Influence of Storing Composite Filling Materials in a Low-pH Artificial Saliva on Their Mechanical Properties—An In Vitro Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Specimen Preparation
2.2. Mechanical Measurement Procedures
2.2.1. Flexural Strength Measurement
2.2.2. Compressive Strength Measurement
2.3. Fracture Surface Analysis
2.4. Statistical Analysis
3. Results
3.1. Flexural Strength
3.2. Compressive Strength
3.3. Microstructural Characteristics
3.4. Chemical Characteristics
4. Discussion
5. Conclusions
- The hypothesis assumed for this study has been rejected as significant differences in mechanical properties between different composites were found when aged in a low-pH artificial saliva.
- The flexural resistance of the composite materials after 60 days of storage in a pH = 4 environment was reduced by 2–16%, depending on the product.
- The same phenomena could be observed for the compressive strength values of the materials. Specifically, after 60 days of storage in a low-pH medium, the strength of the materials were between 5 and 20% weaker.
- Materials in their composition contain various filler particles. Some of them have a filler of 1 um. The particles may be irregular or spherical.
- Large and irregular particles are obtained by grinding molten glass. Smaller spherical filler particles are generated by the hydrolysis of appropriate organic compounds such as tera ethoxy, silane, and zirconium organic compounds.
- Some materials contain fluoride, which can be released in small amounts from excision and is an element that prevents caries.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mjör, I.A.; Dahl, J.E.; Moorhead, J.E. Age of restorations at replacement in permanent teeth in general dental practice. Acta Odontol. Scand. 2000, 58, 97–101. [Google Scholar] [CrossRef]
- Scribante, A.; Gallo, S.; Scarantino, S.; Dagna, A.; Poggio, C.; Colombo, M. Exposure of Biomimetic Composite Materials to Acidic Challenges: Influence on Flexural Resistance and Elastic Modulus. Biomimetics 2020, 5, 56. [Google Scholar] [CrossRef]
- Zubrzycki, J.; Klepka, T.; Marchewka, M.; Zubrzycki, R. Tests of Dental Properties of Composite Materials Containing Nanohybrid Filler. Materials 2023, 16, 348. [Google Scholar] [CrossRef] [PubMed]
- Junior, S.R.; Zanchi, C.H.; de Carvalho, R.; Demarco, F.F. Flexural strength and modulus of elasticity of different types of resin-based composites. Braz. Oral Res. 2007, 21, 16–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- AlHabdan, A.; AlShamrani, A.; AlHumaidan, R.; AlFehaid, A.; Eisa, S. Color Matching of Universal Shade Resin-Based Composite with Natural Teeth and Its Stability before and after In-Office Bleaching. Int. J. Biomater. 2022, 2022, 8420890. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Xu, D.; Hou, C.; Zhang, H.; Li, Y.; Zhang, Q.; Wang, H.; Zhu, M. Core-shell structured SiO2@ZrO2@SiO2 filler for radiopacity and ultra-low shrinkage dental composite resins. J. Mech. Behav. Biomed. Mater. 2021, 121, 104593. [Google Scholar] [CrossRef] [PubMed]
