XPS Characterization of TiO2 Nanotubes Growth on the Surface of the Ti15Zr15Mo Alloy for Biomedical Applications
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Escada, A.L.A.; Machado, J.P.B.; Nakazato, R.Z.; Claro, A.P.R.A. Growth of calcium phosphate coating on Ti-7.5Mo alloy after anodic oxidation. Defect Diffus. Forum 2013, 334–335, 297–302. [Google Scholar] [CrossRef]
- Escada, A.L.; Nakazato, R.; Claro, A.P.R.A. Influence of anodization parameters in the TiO2 nanotubes formation on Ti-7.5Mo alloy surface for biomedical application. Mater. Res. 2017, 20, 1282–1290. [Google Scholar] [CrossRef] [Green Version]
- Cordeiro, J.M.; Beline, T.; Ribeiro, A.L.R.; Rangel, E.C.; da Cruz, N.C.; Landers, R.; Faverani, L.P.; Vaz, L.G.; Fais, L.M.; Vicente, F.B.; et al. Development of binary and ternary titanium alloys for dental implants. Dent. Mater. 2017, 33, 1244–1257. [Google Scholar] [CrossRef] [Green Version]
- Eisenbarth, E.; Velten, D.; Müller, M.; Thull, R.; Breme, J. Biocompatibility of β-stabilizing elements of titanium alloys. Biomaterials 2004, 25, 5705–5713. [Google Scholar] [CrossRef]
- Geetha, M.; Singh, A.; Asokamani, R.; Gogia, A. Ti based biomaterials, the ultimate choice for orthopedic implants—A review. Prog. Mater. Sci. 2009, 54, 397–425. [Google Scholar] [CrossRef]
- Vicente, F.B.; Correa, D.R.N.; Donato, T.A.G.; Arana-Chavez, V.E.; Buzalaf, M.A.R.; Grandini, C.R. The influence of small quantities of oxygen in the structure, microstructure, hardness, elasticity modulus and cytocompatibility of Ti-Zr alloys for dental applications. Materials 2014, 7, 542–553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Catalani, S.; Stea, S.; Beraudi, A.; Gilberti, M.E.; Bordini, B.; Toni, A.; Apostoli, P. Vanadium release in whole blood, serum and urine of patients implanted with a titanium alloy hip prosthesis. Clin. Toxicol. 2013, 51, 550–556. [Google Scholar] [CrossRef]
- Cordeiro, J.M.; Pantaroto, H.N.; Paschoaleto, E.M.; Rangel, E.C.; da Cruz, N.C.; Sukotjo, C.; Barão, V.A. Synthesis of biofunctional coating for a TiZr alloy: Surface, electrochemical, and biological characterizations. Appl. Surf. Sci. 2018, 452, 268–278. [Google Scholar] [CrossRef] [Green Version]
- Mirza, A.; King, A.; Troakes, C.; Exley, C. Aluminium in brain tissue in familial Alzheimer’s disease. J. Trace Elem. Med. Biol. 2017, 40, 30–36. [Google Scholar] [CrossRef] [Green Version]
- Qin, D.; Lu, Y.; Guo, D.; Zheng, L.; Liu, Q.; Zhou, L. On preparation of bimodal Ti-5Al-5V-5Mo-3Cr-0.4Si (Ti-5553s) alloy: α+β forging and heat treatment. Mater. Sci. Eng. A 2014, 609, 42–52. [Google Scholar] [CrossRef]
- Williams, D.F. On the nature of biomaterials. Biomaterials 2009, 30, 5897–5909. [Google Scholar] [CrossRef]
- Li, Y.; Yang, C.; Zhao, H.; Qu, S.; Li, X.; Li, Y. New Developments of Ti-Based Alloys for Biomedical Applications. Materials 2014, 7, 1709–1800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Correa, D.; Kuroda, P.; Grandini, C.; Rocha, L.; Oliveira, F.; Alves, A.; Toptan, F. Tribocorrosion behavior of β-type Ti-15Zr-based alloys. Mater. Lett. 2016, 179, 118–121. [Google Scholar] [CrossRef] [Green Version]
