Unveiling the Potential of Rice Straw Nanofiber-Reinforced HDPE for Biomedical Applications: Investigating Mechanical and Tribological Characteristics
Abstract
1. Introduction
2. Experimental Work
2.1. Nanocomposite Preparation
2.2. Characterization and Testing
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sydow, Z.; Sydow, M.; Wojciechowski, Ł.; Bieńczak, K. Tribological performance of composites reinforced with the agricultural, industrial and post-consumer wastes: A review. Materials 2021, 14, 1863. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Yu, J.; Zhang, Z.; Lu, C. Study on structure and thermal stability properties of cellulose fibers from rice straw. Carbohydr. Polym. 2011, 85, 245–250. [Google Scholar] [CrossRef]
- Hassan, M.; Berglund, L.; Hassan, E.; Abou-Zeid, R.; Oksman, K. Effect of xylanase pretreatment of rice straw unbleached soda and neutral sulfite pulps on isolation of nanofibers and their properties. Cellulose 2018, 25, 2939–2953. [Google Scholar] [CrossRef]
- Taha, M.; Hassan, M.; Dewidare, M.; Kamel, M.A.; Ali, W.Y.; Dufresne, A. Evaluation of eco-friendly cellulose and lignocellulose nanofibers from rice straw using Multiple Quality Index. Egypt. J. Chem. 2021, 64, 4707–4717. [Google Scholar] [CrossRef]
- Nabhan, A.; Ameer, A.K.; Rashed, A. Tribological and Mechanical Properties of HDPE Reinforced by Al2O3 Nanoparticles for Bearing Materials. Int. J. Adv. Sci. Technol. 2019, 28, 481–489. [Google Scholar]
- Patil, N.A.; Njuguna, J.; Kandasubramanian, B. UHMWPE for biomedical applications: Performance and functionalization. Eur. Polym. J. 2020, 125, 109529. [Google Scholar] [CrossRef]
- Dowson, D. The History of Tribology in America. 1981. Available online: https://asmedigitalcollection.asme.org/tribology/article-abstract/103/3/323/411403/The-History-of-Tribology-in-America?redirectedFrom=fulltext (accessed on 9 July 2023).
- Di Puccio, F.; Mattei, L. Biotribology of artificial hip joints. World J. Orthop. 2015, 6, 77. [Google Scholar] [CrossRef]
- Yousif, B.F.; Lau, S.T.W.; McWilliam, S. Polyester composite based on betelnut fibre for tribological applications. Tribol. Int. 2010, 43, 503–511. [Google Scholar] [CrossRef]
- Rajkumar, K.; Sirisha, P.; Sankar, M.R. Tribomechanical and Surface Topographical Investigations of Poly Methyl Methacrylate-Seashell Particle based Biocomposite. Procedia Mater. Sci. 2014, 5, 1248–1257. [Google Scholar] [CrossRef]
- Fouly, A.; Nabhan, A.; Badran, A. Mechanical and Tribological Characteristics of PMMA Reinforced by Natural Materials. Egypt. J. Chem. 2022, 65, 543–553. [Google Scholar] [CrossRef]
- Gu, D.; Wang, S.; Zhang, J.; Liu, K.; Chen, S.; Chen, X.; Wang, Z.; Liu, J. Improved Tribological Properties of Poly (methyl methacrylate) Based Composites by the Synergistic Effect of Incorporating Ultra-High Molecular Weight Polyethylene and Heat Treatment. J. Mater. Eng. Perform. 2022, 31, 5898–5905. [Google Scholar] [CrossRef]
- Emre, G.; Akkus, A.; Karamış, M.B. Wear resistance of polymethyl methacrylate (PMMA) with the addition of bone ash, hydroxylapatite and keratin. IOP Conf. Ser. Mater. Sci. Eng. 2018, 295, 12004. [Google Scholar] [CrossRef]
- Gallab, M.; Taha, M.; Rashed, A.; Nabhan, A. Effect of Low Content of Al2O3 Nanoparticles on the Mechanical and Tribological Properties of Polymethyl Methacrylate as a Denture Base Material. Egypt. J. Chem. 2022, 65, 1–9. [Google Scholar] [CrossRef]
- Rashed, A.; Nabhan, A. Influence of adding nano graphene and hybrid SiO2-TiO2 nano particles on tribological characteristics of polymethyl methacrylate (PMMA). KGK-Kautsch. Gummi Kunststoffe 2018, 71, 32–37. [Google Scholar]