- Lucsanszky, I.J.; Ruse, N.D. Fracture Toughness, Flexural Strength, and Flexural Modulus of New CAD/CAM Resin Composite Blocks. J. Prosthodont. 2020, 29, 34–41. [Google Scholar] [CrossRef]
- Al Badr, R.M.; Hassan, H.A. Effect of immersion in different media on the mechanical properties of dental composite resins. Int. J. Appl. Dent. Sci. 2017, 3, 81–88. [Google Scholar]
- Korkut, B.; Dokumacigil, G.; Murat, N.; Atali, P.; Tarcin, B.; Gocmen, G. Effect of Polymerization on the Color of Resin Composites. Oper. Dent. 2022, 47, 514–526. [Google Scholar] [CrossRef]
- Beun, S.; Glorieux, T.; Devaux, J.; Vreven, J.; Leloup, G. Characterization of nanofilled compared to universal and microfilled composites. Dent. Mater. 2007, 23, 51–59. [Google Scholar] [CrossRef]
- Alrefaie, T.; Abdou, A.; Almasabi, W.; Qi, F.; Nakamoto, A.; Nakajima, M.; Otsuki, M.; Shimada, Y. Effect of Water Storage and Bleaching on Light Transmission Properties and Translucency of Nanofilled Flowable Composite. Materials 2022, 16, 10. [Google Scholar] [CrossRef]
- Yip, H.H.; Wong, R.W.; Hägg, U. Complications of orthodontic treatment: Are soft drinks a risk factor? World J. Orthod. 2009, 10, 33–40. [Google Scholar] [PubMed]
- Scribante, A.; Bollardi, M.; Chiesa, M.; Poggio, C.; Colombo, M. Flexural Properties and Elastic Modulus of Different Esthetic Restorative Materials: Evaluation after Exposure to Acidic Drink. BioMed. Res. Int. 2019, 2019, 5109481. [Google Scholar] [CrossRef] [PubMed]
- de Paula, A.; de Fúcio, S.; Alonso, R.; Ambrosano, G.; Puppin-Rontani, R. Influence of Chemical Degradation on the Surface Properties of Nano Restorative Materials. Oper. Dent. 2014, 39, E109–E117. [Google Scholar] [CrossRef] [Green Version]
- Szalewski, L.; Wójcik, D.; Bogucki, M.; Szkutnik, J.; Różyło-Kalinowska, I. The Influence of Popular Beverages on Mechanical Properties of Composite Resins. Materials 2021, 14, 3097. [Google Scholar] [CrossRef]
- Gornig, D.C.; Maletz, R.; Ottl, P.; Warkentin, M. Influence of artificial aging: Mechanical and physicochemical properties of dental composites under static and dynamic compression. Clin. Oral Investig. 2022, 26, 1491–1504. [Google Scholar] [CrossRef]
- Hao, Y.; Huang, X.; Zhou, X.; Li, M.; Ren, B.; Peng, X.; Cheng, L. Influence of Dental Prosthesis and Restorative Materials Interface on Oral Biofilms. Int. J. Mol. Sci. 2018, 19, 3157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Popoff, D.A.V.; Santa-Rosa, T.T.D.A.; Paula, A.C.F.D.; Biondi, C.M.F.; Domingos, M.A.; Oliveira, S.A.D. Bulimia: Oral manifestations and dental care. RGO. Rev. Gaúcha Odontol. (Online) 2010, 58, 381–385. [Google Scholar]
- Figueiral, M.H.; Azul, A.M.; Fonseca, P.; Pinto, E.; Branco, F.M. Influence of saliva on prosthetic stomatitis. Rev. Port. Estomatol. Med. Dent. E’Cir. Maxilofac. 2006, 47, 197–202. [Google Scholar]
- Sá, J.D.; Vieira, F.; Aroso, C.M.; Cardoso, M.; Mendes, J.M.; Silva, A.S. The influence of saliva pH on the fracture resistance of three complete denture base acrylic resins. Int. J. Dent. 2020, 2020, 8941876. [Google Scholar]
