Pharmacological Evaluation of Acacia nilotica Flower Extract against Helicobacter pylori and Human Hepatocellular Carcinoma In Vitro and In Silico
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Collection and Extraction of Acacia nilotica Flowers
2.3. HPLC Analysis of Acacia nilotica Flower Extract
2.4. Assessment of Anti-H. pylori Activity of A. nilotica Flower Extract
2.5. Minimal Inhibitory Concentration (MIC) Experiment
2.6. Minimal Bactericidal Concentration (MBC) Experiment
2.7. Microtiter Plate Test for Biofilm Quantification
2.8. Urease Activity Inhibition Assessment
2.9. Estimation of A. nilotica Flower Extract Antioxidant Activity via DPPH Radical Scavenging Method
2.10. Viability Assay for the Evaluation of the Cytotoxicity of A. nilotica Flower Extract
2.11. Experimental Docking Study
2.12. Statistical Study
3. Results and Discussion
3.1. Phytochemical Constituents
3.2. Anti-Helicobacter Pylori Activity of A. nilotica Flower Extract
3.3. Molecular Docking of Ferulic Acid with 4HI0 Protein of H. pylori
3.4. Antioxidant Activity A. nilotica Flower Extract
3.5. Anticancer of A. nilotica Flower Extract
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abdelghany, T.M.; Reham, Y.; Bakri, M.M.; Ganash, M.; Basma, H.A.; Qanash, H. Effect of Thevetia peruviana Seeds Extract for Microbial Pathogens and Cancer Control. Int. J. Pharmacol. 2021, 17, 643–655. [Google Scholar] [CrossRef]
- Qanash, H.; Yahya, R.; Bakri, M.M.; Bazaid, A.S.; Qanash, S.; Shater, A.F.; Abdelghany, T.M. Anticancer, Antioxidant, Antiviral and Antimicrobial Activities of Kei Apple (Dovyalis caffra) Fruit. Sci. Rep. 2022, 12, 5914. [Google Scholar] [CrossRef]
- Qanash, H.; Bazaid, A.S.; Aldarhami, A.; Alharbi, B.; Almashjary, M.N.; Hazzazi, M.S.; Felemban, H.R.; Abdelghany, T.M. Phytochemical Characterization and Efficacy of Artemisia judaica Extract Loaded Chitosan Nanoparticles as Inhibitors of Cancer Proliferation and Microbial Growth. Polymers 2023, 15, 391. [Google Scholar] [CrossRef] [PubMed]
- Kaur, P.; Arora, S.; Singh, R. Isolation, Characterization and Biological Activities of Betulin from Acacia nilotica Bark. Sci. Rep. 2022, 12, 9370. [Google Scholar] [CrossRef]
- Kumar, G.; Singh, N.K.; Srivastava, M. Comparative Phytochemical Investigation and Antioxidant Activity in Different Parts of Acacia nilotica Seed. Indian J. Pharm. Sci. 2022, 84, 552–559. [Google Scholar] [CrossRef]
- Rather, L.J.; Shahid-ul-Islam; Mohammad, F. Acacia nilotica (L.): A review of its Traditional Uses, Phytochemistry, and Pharmacology. Sustain. Chem. Pharm. 2015, 2, 12–30. [Google Scholar] [CrossRef]
- Khalaf, S.S.; Shalaby, O.A.; Hassan, A.R.; El-Kherbetawy, M.K.; Mehanna, E.T. Acacia nilotica Stem Bark Extract Ameliorates Obesity, Hyperlipidemia, and Insulin Resistance in a Rat Model of High Fat Diet-induced Obesity. J. Tradit. Complement. Med. 2023; in press. [Google Scholar] [CrossRef]