- Nabhan, A.; Taha, M.; Ghazaly, N.M. Filler loading effect of Al2O3/TiO2 nanoparticles on physical and mechanical characteristics of dental base composite (PMMA). Polym. Test. 2023, 117, 107848. [Google Scholar] [CrossRef]
- Dubey, U.; Kesarwani, S.; Verma, R.K. Incorporation of graphene nanoplatelets/hydroxyapatite in PMMA bone cement for characterization and enhanced mechanical properties of biopolymer composites. J. Thermoplast. Compos. Mater. 2022, 36, 1978–2008. [Google Scholar] [CrossRef]
- Sharma, V.; Gupta, R.K.; Kailas, S.V.; Basu, B. Probing lubricated sliding wear properties of HDPE/UHMWPE hybrid bionanocomposite. J. Biomater. Appl. 2022, 37, 204–218. [Google Scholar] [CrossRef] [PubMed]
- Salem, A.; Guezmil, M.; Bensalah, W.; Mezlini, S. Tribocorrosion behavior of 316 L and HDPE composites for orthopedic application. Mater. Today Commun. 2022, 31, 103582. [Google Scholar] [CrossRef]
- Chin, C.W.; Yousif, B.F. Potential of kenaf fibres as reinforcement for tribological applications. Wear 2009, 267, 1550–1557. [Google Scholar] [CrossRef]
- Shuhimi, F.F.; Abdollah, M.F.B.; Kalam, M.A.; Hassan, M.; Amiruddin, H. Tribological characteristics comparison for oil palm fibre/epoxy and kenaf fibre/epoxy composites under dry sliding conditions. Tribol. Int. 2016, 101, 247–254. [Google Scholar] [CrossRef]
- Elshemy, E.A.; Showaib, E.A. Effect of Filler Loading on Erosive Characteristics of Epoxy/SiO2 Coatings. Solid State Technol. 2020, 63, 7824–7833. [Google Scholar]
- Nirmal, U.; Hashim, J.; Low, K.O. Adhesive wear and frictional performance of bamboo fibres reinforced epoxy composite. Tribol. Int. 2012, 47, 122–133. [Google Scholar] [CrossRef]
- Kulkarni, D.; Musale, S.; Panzade, P.; Paiva-Santos, A.C.; Sonwane, P.; Madibone, M.; Choundhe, P.; Giram, P.; Cavalu, S. Surface functionalization of nanofibers: The multifaceted approach for advanced biomedical applications. Nanomaterials 2022, 12, 3899. [Google Scholar] [CrossRef]
- Chand, N.; Dwivedi, U.K. Effect of coupling agent on abrasive wear behaviour of chopped jute fibre-reinforced polypropylene composites. Wear 2006, 261, 1057–1063. [Google Scholar] [CrossRef]
- Browning, B.L. Methods of Wood Chemistry. Volumes I & II; John Wiley & Sons: New York, NY, USA, 1967. [Google Scholar]
- Sato, A.; Kabusaki, D.; Okumura, H.; Nakatani, T.; Nakatsubo, F.; Yano, H. Surface modification of cellulose nanofibers with alkenyl succinic anhydride for high-density polyethylene reinforcement. Compos. Part A Appl. Sci. Manuf. 2016, 83, 72–79. [Google Scholar] [CrossRef]
- Hassan, M.L.; Mathew, A.P.; Hassan, E.A.; Fadel, S.M.; Oksman, K. Improving cellulose/polypropylene nanocomposites properties with chemical modified bagasse nanofibers and maleated polypropylene. J. Reinf. Plast. Compos. 2014, 33, 26–36. [Google Scholar] [CrossRef]
- Patnaik, P. Dean’s Analytical Chemistry Handbook; McGraw-Hill Education: Singapore, 2004. [Google Scholar]
- Hassan, M.L.; Mathew, A.P.; Hassan, E.A.; El-Wakil, N.A.; Oksman, K. Nanofibers from bagasse and rice straw: Process optimization and properties. Wood Sci. Technol. 2012, 46, 193–205. [Google Scholar] [CrossRef]
- Lengowski, E.C.; de Muñiz, G.I.B.; de Andrade, A.S.; Simon, L.C.; Nisgoski, S. Caracterização morfológica, física e térmica de celuloses microfibriladas. Rev. Árvore 2018, 42. Available online: https://www.scielo.br/j/rarv/a/W6gmFfKNWSGxhzz5kt6pCDR/?format=pdf&lang=en (accessed on 9 July 2023).