- International Organization for Standardization. Dentistry-Polymer-Based Restorative Materials; ISO: Geneva, Switzerland, 2019. [Google Scholar]
- Al-Shekhli, A.A.R. Compressive Strength Evaluation of Giomer and Compomer Storage in Different Media. J. Int. Dent. Med. Res. 2020, 13, 23–28. [Google Scholar]
- Aliping-McKenzie, M.; Linden, R.W.A.; Nicholson, J.W. The effect of Coca-Cola and fruit juices on the surface hardness of glass-ionomers and ‘compomers’. J. Oral Rehabil. 2004, 31, 1046–1052. [Google Scholar] [CrossRef] [PubMed]
- Bettencourt, A.F.; Neves, C.B.; de Almeida, M.S.; Pinheiro, L.M.; e Oliveira, S.A.; Lopes, L.P.; Castro, M.F. Biodegradation of acrylic based resins: A review. Dent. Mater. 2010, 26, e171–e180. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, E.; Pishevar, L.; Boroujeni, P.M. Effect of food simulating liquids on the flexural strength of a methacrylate and silorane-based composite. PLoS ONE 2017, 12, e0188829. [Google Scholar] [CrossRef] [Green Version]
- Koin, P.; Kilislioglu, A.; Zhou, M.; Drummond, J.; Hanley, L. Analysis of the Degradation of a Model Dental Composite. J. Dent. Res. 2008, 87, 661–665. [Google Scholar] [CrossRef] [Green Version]
- McKinney, J.; Wu, W. Chemical Softening and Wear of Dental Composites. J. Dent. Res. 1985, 64, 1326–1331. [Google Scholar] [CrossRef]
- Goracci, C.; Cadenaro, M.; Fontanive, L.; Giangrosso, G.; Juloski, J.; Vichi, A.; Ferrari, M. Polymerization efficiency and flexural strength of low-stress restorative composites. Dent. Mater. 2014, 30, 688–694. [Google Scholar] [CrossRef]
- Saratti, C.M.; Rocca, G.T.; Durual, S.; Lohbauer, U.; Ferracane, J.L.; Scherrer, S.S. Fractography of clinical failures of indirect resin composite endocrown and overlay restorations. Dent. Mater. 2021, 37, e341–e359. [Google Scholar] [CrossRef] [PubMed]
- Hwang, S.; Chung, S.H.; Lee, J.-T.; Kim, Y.-T.; Kim, Y.J.; Oh, S.; Yeo, I.-S.L. Influence of Acid, Ethanol, and Anthocyanin Pigment on the Optical and Mechanical Properties of a Nanohybrid Dental Composite Resin. Materials 2018, 11, 1234. [Google Scholar] [CrossRef] [Green Version]
- Ranjitkar, S.; Kaidonis, J.A.; Smales, R.J. Gastroesophageal Reflux Disease and Tooth Erosion. Int. J. Dent. 2012, 2012, 479850. [Google Scholar] [CrossRef] [Green Version]
- Seirawan, M.Y.; Doumani, M.; Seirawan, M.K.; Habib, A.; Dayoub, M. Compressive strength of three different restorative materials (in vitro study). Int. J. Oral Care Res. 2019, 7, 4. [Google Scholar]
- Ille, C.; Moacă, E.A.; Pop, D.; Goguță, L.; Opriș, C.; Pîrvulescu, I.L.; Faur, A.; Jivănescu, A. Compressive strength evaluation of thin occlusal veneers from different CAD/CAM materials, before and after acidic saliva exposure. Odontology 2023, 111, 360–374. [Google Scholar] [CrossRef] [PubMed]
Material | Producer | Main Filler Composition | Curing Condition Recommended by the Manufacturer (Maximal Thickness of Cure and Time) |