- Ojo, O.A.; Oyetayo, F.L.; Oladipo, A.S.; Oluwatosin, V.O. Polyphenolic Contents, Free Radical Scavenging Properties, and Enzyme Inhibitory Activities of Acacia nilotica (L.) Delile Seed and Pod Extracts. Vegetos 2023. [Google Scholar] [CrossRef]
- Sadiq, M.B.; Tharaphan, P.; Chotivanich, K.; Tarning, J.; Anal, A.K. In Vitro Antioxidant and Antimalarial Activities of Leaves, Pods and Bark Extracts of Acacia nilotica (L.) Del. BMC Complement. Med. Ther. 2017, 17, 372. [Google Scholar] [CrossRef]
- Maldini, M.; Montoro, P.; Hamed, A.I.; Mahalel, U.A.; Oleszek, W.; Stochmal, A.; Piacente, S. Strong Antioxidant Phenolics From Acacia nilotica: Profiling by ESI-MS and Qualitative-quantitative Determination by LC-ESI-MS. J. Pharm. Biomed. Anal. 2011, 56, 228–239. [Google Scholar] [CrossRef]
- Hussein, G.; Miyashiro, H.; Nakamura, N.; Hattori, M.; Kakiuchi, N.; Shimotohno, K. Inhibitory Effects of Sudanese Medicinal Plant Extracts on Hepatitis C Virus (HCV) Protease. Phytother. Res. 2000, 14, 510–516. [Google Scholar] [CrossRef]
- Singh, R.; Singh, B.; Singh, S.; Kumar, N.; Kumar, S.; Arora, S. Anti-free Radical Activities of Kaempferol Isolated From Acacia nilotica (L.) Willd. Ex. Del. Toxicol. In Vitro 2008, 22, 1965–1970. [Google Scholar] [CrossRef]
- Adeel, S.; Fazal-Ur, R.; Abdul, H.; Habib, N.; Shumaila, K.; Khalid, M.Z.; Zuber, M. Sustainable Extraction and Dyeing of Microwave-treated Silk Fabric Using Arjun Bark Colorant. J. Nat. Fibers 2020, 17, 745–758. [Google Scholar] [CrossRef]
- Lizárraga-Velázquez, C.E.; Leyva-López, N.; Hernández, C.; Gutiérrez-Grijalva, E.P.; Salazar-Leyva, J.A.; Osuna-Ruíz, I.; Martínez-Montaño, E.; Arrizon, J.; Guerrero, A.; Benitez-Hernández, A.; et al. Antioxidant Molecules from Plant Waste: Extraction Techniques and Biological Properties. Processes 2020, 8, 1566. [Google Scholar] [CrossRef]
- Zuber, M.; Adeel, S.; Fazal-Ur, R.; Fozia, A.; Majid, M.; Muhammad, A.; Khalid, M.Z. Influence of Microwave Radiation on Dyeing of Bio-mordanted Silk Fabric using Neem Bark (Azadirachta indica)-Based Tannin Natural Dye. J. Nat. Fibers 2020, 17, 1410–1422. [Google Scholar] [CrossRef]
- Al-Huqail, A.A.; Behiry, S.I.; Salem, M.Z.M.; Ali, H.M.; Siddiqui, M.H.; Salem, A.Z.M. Antifungal, Antibacterial, and Antioxidant Activities of Acacia saligna (Labill.) H. L. Wendl. Flower Extract: HPLC Analysis of Phenolic and Flavonoid Compounds. Molecules 2019, 24, 700. [Google Scholar] [CrossRef]
- Abdel-Farid, I.B.; Sheded, M.G.; Mohamed, E.A. Metabolomic Profiling and Antioxidant Activity of Some Acacia Species. Saudi Arab. J. Biol. Sci. 2014, 21, 400–408. [Google Scholar] [CrossRef] [PubMed]
- El-Toumy, S.; Salib, J.; Mohamed, W.; Morsy, F. Phytochemical and Antimicrobial Studies on Acacia saligna Leaves. Egypt J. Chem. 2010, 53, 705. [Google Scholar]