- Ikarashi, Y.; Toyoda, K.; Kobayashi, E.; Doi, H.; Yoneyama, T.; Hamanaka, H.; Tsuchiya, T. Improved biocompatibility of titanium-zirconium (Ti-Zr) alloy: Tissue reaction and sensitization to Ti-Zr alloy compared with pure Ti and Zr in rat implantation study. Nippon. Kinzoku Gakkaishi J. Jpn. Inst. Met. 2007, 71, 395–401. [Google Scholar] [CrossRef] [Green Version]
- Verissimo, N.C.; Geilich, B.M.; Oliveira, H.G.; Caram, R.; Webster, T.J. Reducing Staphylococcus aureus growth on Ti alloy nanostructured surfaces through the addition of Sn. J. Biomed. Mater. Res.-Part A 2015, 103, 3757–3763. [Google Scholar] [CrossRef] [PubMed]
- Correa, D.R.N.; Vicente, F.B.; Araújo, R.O.; Lourenço, M.L.; Kuroda, P.A.B.; Buzalaf, M.A.R.; Grandini, C.R. Effect of the substitutional elements on the microstructure of the Ti-15Mo-Zr and Ti-15Zr-Mo systems alloys. J. Mater. Res. Technol. 2015, 4, 180–185. [Google Scholar] [CrossRef] [Green Version]
- Correa, D.R.N.; Rocha, L.A.; Ribeiro, A.R.; Gemini-Piperni, S.; Archanjo, B.S.; Achete, C.A.; Hanawa, T. Growth mechanisms of Ca-and P-rich MAO films in Ti-15Zr-xMo alloys for osseointegrative implants. Surf. Coat. Technol. 2018, 344, 373–382. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.; Thouas, G. Metallic implant biomaterials. Mater. Sci. Eng. R. Rep. 2015, 87, 1–57. [Google Scholar] [CrossRef]
- Rupp, F.; Liang, L.; Geis-Gerstorfer, J.; Scheideler, L.; Hüttig, F. Surface characteristics of dental implants: A review. Dent. Mater. 2018, 34, 40–57. [Google Scholar] [CrossRef]
- Capellato, P.; Smith, B.S.; Popat, K.C.; Claro, A.P. A Fibroblast functionality on novel Ti30Ta nanotube array. Mater. Sci. Eng. C 2012, 32, 2060–2067. [Google Scholar] [CrossRef]
- Chaves, J.; Escada, A.; Rodrigues, A.; Claro, A.A. Characterization of the structure, thermal stability and wettability of the TiO2 nanotubes growth on the Ti-7.5Mo alloy surface. Appl. Surf. Sci. 2016, 370, 76–82. [Google Scholar] [CrossRef] [Green Version]
- Rangel, A.L.; Chaves, J.A.M.; Escada, A.L.; Konatu, R.T.; Popat, K.C.; Claro, A.P.R.A. Modification of the Ti15Mo alloy surface through TiO2 nanotube growth—An in vitro study. J. Appl. Biomater. Funct. Mater. 2018, 16, 222–229. [Google Scholar] [CrossRef] [Green Version]
- Seixas, M.R.; Bortolini, C.; Pereira, A.; Nakazato, R.Z.; Popat, K.C.; Claro, A.P.R.A. Development of a new quaternary alloy Ti-25Ta-25Nb-3Sn for biomedical applications. Mater. Res. Express 2018, 5, 025402. [Google Scholar] [CrossRef] [Green Version]
- Claro, A.P.R.A.; Rangel, A.; Konatu, R.; Oliveira, L.; Escada, A.; Nakazato, R. Evaluation of TiO2 nanotubes growth on Ti-Mo alloys for biomedical applications. Frontier 2016. [Google Scholar] [CrossRef]
- Konatu, R.T.; Domingues, D.D.; Escada, A.L.A.; Chaves, J.A.M.; Netipanyj, M.F.D.; Nakazato, R.Z.; Popat, K.C.; Claro, A.P.R.A. Synthesis and characterization of self-organized TiO2 nanotubes grown on Ti-15Zr alloy surface to enhance cell response. Surf. Interfaces 2021, 26, 101439. [Google Scholar] [CrossRef]