---|---|---|---|
Premise | Kerr (Orange, CA, USA) | Prepolymerised filler, barium glass, silica nanoparticles, acrylic resins, photo initiator | 2.5 mm, 40 s |
Point 4 | Kerr (Orange, CA, USA) | Barium aluminoborosilicate, acrylic resins, photo initiator | 2–3 mm, 20 s |
Filtek Supreme Plus | 3M/ESPE (St. Paul, MN, USA) | 76.5% SiO2 nanosilica filler, ZrO2/SiO2 nanoclusters, acrylic resins, photo initiator | 2 mm, 20 s |
Gradia Direct | GC America (Alsip, IL, USA) | Silica, prepolymerized fillers, fluoro-alumino-silicate glass, acrylic resins, photo initiator | 3 mm, 10 s |
Tetric Ceram | Ivoclar (Schaan, Lichtenstein) | Barium glass, ytterbium triflouride, Ba–Al floursilicate, silicon dioxide, acrylic resins, photo initiator | 3 mm, 10 s |
Estelite | Tokuyama (Yamaguchi ken, Japan) | 82% spherical silica, acrylic resins, photo initiator | 3 mm, 10 s |
Omnichroma | Tokuymama (Yamaguchi ken, Japan) | Spherical silica, acrylic resins, photo initiator | 3.5 mm, 20 s |
Filtek Supreme Flow | 3M/ESPE (St. Paul, MN, USA) | SiO2 nanosilica filler, ZrO2/SiO2 nanoclusters, YtF3 acrylic resins, photo initiator | 2 mm, 20 s |
Herculite Flow | Kerr (Orange, CA, USA) | Barium glass filler (0.4 µm), silicon dioxide (0.02–0.05 µm), acrylic resins, photo initiator | 2 mm, 20 s |
G-aenial Universal | GC America (Alsip, IL, USA) | 76% silicon dioxide, strontium glass (10–200 nm), acrylic resins, photo initiator | 2 mm, 30 s |
Beautifil | Shofu (Kyoto, Japan) | S-PRG filler based on fluoroboroaluminosilicate glass, acrylic resins, photo initiator | 4 mm, 20 s |
TPH Spectrum | Dentsply (Charlotte, NC, USA) | 76% blend of spherical, pre-polymerized SphereTEC fillers (d3, 50 ≈ 15 µm), non-agglomerated barium glass and ytterbium fluoride, acrylic resins, photo initiator | 2 mm, 20 s |
G-aenial Flow | GC America (Alsip, IL, USA) | Silicon dioxide, strontium glass (10–200 nm), acrylic resins, photo initiator | 2 mm, 10 s |
Ceramix | Dentsply (Charlotte, NC, USA) | 76% SphereTEC® filler technology, acrylic resins, photo initiator | 2–3 mm, 20 s |
Harmonize | Kerr (Orange, CA, USA) | Nanoparticle filler ZrO2 SiO2, acrylic resins, photo initiator | 1–3 mm, 10 s |
TPH Spectrum Flow | Dentsply (Charlotte, NC, USA) | SphereTEC™ technology ZrO2 SiO2, acrylic resins, photo initiator | 2 mm, 20 s |
Clearfil Majesty Flow | Kuraray America (New York, NY, USA) | Pre-polymerized filler, silanased barium glass, acrylic resins, photo initiator | 3 mm, 10 s |
Material | Flexural Strength after 3 Days (MPa) | Flexural Strength after 60 Days (MPa) |
---|---|---|
Ceramix (Dentsply) | 138.86 ± 6.5 ABCD | 136.80 ± 12.3 BCD |
Tetric Evo Ceram (Ivoclar) | 133.86 ± 3.9 ABC | 132.50 ± 8.3 BCD |
Beautifil (Shofu) | 132.00 ± 6.5 ABC | 130.66 ± 5.8 BCD |
Omichroma (Tokuyama) | 133.12 ± 5.6 ABa | 128.30 ± 7.8 BCDb |
Premise (Kerr) | 125.42 ± 6.4 Aa | 111.34 ± 5.6 Ab |
G-aenial (GC) | 136.10 ± 7.8 ABCDa | 123.98 ± 8.0 ABb |
Point 4 (Kerr) | 143.91 ± 8.3 ABCDE | 142.86 ± 13.0 CD |
Harmonize (Kerr) | 148.32 ± 11.7 BCDE | 139.20 ± 6.6 BCD |