- Alajmi, M.F.; Alam, P.; Alqasoumi, S.I.; Ali Siddiqui, N.; Basudan, O.A.; Hussain, A.; Mabood Husain, F.; Ali Khan, A. Comparative Anticancer and Antimicrobial Activity of Aerial Parts of Acacia salicina, Acacia laeta, Acacia hamulosa and Acacia tortilis grown in Saudi Arabia. Saudi Arab. Pharm. J. 2017, 25, 1248–1252. [Google Scholar] [CrossRef]
- Abd-ElGawad, A.; El-Amier, Y. Allelopathy and Potential Impact of Invasive Acacia saligna (Labill.) Wendl. on Plant Diversity in the Nile Delta Coast of Egypt. Int. J. Environ. Res. 2015, 9, 923–932. [Google Scholar]
- Dunn, B.E.; Cohen, H.; Blaser, M.J. Helicobacter pylori. Clin. Microbiol. Rev. 1997, 10, 720–741. [Google Scholar] [CrossRef] [PubMed]
- Amin, M.; Iqbal, M.S.; Hughes, R.W.; Khan, S.A.; Reynolds, P.A.; Enne, V.I.; Sajjad-ur-Rahman; Mirza, A.S. Mechanochemical Synthesis and In Vitro Anti-Helicobacter pylori and Uresase Inhibitory Activities of Novel Zinc(II)-famotidine Complex. J. Enzyme Inhib. Med. Chem. 2010, 25, 383–390. [Google Scholar] [CrossRef] [PubMed]
- Bhandari, A.; Crowe, S.E. Helicobacter pylori in Gastric Malignancies. Curr. Gastroenterol. Rep. 2012, 14, 489–496. [Google Scholar] [CrossRef] [PubMed]
- Yahya, R.; Al-Rajhi, A.M.H.; Alzaid, S.Z.; Al Abboud, M.A.; Almuhayawi, M.S.; Al Jaouni, S.K.; Selim, S.; Ismail, K.S.; Abdelghany, T.M. Molecular Docking and Efficacy of Aloe vera gel Based on Chitosan Nanoparticles Against Helicobacter pylori and its Antioxidant and Anti-inflammatory Activities. Polymers 2022, 14, 2994. [Google Scholar] [CrossRef]
- Amin, M.; Anwar, F.; Naz, F.; Mehmood, T.; Saari, N. Anti-Helicobacter pylori and Urease Inhibition Activities of Some Traditional Medicinal Plants. Molecules 2013, 18, 2135–2149. [Google Scholar] [CrossRef]
- Fowora, M.; Aina, O.; Omoregie, E.S.; Smith, S.; Osubor, C.C. The Effect of Acacia nilotica on Helicobacter pylori Colonization. Int. J. Med. Plants Nat. Prod. 2021, 7, 1–10. [Google Scholar] [CrossRef]
- Sampath, G.; Douglas, J.H.; Neelamegam, R.; Muthukalingan, K.; Nagarajan, K. In Vitro anti-Helicobacter pylori and Anti-gastric Cancer Activities of Acacia nilotica Aqueous Leaf Extract and its Validation Using In Silico Molecular Docking Approach. Mater. Today Proc. 2022, 51, 1675–1684. [Google Scholar] [CrossRef]
- Diab, K.A.; Guru, S.K.; Bhushan, S.; Saxena, A.K. In Vitro Anticancer Activities of Anogeissus latifolia, Terminalia bellerica, Acacia catechu and Moringa oleiferna Indian Plants. Asian Pac. J. Cancer Prev. 2015, 16, 6423–6428. [Google Scholar] [CrossRef]
- Diab, K.A.; Fahmy, M.A.; Hassan, E.M.; El-Toumy, S.A. Evaluation of the Cytotoxic, Anticancer, and Genotoxic Activities of Acacia nilotica Flowers and Their Effects on N-methyl-N-nitrosourea-induced Genotoxicity in Mice. Mol. Biol. Rep. 2022, 49, 8439–8448. [Google Scholar] [CrossRef]
- Revathi, S.; Govindarajan, R.K.; Rameshkumar, N.; Hakkim, F.L.; Al-Buloshi, M.; Muthukalingan, K.; Nagarajan, K. Anti-cancer, Anti-microbial and Anti-oxidant Properties of Acacia nilotica and Their Chemical Profiling. Biocatal. Agric. Biotechnol. 2017, 11, 322–329. [Google Scholar] [CrossRef]