- Torrento, J.E.; Grandini, C.R.; Sousa, T.S.P.; Rocha, L.A.; Gonçalves, T.M.; Sottovia, L.; Correa, D.R.N. Bulk and surface design of MAO-treated Ti-15Zr-15Mo-Ag alloys for potential use as biofunctional implants. Mater. Lett. 2020, 269, 127661. [Google Scholar] [CrossRef]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, F.F.; Ferrandini, P.L.; Lopes, E.S.N.; Cremasco, A.; Caram, R. Ti-Mo alloys employed as biomaterials: Effects of composition and aging heat treatment on microstructure and mechanical behavior. J. Mech. Behav. Biomed. Mater. 2014, 32, 31–38. [Google Scholar] [CrossRef]
- Zhao, X.; Niinomi, M.; Nakai, M.; Hieda, J. Beta type Ti-Mo alloys with changeable Young’s modulus for spinal fixation applications. Acta Biomater. 2012, 8, 1990–1997. [Google Scholar] [CrossRef]
- Nnamchia, P.S.; Obayi, C.; Todda, I.; Rainfortha, M. Mechanical and electrochemical characterisation of new Ti–Mo–Nb–Zr alloys for biomedical applications. J. Mech. Behav. Biomed. Mater. 2016, 60, 68–77. [Google Scholar] [CrossRef]
- Niinomi, M. Mechanical biocompatibilities of titanium alloys for biomedical applications. J. Mech. Behav. Biomed. Mater. 2008, 1, 30–42. [Google Scholar] [CrossRef]
- Li, L.; Li, M.; Luo, J. Mechanism in the β phase evolution during hot deformation of Ti-5Al-2Sn-2Zr-4Mo-4Cr with a transformed microstructure. Acta Mater. 2015, 94, 36–45. [Google Scholar] [CrossRef]
- Albu, S.P.; Roy, P.; Virtanen, S.; Schmuki, P. Self-organized TiO2 Nanotube Arrays: Critical Effects on Morphology and Growth. Isr. J. Chem. 2010, 50, 453–467. [Google Scholar] [CrossRef]
- Kim, W.G.; Choe, H.C.; Ko, Y.M.; Brantley, W.A. Nanotube morphology changes for Ti-Zr alloys as Zr content increases. Thin Solid Films 2009, 517, 5033–5037. [Google Scholar] [CrossRef]
- Roy, P.; Berger, S.; Schmuki, P. TiO2 Nanotubes: Synthesis and Applications. Angew. Chem. Int. Ed. 2011, 50, 2904–2939. [Google Scholar] [CrossRef]
- Yasuda, K.; Schmuki, P. Electrochemical formation of self-organized zirconium titanate nanotube multilayers. Electrochem. Commun. 2007, 9, 615–619. [Google Scholar] [CrossRef]
- Grigorescu, S.; Ungureanu, C.; Kirchgeorg, R.; Schmuki, P.; Demetrescu, I. Various sized nanotubes on TiZr for antibacterial surfaces. Appl. Surf. Sci. 2013, 270, 190–196. [Google Scholar] [CrossRef]
- Mohan, L.; Anandan, C.; Rajendran, N. Electrochemical behavior and effect of heat treatment on morphology, crystalline structure of self-organized TiO2 nanotube arrays on Ti–6Al–7Nb for biomedical applications. Mater. Sci. Eng. C 2015, 50, 394–401. [Google Scholar] [CrossRef] [PubMed]
- Regonini, D.; Bowen, C.R.; Jaroenworaluck, A.; Stevens, R. A review of growth mechanism, structure and crystallinity of anodized TiO2 nanotubes. Mater. Sci. Eng. R. Rep. 2013, 74, 377–406. [Google Scholar] [CrossRef] [Green Version]
- Zhao, G.; Schwartz, Z.; Wieland, M.; Rupp, F.; Geis-Gerstorfer, J.; Cochran, D.L.; Boyan, B.D. High surface energy enhances cell response to titanium substrate microstructure. J. Biomed. Mater. Res.-Part A 2005, 74, 49–58. [Google Scholar] [CrossRef] [PubMed]
- Clark, D.T.; Thomas, H.R. Applications of ESCA to polymer chemistry. XVII. Systematic investigation of the core levels of simple homopolymers. J. Polym. Sci. Polym. Chem. Ed. 1978, 16, 791–820. [Google Scholar] [CrossRef]