- Sjostrom, E. Wood Chemistry: Fundamentals and Applications; Gulf Professional Publishing: Houston, TX, USA, 1993. [Google Scholar]
- Kawamoto, H.; Watanabe, T.; Saka, S. Strong interactions during lignin pyrolysis in wood–a study by in situ probing of the radical chain reactions using model dimers. J. Anal. Appl. Pyrolysis 2015, 113, 630–637. [Google Scholar] [CrossRef]
- An, L.; Shao, Z.; Armstrong, J.N.; Huang, Y.; Hu, Y.; Li, Z.; Faghihi, D.; Ren, S. Hierarchical structural engineering of ultrahigh-molecular-weight polyethylene. ACS Appl. Mater. Interfaces 2020, 12, 50024–50032. [Google Scholar] [CrossRef]
- Pennells, J.; Godwin, I.D.; Amiralian, N.; Martin, D.J. Trends in the production of cellulose nanofibers from non-wood sources. Cellulose 2020, 27, 575–593. [Google Scholar] [CrossRef]
- Yasim-Anuar, T.A.T.; Ariffin, H.; Norrrahim, M.N.F.; Hassan, M.A.; Tsukegi, T.; Nishida, H. Sustainable one-pot process for the production of cellulose nanofiber and polyethylene/cellulose nanofiber composites. J. Clean. Prod. 2019, 207, 590–599. [Google Scholar] [CrossRef]
- Mannan, T.M.; Soares, J.B.P.; Berry, R.M.; Hamad, W.Y. In-situ production of polyethylene/cellulose nanocrystal composites. Can. J. Chem. Eng. 2016, 94, 2107–2113. [Google Scholar] [CrossRef]
- Yang, X.; Biswas, S.K.; Han, J.; Tanpichai, S.; Li, M.C.; Chen, C.; Zhu, S.; Das, A.K.; Yano, H. Surface and interface engineering for nanocellulosic advanced materials. Adv. Mater. 2021, 33, 2002264. [Google Scholar] [CrossRef] [PubMed]
- Amini, E.; Hafez, I.; Tajvidi, M.; Bousfield, D.W. Cellulose and lignocellulose nanofibril suspensions and films: A comparison. Carbohydr. Polym. 2020, 250, 117011. [Google Scholar] [CrossRef]
- Rodrigues, M.M.; Baldin, E.K.K.; Fontoura, C.P.; Leidens, L.M.; Barbieri, R.A.; Frassini, R.; de Fraga Malfatti, C.; Roesch-Ely, M.; Figueroa, C.A.; Aguzzoli, C. Correction: Overview of sterilization methods for UHMWPE through surface analysis. Mater. Adv. 2020, 1, 3606. [Google Scholar] [CrossRef]
- Rocha, D.B.; Rosa, D.D.S. Coupling effect of starch coated fibers for recycled polymer/wood composites. Compos. Part B Eng. 2019, 172, 1–8. [Google Scholar] [CrossRef]
- Guo, H.; Xu, T.; Zhou, S.; Jiang, F.; Jin, L.; Song, N.; Ding, P. A technique engineered for improving thermal conductive properties of polyamide-6 composites via hydroxylated boron nitride masterbatch-based melt blending. Compos. Part B Eng. 2021, 212, 108716. [Google Scholar] [CrossRef]
- Mariano, M.; El Kissi, N.; Dufresne, A. Melt processing of cellulose nanocrystal reinforced polycarbonate from a masterbatch process. Eur. Polym. J. 2015, 69, 208–223. [Google Scholar] [CrossRef]
- Wang, S.; Feng, Q.; Sun, J.; Gao, F.; Fan, W.; Zhang, Z.; Li, X.; Jiang, X. Nanocrystalline cellulose improves the biocompatibility and reduces the wear debris of ultrahigh molecular weight polyethylene via weak binding. ACS Nano 2016, 10, 298–306. [Google Scholar] [CrossRef]
- Hwang, H.J.; Jung, S.L.; Cho, K.H.; Kim, Y.J.; Jang, H. Tribological performance of brake friction materials containing carbon nanotubes. Wear 2010, 268, 519–525. [Google Scholar] [CrossRef]