- Arber, A. Water Plants: A Study of Aquatic Angiosperm; Cambridge University Press: Cambridge, UK, 1972; p. 436. [Google Scholar]
- Al-Rajhi, A.M.H.; Qanash, H.; Almuhayawi, M.S.; Al Jaouni, S.K.; Bakri, M.M.; Ganash, M.; Salama, H.M.; Selim, S.; Abdelghany, T.M. Molecular Interaction Studies and Phytochemical Characterization of Mentha pulegium L. Constituents with Multiple Biological Utilities as Antioxidant, Antimicrobial, Anticancer and Anti-Hemolytic Agents. Molecules 2022, 27, 4824. [Google Scholar] [CrossRef]
- Castillo-Juarez, I.; Rivero-Cruz, F.; Celis, H.; Romero, I. Anti-Helicobacter pylori Activity of Anacardic Acids From Amphipterygium adstringens. J. Ethnopharmacol. 2007, 114, 72–77. [Google Scholar] [CrossRef]
- Andrews, J.M. Determination of minimum inhibitory concentrations. J. Antimicrob. Chemother. 2001, 48, 5–16. [Google Scholar] [CrossRef] [PubMed]
- French, G.L. Bactericidal Agents in the Treatment of MRSA Infections—The Potential Role of Daptomycin. J. Antimicrob. Chemother. 2006, 58, 1107. [Google Scholar] [CrossRef]
- Stepanović, S.; Vuković, D.; Hola, V.; Di Bonaventura, G.; Djukić, S.; Cirković, I.; Ruzicka, F. Quantification of Biofilm in Microtiter Plates: Overview of Testing Conditions and Practical Recommendations for Assessment of Biofilm Production by Staphylococci. APMIS 2007, 115, 891–899. [Google Scholar] [CrossRef] [PubMed]
- Kuwahara, H.; Miyamoto, T.; Kubota, T.; Sawa, T.; Okamoto, S.; Maeda, H. Helicobacter pylori Urease Suppresses Bactericidal Activity of Peroxynitrite Via Carbon Dioxide Production. Infect. Immun. 2000, 68, 4378–4383. [Google Scholar] [CrossRef] [PubMed]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to Proliferation and Cytotoxicity assays. J. Immunol. Method 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Al-Rajhi, A.M.H.; Yahya, R.; Abdelghany, T.M.; Fareid, M.A.; Mohamed, A.M.; Amin, B.H.; Masrahi, A.S. Anticancer, Anticoagulant, Antioxidant and Antimicrobial Activities of Thevetia peruviana Latex with Molecular Docking of Antimicrobial and Anticancer Activities. Molecules 2022, 27, 3165. [Google Scholar] [CrossRef] [PubMed]
- Qanash, H.; Alotaibi, K.A.A.; Bazaid, A.S.; Ganash, M.; Saeedi, N.H.; Ghany, T.A. Effectiveness of Oil-based Nanoemulsions With Molecular Docking of its Antimicrobial Potential. BioResources 2023, 18, 1554–1576. [Google Scholar] [CrossRef]
- Sayed, A.; El-Toumy, S.A.; Mohamed, S.M.; Hassan, E.M.; Mossa, A.T.H. Phenolic Metabolites from Acacia nilotica Flowers and Evaluation of its Free Radical Scavenging Activity. J. Am. Sci. 2011, 7, 287–295. [Google Scholar]