- Schmieg, S.J.; Belton, D.N. Polycrystalline Diamond Film on Si(100) by XPS. Surf. Sci. Spectra. 1992, 1, 329–332. [Google Scholar] [CrossRef]
- Bournel, F.; Laffon, C.; Parent, P.; Tourillon, G. Adsorption of some substituted ethylene molecules on Pt (111) at 95 K Part 1: NEXAFS, XPS and UPS studies. Surf. Sci. 1996, 350, 60–78. [Google Scholar] [CrossRef]
- Doren, A.; Genet, M.J.; Rouxhet, P.G. Analysis of poly (ethylene terephthalate)(PET) by XPS. Surf. Sci. Spectra. 1994, 3, 337–341. [Google Scholar] [CrossRef]
- Jones, C.; Sammann, E. The effect of low power plasmas on carbon fibre surfaces. Carbon 1990, 28, 509–514. [Google Scholar] [CrossRef]
- Barr, T.L. An ESCA study of the termination of the passivation of elemental metals. J. Phys. Chem. 1978, 82, 1801–1810. [Google Scholar] [CrossRef]
- Carley, A.F.; Roberts, M.W. An X-ray Photoelectron Spectroscopic Study of the Interaction of Oxygen and Nitric Oxide with Aluminium. Proc. R. Soc. Lond. Ser. Math. Phys. Sci. 1978, 363, 403–424. [Google Scholar]
- Gruenert, W.; Stakheev, A.Y.; Feldhaus, R.; Anders, K.; Shpiro, E.S.; Minachev, K.M. Analysis of molybdenum(3d) XPS spectra of supported molybdenum catalysts: An alternative approach. J. Phys. Chem. 1991, 95, 1323–1328. [Google Scholar] [CrossRef]
- Noda, H.; Oikawa, K.; Kamada, H. ESR Study of Active Oxygen Radicals from Photoexcited Semiconductors Using the Spin-Trapping Technique. Bull. Chem. Soc. Jpn. 1992, 65, 2505–2509. [Google Scholar] [CrossRef]
- Hanawa, T.; Ota, M. Calcium phosphate naturally formed on titanium in electrolyte solution. Biomaterials 1991, 12, 767–774. [Google Scholar] [CrossRef]
- Rats, D.; Vandenbulcke, L.; Herbin, R.; Benoit, R.; Erre, R.; Serin, V.; Sevely, J. Characterization of diamond films deposited on titanium and its alloys. Thin Solid Films 1995, 270, 177–183. [Google Scholar] [CrossRef]
- Beccaria, A.M.; Poggi, G.; Castello, G. Influence of passive film composition and sea water pressure on resistance to localised corrosion of some stainless steels in sea water. Br. Corros. J. 1995, 30, 283–287. [Google Scholar] [CrossRef]
- Pashutski, A.; Hoffman, A.; Folman, M. Low temperature XPS and AES studies of O2 adsorption on Al (100). Surf. Sci. Lett. 1989, 208, L91–L97. [Google Scholar]
- Anderson, C.R.; Lee, R.N.; Morar, J.F.; Park, R.L. Comparison of APS and FRESCA core level binding energy measurements. J. Vac. Sci. Technol. 1982, 20, 617–621. [Google Scholar] [CrossRef]
- Callen, B.W.; Lowenberg, B.F.; Lugowski, S.; Sodhi, R.N.S.; Davies, J.E. Nitric acid passivation of Ti6A14V reduces thickness of surface oxide layer and increases trace element release. J. Biomed. Mater. Res. 1995, 29, 279–290. [Google Scholar] [CrossRef] [PubMed]
- Kuznetsov, M.V.; Zhuravlev, J.F.; Gubanov, V.A. XPS analysis of adsorption of oxygen molecules on the surface of Ti and TiNx films in vacuum. J. Electron Spectrosc. Relat. Phenom. 1992, 58, 169–176. [Google Scholar] [CrossRef]