Estelite (Tokuyama) | 126.55 ± 6.7 A | 124.74 ± 7.4 ABC |
TPH Spectrum (Dentsply) | 176.92 ± 10.0 Fa | 163.68 ± 8.4 Eb |
Geanial Flow (GC) | 150.12 ± 9.1 CDE | 148.60 ± 9.3 DE |
Majesty Flow (Kuraray) | 163.18 ± 12.5 EFa | 137.96 ± 10.1 BCDb |
TPH Spectrum Flow (Dentsply) | 151.42 ± 7.3 CDEa | 134.76 ± 7.3 BCDb |
Filtek Supreme (3M) | 148.68 ± 9.3 BCDE | 145.56 ± 5.8 DE |
Herkulite Flow (Kerr) | 144.54 ± 11.0 ABCDE | 134.68 ± 5.9 BCD |
Filtek Supreme Flow (3M) | 154.44 ± 9.7 DE | 148.58 ± 10.0 DE |
Filtek Flow (3M) | 145.56 ± 5.8 ABCDE | 143.16 ± 9.6 CD |
Material | Compressive Strength after 3 Days (MPa) | Compressive Strength after 60 Days (MPa) |
---|---|---|
Ceramix (Dentsply) | 353.04 ± 25.5 Ca | 320.1 ± 19.6 CDEFGb |
Tetric Evo Ceram (Ivoclar) | 331.18 ± 14.9 BC | 310.76 ± 18.2 CDE |
Beautifil (Shofu) | 236.62 ± 12.6 BCa | 323.44 ± 32.4 CDEFGb |
Omichroma (Tokuyama) | 341.22 ± 29.0 C | 340.68 ± 23.8 EFG |
Premise (Kerr) | 343.88 ± 21.7 C | 327.0 ± 29.5 DEFG |
G-aenial (GC) | 351.4 ± 8.5 C | 348.20 ± 12.5 EFG |
Point 4 (Kerr) | 261.60 ± 14.9 A | 245.22 ± 20.9 EFG |
Harmonize (Kerr) | 350.80 ± 28.3 C | 334.72 ± 14.1 DEFG |
Estelite (Tokuyama) | 350.8 ± 28.4 C | 340.8 ± 15.7 EFG |
TPH Spectrum (Dentsply) | 351.3 ± 23.6 C | 342.84 ± 31.2 EFG |
Geanial Flow (GC) | 334.94 ± 14.7 BC | 332.27 ± 18.6 DEFG |
Majesty Flow (Kuraray) | 365.02 ± 36.3 C | 356.84 ± 20.6 G |
TPH Spectrum Flow (Dentsply) | 316.56 ± 8.8 ABC | 313.11 ± 7.9 CDEF |
Filtek Supreme (3M) | 361.76 ± 37.0 Ca | 299.66 ± 12.9 BCDb |
Herkulite Flow (Kerr) | 358.52 ± 26.6 Ca | 290.36 ± 10.6 BCb |
Filtek Supreme Flow (3M) | 357.62 ± 14.0 C | 349.04 ± 28.7 EFG |
Filtek Flow (3M) | 280.70 ± 22.1 AB | 266.86 ± 18.1 AB |
Material | Type of Fillers Detected by SEM Photos |
---|---|
Ceramix (Dentsply) | Irregular, small, and large particles from 1–5 µm |
Tetric Evo Ceram (Ivoclar) | Spherical 200–500 nm, irregular 1 µm |
Beautifil (Shofu) | Irregular shape 1 µm |
Omichroma (Tokuyama) | Uniform spheres with a diameter of 200–300 nm |
Premise (Kerr) | Irregular 1–5 µm |
G-aenial (GC) | Spherical 0.5–1 µm |
Point 4 (Kerr) | irregular 1–5 µm |
Harmonize (Kerr) | Spherical 200–500 nm, irregular 1 µm |
Estelite (Tokuyama) | Uniform spheres with a diameter of 200–300 nm |
TPH Spectrum (Dentsply) | Irregular, small, and large particles from 1–5 µm |
G-aenial Flow (GC) | Spherical 0.5–1 µm |
Majesty Flow (Kuraray) | Spherical 0.5–1 µm |
TPH Spectrum Flow (Dentsply) | Spherical 0.5–1 µm |
Filtek Supreme (3M) | Spherical 0.5–1 µm |
Herkulite Flow (Kerr) | Irregular, small and big particles from 1–5 µm |
Filtek Supreme Flow (3M) | Spherical irregular 0.5–1 µm |
Filtek Flow (3M) | Spherical regular 100–200 nm bigger irregular 0.5–1 µm |
Material | C | O | Na | Al | Si | Zr | Sr | Ba | F |
---|---|---|---|---|---|---|---|---|---|
Majesty Flow | 34.98 ± 1.76 | 52.54 ± 2.83 | 0.51 ± 0.09 | 2.11 ± 0.09 | 8.02 ± 0.79 | - | - | 1.84 ± 0.58 | - |
G-aenial | 29.81 ± 0.46 | 52.47 ± 0.84 | 0.21 ± 0.08 | 2.59 ± 0.37 | 9.33 ± 0.76 | - | - | 2.13 ± 0.74 | 3.44 ± 0.34 |