- Foyzun, T.; Mahmud, A.A.; Ahammed, M.S.; Manik, M.I.N.; Hasan, M.K.; Islam, K.M.M.; Lopa, S.S.; Al-Amin, M.Y.; Biswas, K.; Afrin, M.R.; et al. Polyphenolics with Strong Antioxidant Activity from Acacia nilotica Ameliorate Some Biochemical Signs of Arsenic-Induced Neurotoxicity and Oxidative Stress in Mice. Molecules 2022, 27, 1037. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Peng, C.; Chi, F.; Yu, C.; Yang, Q.; Li, Z. Antibacterial and Antibiofilm Activities of Chlorogenic Acid Against Yersinia enterocolitica. Front Microbiol. 2022, 13, 885092. [Google Scholar] [CrossRef] [PubMed]
- Salehi, B.; Machin, L.; Monzote, L.; Sharifi-Rad, J.; Ezzat, S.M.; Salem, M.A.; Merghany, R.M.; El Mahdy, N.M.; Kılıç, C.S.; Sytar, O.; et al. Therapeutic Potential of Quercetin: New Insights and Perspectives for Human Health. ACS Omega 2020, 5, 11849–11872. [Google Scholar] [CrossRef] [PubMed]
- Asgharian, P.; Tazekand, A.P.; Hosseini, K.; Forouhandeh, H.; Ghasemnejad, T.; Ranjbar, M.; Hasan, M.; Kumar, M.; Beirami, S.M.; Tarhriz, V.; et al. Potential Mechanisms of Quercetin in Cancer Prevention: Focus on cellular and molecular targets. Cancer Cell Int. 2022, 22, 257. [Google Scholar] [CrossRef]
- Chen, S.-C.; Yang, C.-S.; Chen, J.-J. Main Bioactive Components and Their Biological Activities from Natural and Processed Rhizomes of Polygonum sibiricum. Antioxidants 2022, 11, 1383. [Google Scholar] [CrossRef] [PubMed]
- Auwal, M.S.; Shuaibu, A.; Ibrahim, A.; Mustapha, M. Antibacterial Properties of Crude Pod Extract of Acacia nilotica (fabaceae). Haryana Vet. 2015, 54, 29–32. [Google Scholar]
- Khameneh, B.; Iranshahy, M.; Soheili, V.; Sedigheh, B.; Bazzaz, F. Review on Plant Antimicrobials: A mechanistic Viewpoint. Antimicrob. Resist. Infect Control. 2019, 8, 118. [Google Scholar] [CrossRef]
- Asha, M.K.; Debraj, D.; Prashanth, D.; Edwin, J.R.; Srikanth, H.S.; Muruganantham, N.; Dethe, S.M.; Anirban, B.; Jaya, B.; Deepak, M.; et al. In vitro Anti-Helicobacter pylori Activity of a Alavonoid Rich Extract of Glycyrrhiza glabra and its Probable Mechanisms of Action. J. Ethnopharmacol. 2013, 145, 581–586. [Google Scholar] [CrossRef]
- Xiao, Z.P.; Peng, Z.Y.; Dong, J.J.; He, J.; Ouyang, H.; Feng, Y.T.; Lu, C.L.; Lin, W.Q.; Wang, J.X.; Xiang, Y.P.; et al. Synthesis, Structure-Activity Relationship Analysis and Kinetics Study of Reductive Derivatives of Flavonoids as Helicobacter pylori Urease Inhibitors. Eur. J. Med. Chem. 2013, 63, 685–695. [Google Scholar] [CrossRef]
- Campos, F.M.; Couto, J.A.; Figueiredo, A.R.; Tóth, I.V.; Rangel, A.O.; Hogg, T.A. Cell Membrane Damage Induced by Phenolic Acids on Wine Lactic Acid Bacteria. Int. J. Food Microbiol. 2009, 135, 144–151. [Google Scholar] [CrossRef]
- Jeong, K.W.; Lee, J.Y.; Kang, D.I.; Lee, J.U.; Shin, S.Y.; Kim, Y. Screening of Flavonoids as Candidate Antibiotics Against Enterococcus faecalis. J. Nat. Prod. 2009, 72, 719–724. [Google Scholar] [CrossRef] [PubMed]
