjam, S., Ait Moussa, A., Vaughan, M. B., & Haleem, A. M. (2023). Evaluation of a Bioabsorbable Scaffold and Interlocked Nail System for Segmental Bone Defect. Journal of Functional Biomaterials, 14(4), 183. https://doi.org/10.3390/jfb14040183