Filtek Ultimate | 43.09 ± 0.3 | 47.12 ± 0.65 | - | 1.39 ± 0.09 | 6.59 ± 0.67 | 1.80 ± 0.31 | - | - | |
TPH Flow | 43.62 ± 0.50 | 45.49 ± 0.58 | - | 1.79 ± 0.21 | 4.85 ± 1.07 | - | - | - | 4.13 ± 0.25 |
Herculite | 36.35 ± 0.92 | 48.81 ± 0.21 | 0.40 ± 0.01 | 2.91 ± 0.05 | 5.48 ± 0.64 | - | - | - | 6.04 ± 0.06 |
Ceramix | 30.11 ± 3.37 | 49.65 ± 3.6 | 0.53 ± 0.19 | 2.72 ± 0.45 | 10.15 ± 3.06 | - | - | 1.45 ± 0.35 | 3.04 ± 0.49 |
Premise | 27.48 ± 1.19 | 54.35 ± 2.36 | 0.72 ± 0.07 | 2.67 ± 0.09 | 12.72 ± 1.8 | - | - | 2.04 ± 1.07 | |
TPH | 33.89 ± 0.94 | 50.78 ± 0.41 | - | 2.39 ± 0.03 | 8.02 ± 0.62 | - | - | 1.74 ± 0.7 | 3.17 ± 0.1 |
Beautifil | 29.51 ± 0.52 | 41.81 ± 0.98 | 1.39 ± 0.0 | 6.48 ± 0.44 | 5.05 ± 0.51 | - | 7.71 ± 0.74 | 8.04 ± 0.26 | |
Tetric Ceram | 26.01 ± 1.77 | 47.74 ± 1.9 | - | 4.17 ± 0.45 | 13.32 ± 1.82 | 1.13 ± 0.23 | - | 3.19 ± 1.25 | 4.41 ± 0.12 |
Omnichroma | 27.75 ± 0.66 | 54.18 ± 0.43 | 0.95 ± 0.06 | 0.64 ± 0.1 | 13.28 ± 0.72 | 3.18 ± 0.34 | - | - | - |
Harmonize | 32.13 ± 1.48 | 49.26 ± 1.19 | 0.72 ± 0.03 | 2.00 ± 0.05 | 9.85 ± 2.37 | 2.26 ± 0.56 | - | - | 3.75 ± 0.26 |
Point 4 | 27.67 ± 0.53 | 57.26 ± 1.35 | 0.46 ± 0.03 | 2.82 ± 0.01 | 10.34 ± 0.44 | - | - | 1.43 ± 0.36 | |
G-aenial Flow | 27.71 ± 0.58 | 41.12 ± 1.01 | 1.49 ± 0.09 | 6.79 ± 0.29 | 5.72 ± 0.63 | - | 8.87 ± 0.99 | - | 8.27 ± 0.38 |
Estetlite | 39.25 ± 1.06 | 54.46 ± 1.05 | 0.60 ± 0.1 | 2.62 ± 0.98 | 2.51 ± 0.64 | 0.53 ± 0.19 | - | - | - |
Filtek Plus | 26.07 ± 1.15 | 50.58 ± 3.25 | 0.27 ± 0.1 | 0.34 ± 0.07 | 15.33 ± 2.81 | 7.39 ± 1.55 | - | - | - |
Filtek Supreme | 42.90 ± 0.57 | 48.44 ± 0.48 | 0.36 ± 0.13 | 1.26 ± 0.17 | 5.49 ± 0.74 | 1.52 ± 0.25 | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alhotan, A.; Raszewski, Z.; Alamoush, R.A.; Chojnacka, K.; Mikulewicz, M.; Haider, J. Influence of Storing Composite Filling Materials in a Low-pH Artificial Saliva on Their Mechanical Properties—An In Vitro Study. J. Funct. Biomater. 2023, 14, 328. https://doi.org/10.3390/jfb14060328
Alhotan A, Raszewski Z, Alamoush RA, Chojnacka K, Mikulewicz M, Haider J. Influence of Storing Composite Filling Materials in a Low-pH Artificial Saliva on Their Mechanical Properties—An In Vitro Study. Journal of Functional Biomaterials. 2023; 14(6):328. https://doi.org/10.3390/jfb14060328
Chicago/Turabian StyleAlhotan, Abdulaziz, Zbigniew Raszewski, Rasha A. Alamoush, Katarzyna Chojnacka, Marcin Mikulewicz, and Julfikar Haider. 2023. "Influence of Storing Composite Filling Materials in a Low-pH Artificial Saliva on Their Mechanical Properties—An In Vitro Study" Journal of Functional Biomaterials 14, no. 6: 328. https://doi.org/10.3390/jfb14060328
APA StyleAlhotan, A., Raszewski, Z., Alamoush, R. A., Chojnacka, K., Mikulewicz, M., & Haider, J. (2023). Influence of Storing Composite Filling Materials in a Low-pH Artificial Saliva on Their Mechanical Properties—An In Vitro Study. Journal of Functional Biomaterials, 14(6), 328. https://doi.org/10.3390/jfb14060328