- Mun, S.H.; Joung, D.K.; Kim, S.B.; Park, S.J.; Seo, Y.S.; Gong, R.; Choi, J.G.; Shin, D.W.; Rho, J.R.; Kang, O.H.; et al. The Mechanism of Antimicrobial Activity of Sophoraflavanone B Against Methicillin-resistant Staphylococcus aureus. Foodborne Pathog. Dis. 2014, 11, 234–239. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.-T.; Li, C.-L.; Tan, L.-H.; Xu, Y.-F.; Liu, Y.-H.; Mo, Z.-Z.; Dou, Y.-X.; Su, R.; Su, Z.-R.; Huang, P.; et al. Inhibition of Helicobacter pylori and Its Associated Urease by Palmatine: Investigation on the Potential Mechanism. PLoS ONE 2017, 12, e0168944. [Google Scholar] [CrossRef] [PubMed]
- Zahid, R.; Akram, M.; Riaz, M.; Munir, N.; Shehzad, M. Phytotherapeutic Modalities for the Management of Helicobacter pylori Associated Peptic Ulcer. Eur. J. Inflamm. 2020, 18, 1–16. [Google Scholar] [CrossRef]
- Divyashri, G.; Murthy, T.K.; Sundareshan, S.; Kamath, P.; Murahari, M.; Saraswathy, G.R.; Sadanandan, B. In Silico Approach Towards the Identification of Potential Inhibitors From Curcuma amada Roxb Against H. pylori: ADMET Screening and Molecular Docking Studies. BioImpacts 2021, 11, 119–127. [Google Scholar] [CrossRef]
- Subhaswaraj, P.; Sowmya, M.; Jobina, R.; Sudharshan, S.J.; Dyavaiah, M.; Siddhardha, B. Determination of Antioxidant Potential of Acacia nilotica Leaf Extract in Oxidative Stress Response System of Saccharomyces cerevisiae. J. Sci. Food. Agric. 2017, 97, 5247–5253. [Google Scholar] [CrossRef] [PubMed]
- Ravishankar, D.; Rajora, A.K.; Greco, F.; Osborn, H.M. Flavonoids as Prospective Compounds for Anti-cancer therapy. Int. J. Biochem. Cell Biol. 2013, 45, 2821–2831. [Google Scholar] [CrossRef]
- De Jesús Manríquez-Torres, J.; Hernández-Lepe, M.A.; Chávez-Méndez, J.R.; González-Reyes, S.; Serafín-Higuera, I.R.; Rodríguez-Uribe, G.; Torres-Valencia, J.M. Isolation and Cytotoxic Activity of Phyllocladanes From the Roots of Acacia schafneri (Leguminosae). Molecules 2020, 25, 3944. [Google Scholar] [CrossRef]
- Wang, J.; Lai, X.; Yuan, D.; Liu, Y.; Wang, J.; Liang, Y. Effects of Ferulic acid, a Major Component of Rice Bran, on Proliferation, Apoptosis, and Autophagy of HepG2 Cells. Food Res. Int. 2022, 161, 111816. [Google Scholar] [CrossRef]
- Singh, T.H.; Kumar, A.; Ramniwas, S.; Coudhary, R.; Aggarwal, D.; Kumar, M.; Sharma, U.; Chaturvedi Parashar, N.; Haque, S.; Sak, K. Ferulic Acid: A Natural Phenol That Inhibits Neoplastic Events through Modulation of Oncogenic Signaling. Molecules 2022, 27, 7653. [Google Scholar] [CrossRef]
- Sundarraj, S.; Thangam, R.; Sreevani, V.; Kaveri, K.; Gunasekaran, P.; Achiraman, S.; Kannan, S. γ-Sitosterol from Acacia nilotica L. Induces G2/M Cell Cycle Arrest and Apoptosis Through c-Myc Suppression in MCF-7 and A549 cells. J. Ethnopharmacol. 2012, 141, 803–809. [Google Scholar] [CrossRef] [PubMed]
- Chiaino, E.; Micucci, M.; Durante, M.; Budriesi, R.; Gotti, R.; Marzetti, C.; Chiarini, A.; Frosini, M. Apoptotic-Induced Effects of Acacia catechu Willd. Extract in Human Colon Cancer Cells. Int. J. Mol. Sci. 2020, 21, 2102. [Google Scholar] [CrossRef] [PubMed]