- Ramqvist, L.; Hamrin, K.; Johansson, G.; Fahlman, A.; Nordling, C. Charge transfer in transition metal carbides and related compounds studied by ESCA. J. Phys. Chem. Solids. 1969, 30, 1835–1847. [Google Scholar] [CrossRef]
- Perry, S.S.; Ager, J.W.; Somorjai, G.A.; McClelland, R.J.; Drory, M.D. Interface characterization of chemically vapor deposited diamond on titanium and Ti-6Al-4V. J. Appl. Phys. 1993, 74, 7542–7550. [Google Scholar] [CrossRef]
- Okazaki, Y.; Tateishi, T.; Ito, Y. Corrosion Resistance of Implant Alloys in Pseudo Physiological Solution and Role of Alloying Elements in Passive Films. Mater. Trans. JIM 1997, 38, 78–84. [Google Scholar] [CrossRef] [Green Version]
- Silverstein, J.; Barreto, O.; Franca, R. Miniscrews for orthodontic anchorage: Nanoscale chemical surface analyses. Eur. J. Orthod. 2016, 38, 146–153. [Google Scholar] [CrossRef] [Green Version]
- Matsko, A.; Shaker, N.; Fernandes, A.; Haimeur, A.; França, R. Nanoscale Chemical Surface Analyses of Recycled Powder for Direct Metal Powder Bed Fusion Ti-6Al-4V Root Analog Dental Implant: An X-ray Photoelectron Spectroscopy Study. Bioengineering 2023, 10, 379. [Google Scholar] [CrossRef] [PubMed]
- Manakhov, A.; Permyakova, E.S.; Ershov, S.; Sheveyko, A.; Kovalskii, A.; Polčák, J.; Zhitnyak, I.Y.; Gloushankova, N.A.; Zajíčková, L.; Shtansky, D.V. Bioactive TiCaPCON-coated PCL nanofibers as a promising material for bone tissue engineering. Appl. Surf. Sci. 2019, 479, 796–802. [Google Scholar] [CrossRef]
- Briggs, D. Handbook of X-ray Photoelectron Spectroscopy C. D. Wanger, W. M. Riggs, L. E. Davis, J. F. Moulder and G. E.Muilenberg Perkin-Elmer Corp; Physical Electronics Division: Eden Prairie, MN, USA, 1979; Volume 3, p. v. [Google Scholar] [CrossRef]
- Jerome, R.; Teyssie, P.; Pireaux, J.J.; Verbist, J.J. Surface analysis of polymers end-capped with metal carboxylates using X-ray photoelectron spectroscopy. Appl. Surf. Sci. 1986, 27, 93–105. [Google Scholar] [CrossRef]
- Sinha, S.; Badrinarayanan, S.; Sinha, A.P.B. Interaction of oxygen with Zr76Fe24 metglass: An X-ray photoelectron spectroscopy study. J. Common Met. 1986, 125, 85–95. [Google Scholar] [CrossRef]
- Chastain, J.; King, R.C.; Moulder, J. Handbook of X-ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data; Physical Electronics Division, Perkin-Elmer Corporation: Eden Prairie, MN, USA, 1992. [Google Scholar]
- Marcus, P.; Olefjord, I. Round Robin on combined electrochemical and AES/ESCA characterization of the passive films on Fe-Cr and Fe-Cr-Mo alloys. Surf. Interface Anal. 1988, 11, 569–576. [Google Scholar] [CrossRef]
- DeVries, J.E.; Yao, H.C.; Baird, R.J.; Gandhi, H.S. Characterization of molybdenum-platinum catalysts supported on γ-alumina by X-ray photoelectron spectroscopy. J. Catal. 1983, 84, 8–14. [Google Scholar] [CrossRef]
- Clayton, C.R.; Lu, Y.C. A Bipolar Model of the Passivity of Stainless Steel: The Role of Mo Addition. J. Electrochem. Soc. 1986, 133, 2465–2473. [Google Scholar] [CrossRef]
- Olefjord, I.; Brox, B.; Jelvestam, U. Surface Composition of Stainless Steels during Anodic Dissolution and Passivation Studied by ESCA. J. Electrochem. Soc. 1985, 132, 2854–2861. [Google Scholar] [CrossRef]