- Alamri, H.; Low, I.M. Microstructural, mechanical, and thermal characteristics of recycled cellulose fiber-halloysite-epoxy hybrid nanocomposites. Polym. Compos. 2012, 33, 589–600. [Google Scholar] [CrossRef]
- Sharip, N.S.; Ariffin, H.; Yasim-Anuar, T.A.T.; Andou, Y.; Shirosaki, Y.; Jawaid, M.; Tahir, P.M.; Ibrahim, N.A. Melt-vs. non-melt blending of complexly processable ultra-high molecular weight polyethylene/cellulose nanofiber bionanocomposite. Polymers 2021, 13, 404. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, Y.; Zhang, P.; Jian, G.; Luo, H.; Yu, X. UHMWPE Modified by Halogenating Reagents: Study on the Improvement of Hydrophilicity and Tribological Properties. Tribol. Trans. 2022, 65, 193–209. [Google Scholar] [CrossRef]
- El-Wakil, N.A.; Kassem, N.F.; Hassan, M.L. Hydroxypropyl cellulose/rice straw oxidized cellulose nanocrystals nanocomposites and their use in paper coating. Ind. Crops Prod. 2016, 93, 186–192. [Google Scholar] [CrossRef]
- Shi, G.; Cao, Z.; Yan, X.; Wang, Q. In-situ fabrication of a UHMWPE nanocomposite reinforced by SiO2 nanospheres and its tribological performance. Mater. Chem. Phys. 2019, 236, 121778. [Google Scholar] [CrossRef]
Injection-Molding Conditions | |
---|---|
Injection temperature | 200 °C |
Mold temperature | 65 °C |
Injection speed (velocity) | 100 rpm |
Injection time | 15 s |
Hold time | 9 s |
Hold pressure | 550 bar |
Load (N) | Friction Coefficient (%) | Wear (%) | ||||||
---|---|---|---|---|---|---|---|---|
HDPE-01 | HDPE-02 | HDPE-03 | HDPE-04 | HDPE-01 | HDPE-02 | HDPE-03 | HDPE-04 | |
2 | 3.8 | 3 | 8.5 | 11.3 | 12.5 | 12.5 | 25 | 37.5 |
4 | 2.2 | 0.5 | 8.7 | 17.3 | 20 | 10 | 30 | 50 |
6 | 5 | 2 | 11.5 | 19 | 25 | 25 | 33.3 | 50 |
8 | 2.013 | 5.4 | 17.4 | 19 | 40 | 46.7 | 46.7 | 60 |
10 | 1.1 | 4 | 11 | 18.2 | 20 | 40 | 46.7 | 53.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taha, M.; Fouly, A.; Abdo, H.S.; Alnaser, I.A.; Abouzeid, R.; Nabhan, A. Unveiling the Potential of Rice Straw Nanofiber-Reinforced HDPE for Biomedical Applications: Investigating Mechanical and Tribological Characteristics. J. Funct. Biomater. 2023, 14, 366. https://doi.org/10.3390/jfb14070366
Taha M, Fouly A, Abdo HS, Alnaser IA, Abouzeid R, Nabhan A. Unveiling the Potential of Rice Straw Nanofiber-Reinforced HDPE for Biomedical Applications: Investigating Mechanical and Tribological Characteristics. Journal of Functional Biomaterials. 2023; 14(7):366. https://doi.org/10.3390/jfb14070366
Chicago/Turabian StyleTaha, Mohamed, Ahmed Fouly, Hany S. Abdo, Ibrahim A. Alnaser, Ragab Abouzeid, and Ahmed Nabhan. 2023. "Unveiling the Potential of Rice Straw Nanofiber-Reinforced HDPE for Biomedical Applications: Investigating Mechanical and Tribological Characteristics" Journal of Functional Biomaterials 14, no. 7: 366. https://doi.org/10.3390/jfb14070366
APA StyleTaha, M., Fouly, A., Abdo, H. S., Alnaser, I. A., Abouzeid, R., & Nabhan, A. (2023). Unveiling the Potential of Rice Straw Nanofiber-Reinforced HDPE for Biomedical Applications: Investigating Mechanical and Tribological Characteristics. Journal of Functional Biomaterials, 14(7), 366. https://doi.org/10.3390/jfb14070366