Compound | Retention Time | Area | Area (%) | Concentration (µg/mL) |
---|---|---|---|---|
Unknown | 2.299 | 337.98 | 4.16 | Undetected |
Unknown | 2.637 | 1081.92 | 13.31 | Undetected |
Unknown | 2.744 | 488.57 | 6.01 | Undetected |
Gallic acid | 3.38 | 420.91 | 5.18 | 2116.77 |
Chlorogenic acid | 4.253 | 574.10 | 7.06 | 4572.26 |
Catechin | 4.637 | 106.39 | 1.31 | 1524.96 |
Unknown | 4.997 | 58.61 | 0.72 | Undetected |
Unknown | 5.310 | 174.94 | 2.15 | Undetected |
Methyl gallate | 5.609 | 44.12 | 0.54 | 140.45 |
Caffeic acid | 6.057 | 73.77 | 0.91 | 333.93 |
Unknown | 6.315 | 121.44 | 1.49 | Undetected |
Syringic acid | 6.615 | 54.70 | 0.67 | 222.45 |
Pyro catechol | 7.077 | 158.71 | 1.95 | 1303.73 |
Unknown | 7.551 | 217.63 | 2.68 | Undetected |
Rutin | 8.054 | 349.54 | 4.30 | 2393.13 |
Ellagic acid | 8.575 | 57.27 | 0.70 | 683.49 |
Coumaric acid | 9.309 | 969.16 | 11.92 | 1715.35 |
Vanillin | 9.808 | 0.00 | 0.00 | 0.00 |
Ferulic acid | 10.281 | 1381.53 | 16.99 | 5451.04 |
Naringenin | 10.494 | 0.00 | 0.00 | 0.00 |
Unknown | 11.325 | 346.87 | 4.27 | Undetected |
Daidzein | 12.372 | 333.41 | 4.10 | 1190.40 |
Quercetin | 12.938 | 491.94 | 6.05 | 3733.37 |
Cinnamic acid | 14.060 | 65.05 | 0.80 | 69.72 |
Apigenin | 14.644 | 182.79 | 2.25 | 796.88 |
Kaempferol | 15.061 | 0.00 | 0.00 | 0.00 |
Hesperetin | 15.676 | 39.19 | 0.48 | 121.39 |
Treatment | Mean Inhibitions Zones (mm) | MIC (µg/mL) | MBC (µg/mL) | MBC/MIC Index |
---|---|---|---|---|
Extract | 31.00 ± 1.00 | 7.8 | 15.62 | 2.0 |
Control | 21.67 ± 1.53 | 31.25 | 31.25 | 1.0 |
Concentration (µg/mL) | Flower Extract | ||
---|---|---|---|
OD Mean | Urease Inhibition % | ±SD | |
1000 | 0.172 | 76.6 | 0.003 |
500 | 0.236 | 67.9 | 0.004 |
250 | 0.276 | 62.4 | 0.006 |
125 | 0.338 | 54.0 | 0.004 |
62.5 | 0.375 | 48.9 | 0.004 |
31.25 | 0.422 | 42.6 | 0.003 |
15.625 | 0.458 | 37.6 | 0.002 |
7.8125 | 0.512 | 30.3 | 0.004 |
3.9 | 0.553 | 24.8 | 0.002 |
1.95 | 0.621 | 15.5 | 0.002 |
0.0 | 0.735 | 0.0 | 0.026 |
IC50 | 67.4 µg/mL |
Mol (Five Poses of Ferulic Acid) | rseq | mseq | S | rmsd_refine | E_conf | E_place | E_score1 | E_refine | E_score2 |
---|---|---|---|---|---|---|---|---|---|
1 | 1 | −5.58 | 3.35 | −42.86 | −61.32 | −11.22 | −27.30 | −5.58 | |
1 | 1 | −5.35 | 1.81 | −40.17 | −64.29 | −11.15 | −29.20 | −5.35 | |
1 | 1 | −5.31 | 2.06 | −41.95 | −63.97 | −9.95 | −28.10 | −5.31 | |
1 | 1 | −5.29 | 1.73 | −41.47 | −67.91 | −10.93 | −27.96 | −5.29 | |
1 | 1 | −5.24 | 2.00 | −40.25 | −74.10 | −9.96 | −28.98 | −5.24 |
Mol | Ligand | Receptor | Interaction | Distance | E (kcal/mol) |
---|---|---|---|---|---|
Ferulic acid | O 20 | OG SER 139 (B) | H-acceptor | 3.02 | −0.7 |
Concentration (µg/mL) | Ascorbic Acid | Flower Extract | ||||
---|---|---|---|---|---|---|
OD Mean | DPPH Scavenging % | SD | OD Mean | DPPH Scavenging % | SD | |