- Anwar, M.; Hogarth, C.A.; Bulpett, R. Effect of substrate temperature and film thickness on the surface structure of some thin amorphous films of MoO3 studied by X-ray photoelectron spectroscopy (ESCA). J. Mater. Sci. 1989, 24, 3087–3090. [Google Scholar] [CrossRef]
Mean Diameter [nm] | Mean Thickness [nm] | |||
---|---|---|---|---|
20 V | 30 V | 20 V | 30 V | |
6 h | 75.5 ± 13 | 116.3 ± 32 | 340.0 ± 38 | 755.2 ± 151 |
24 h | 77.6 ± 13 | 121.9 ± 35 | 355.5 ± 30 | 1294.2 ± 193 |
Attribution | Position | 0 s | Alloy 75 s | 750 s | 0 s | NTS 75 s | 750 s | Citation |
---|---|---|---|---|---|---|---|---|
C 1s | [eV] | [%at] | [%at] | [%at] | [%at] | [%at] | [%at] | |
C-C, C-H | 285.00 | 66.2 | 66.4 | 65.5 | 79.4 | 76.6 | 85.1 | [41,42] |
C-O | 286.16 | 15.3 | 12.9 | 10.2 | 14.7 | 12.9 | 7.9 | [42,43] |
C= | 287.51 | 1.0 | 2.0 | 0.7 | 3.4 | 6.5 | 4.4 | [43] |
O-C=O | 288.72 | 4.0 | 2.0 | 1.8 | 2.5 | 4 | 2.5 | [44,45] |
C-C, C-H | 285.00 | 2.1 | 1.0 | 0.7 | 79.4 | 76.6 | 85.1 | [41,42] |
O 1s | ||||||||
Oxide | 530.61 | 45.6 | 24.5 | 21.7 | 58.3 | 40.6 | 40 | [46,47,48,49] |
TiO2 | 531.00 | 33.1 | 70.5 | 75.8 | 41 | 58 | 57.1 | [50,51] |
OH- | 532.33 | 21.3 | 5 | 2.5 | 0.7 | 1.2 | 2.7 | [52,53] |
Ti 2p3/2 | ||||||||
Ti(Metallic) | 453.53 | 4.4 | 65.5 | 68.4 | 0.5 | 2.2 | 1.7 | [54,55,56,57,58] |
Ti(II) | 455.73 | 55.8 | 15.6 | 14.6 | 4.2 | 15.2 | 42.7 | [56,58] |
Ti(III) | 457.41 | 19.7 | 8.4 | 8.4 | 1.5 | 34.5 | 21.8 | [55,59,60] |
TiO2 | 458.70 | 20 | 10.4 | 8.5 | 93.8 | 48 | 33.7 | [57,61,62] |
Zr 3d5/2 | ||||||||
Zr (Metallic) | 178.90 | 17.3 | 51.6 | 61.7 | 0 | 0 | 0 | [63] |
ZrO | 182.29 | 55.8 | 15.5 | 14.6 | 81.8 | 33.4 | 83.4 | [46,64] |
ZrO2 | 182.90 | 19.7 | 8.4 | 8.4 | 18.2 | 66.6 | 16.5 | [59,65] |
Mo 3d5/2 | ||||||||
Mo (Metallic) | 226.81 | 32.3 | 41.2 | 31.4 | 0 | 52.9 | 73.6 | [66,67] |
MoO2 | 228.91 | 42.8 | 44.4 | 47.8 | 0 | 25.9 | 11.3 | [66,68] |
MoO3 | 234.32 | 24.9 | 14.4 | 20.7 | 90.8 | 10.9 | 8.7 | [69,70] |
Mo2O5 | 232.32 | 0 | 0 | 0 | 9.2 | 10.2 | 6.4 | [71] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Konatu, R.T.; Domingues, D.D.; França, R.; Alves, A.P.R. XPS Characterization of TiO2 Nanotubes Growth on the Surface of the Ti15Zr15Mo Alloy for Biomedical Applications. J. Funct. Biomater. 2023, 14, 353. https://doi.org/10.3390/jfb14070353
Konatu RT, Domingues DD, França R, Alves APR. XPS Characterization of TiO2 Nanotubes Growth on the Surface of the Ti15Zr15Mo Alloy for Biomedical Applications. Journal of Functional Biomaterials. 2023; 14(7):353. https://doi.org/10.3390/jfb14070353
Chicago/Turabian StyleKonatu, Reginaldo Toshihiro, Danielle Duque Domingues, Rodrigo França, and Ana Paula Rosifini Alves. 2023. "XPS Characterization of TiO2 Nanotubes Growth on the Surface of the Ti15Zr15Mo Alloy for Biomedical Applications" Journal of Functional Biomaterials 14, no. 7: 353. https://doi.org/10.3390/jfb14070353
APA StyleKonatu, R. T., Domingues, D. D., França, R., & Alves, A. P. R. (2023). XPS Characterization of TiO2 Nanotubes Growth on the Surface of the Ti15Zr15Mo Alloy for Biomedical Applications. Journal of Functional Biomaterials, 14(7), 353. https://doi.org/10.3390/jfb14070353