1000 | 0.049 | 97.0 | 0.002 | 0.322 | 80.6 | 0.007 |
500 | 0.091 | 94.5 | 0.004 | 0.437 | 73.6 | 0.007 |
250 | 0.122 | 92.7 | 0.005 | 0.572 | 65.5 | 0.004 |
125 | 0.225 | 86.4 | 0.006 | 0.689 | 58.4 | 0.008 |
62.50 | 0.365 | 78.0 | 0.006 | 0.787 | 52.6 | 0.005 |
31.25 | 0.478 | 71.2 | 0.004 | 0.866 | 47.8 | 0.009 |
15.63 | 0.593 | 64.2 | 0.005 | 0.956 | 42.3 | 0.010 |
7.81 | 0.725 | 56.3 | 0.003 | 1.054 | 36.4 | 0.009 |
3.90 | 0.898 | 45.8 | 0.002 | 1.130 | 31.8 | 0.004 |
1.95 | 0.966 | 41.7 | 0.007 | 1.215 | 26.7 | 0.003 |
0 | 1.658 | 0.0 | 0.004 | 1.658 | 0.0 | 0.004 |
IC50 | 4.08 µg/mL | 36.74 µg/mL |
Concentration (µg/mL) | Flower Extract | Vinblastine Sulfate | ||||
---|---|---|---|---|---|---|
HepG-2 Cells | HFB-4 Cells | HepG-2 Cells | ||||
Viability % | Inhibitory % | Viability % | Inhibitory % | Viability % | Inhibitory % | |
500 | 8.74 | 91.26 ± 0.62 | 32.65 | 67.35 ± 2.31 | 3.27 | 96.73 ± 1.48 |
250 | 30.96 | 69.04 ± 1.48 | 74.08 | 25.92 ± 2.14 | 5.89 | 94.11 ± 1.30 |
125 | 63.19 | 36.81 ± 2.35 | 91.47 | 8.53 ± 0.69 | 10.92 | 89.08 ± 1.25 |
62.5 | 84.23 | 15.77 ± 1.09 | 98.16 | 1.84 ± 0.48 | 14.36 | 85.64 ± 0.31 |
31.25 | 97.58 | 2.42 ± 0.64 | 100 | 0.0 | 19.24 | 80.76 ± 0.48 |
15.6 | 100 | 0.0 | 100 | 0.0 | 26.85 | 73.15 ± 1.25 |
7.8 | 100 | 0.0 | 100 | 0.0 | 34.19 | 65.81 ± 0.50 |
3.9 | 100 | 0.0 | 100 | 0.0 | 45.06 | 54.94 ± 1.33 |
2 | 100 | 0.0 | 100 | 0.0 | 54.28 | 45.72 ± 1.42 |
1 | 100 | 0.0 | 100 | 0.0 | 60.94 | 39.06 ± 0.45 |
0 | 100 | 0.0 | 100 | 0.0 | 100 | 0.0 |
IC50 | 176.15 ± 5.08 µg/mL | 395.30 ± 11.49 µg/mL | 2.93± 0.33 µg/mL |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Rajhi, A.M.H.; Qanash, H.; Bazaid, A.S.; Binsaleh, N.K.; Abdelghany, T.M. Pharmacological Evaluation of Acacia nilotica Flower Extract against Helicobacter pylori and Human Hepatocellular Carcinoma In Vitro and In Silico. J. Funct. Biomater. 2023, 14, 237. https://doi.org/10.3390/jfb14040237
Al-Rajhi AMH, Qanash H, Bazaid AS, Binsaleh NK, Abdelghany TM. Pharmacological Evaluation of Acacia nilotica Flower Extract against Helicobacter pylori and Human Hepatocellular Carcinoma In Vitro and In Silico. Journal of Functional Biomaterials. 2023; 14(4):237. https://doi.org/10.3390/jfb14040237
Chicago/Turabian StyleAl-Rajhi, Aisha M. H., Husam Qanash, Abdulrahman S. Bazaid, Naif K. Binsaleh, and Tarek M. Abdelghany. 2023. "Pharmacological Evaluation of Acacia nilotica Flower Extract against Helicobacter pylori and Human Hepatocellular Carcinoma In Vitro and In Silico" Journal of Functional Biomaterials 14, no. 4: 237. https://doi.org/10.3390/jfb14040237
APA StyleAl-Rajhi, A. M. H., Qanash, H., Bazaid, A. S., Binsaleh, N. K., & Abdelghany, T. M. (2023). Pharmacological Evaluation of Acacia nilotica Flower Extract against Helicobacter pylori and Human Hepatocellular Carcinoma In Vitro and In Silico. Journal of Functional Biomaterials, 14(4), 237. https://doi.org/10.3390/jfb14040237