Gas-Foamed Scaffold Gradients for Combinatorial Screening in 3D
Abstract
:1. Introduction
2. Experimental Section
2.1. Fabrication of Gas-Foamed Gradient Scaffolds
2.2. Characterization of Gradient Scaffolds
3. Results
4. Discussion
5. Conclusions
Acknowledgments
References
- Simon, C.G.; Yang, Y.; Thomas, V.; Dorsey, S.M.; Morgan, A.W. Cell interactions with biomaterials gradients and arrays. Comb. Chem. High T. Scr. 2009, 12, 544–553. [Google Scholar]
- Simon, C.G., Jr; Lin-Gibson, S. Combinatorial and high-throughput screening of biomaterials. Adv. Mater. 2011, 23, 369–387. [Google Scholar] [CrossRef]
- Meredith, J.C.; Sormana, J.L.; Keselowsky, B.G.; Garcia, A.J.; Tona, A.; Karim, A.; Amis, E.J. Combinatorial characterization of cell interactions with polymer surfaces. J. Biomed. Mater. Res. 2003, 66A, 483–490. [Google Scholar] [CrossRef]
- Lin, N.J.; Lin-Gibson, S. Osteoblast response to dimethacrylate composites varying in composition, conversion and roughness using a combinatorial approach. Biomaterials 2009, 30, 4480–4487. [Google Scholar] [CrossRef]
- Yang, J.; Rose, F.R.A.J.; Gadegaard, N.; Alexander, M.R. A high-throughput assay of cell-surface interactions using topographical and chemical gradients. Adv. Mater. 2009, 21, 300–304. [Google Scholar] [CrossRef]
- Mei, Y.; Saha, K.; Bogatyrev, S.R.; Yang, J.; Hook, A.L.; Kalcioglu, Z.I.; Cho, S.W.; Mitalipova, M.; Pyzocha, N.; Rojas, F.; et al. Combinatorial development of biomaterials for clonal growth of human pluripotent stem cells. Nat. Mater. 2010, 9, 768–778. [Google Scholar] [CrossRef] [Green Version]
- Unadkat, H.V.; Hulsman, M.; Cornelissen, K.; Papenburg, B.J.; Truckenmuller, R.K.; Post, G.F.; Uetz, M.; Reinders, M.J.; Stamatialis, D.; van Blitterswijk, C.A.; et al. An algorithm-based topographical biomaterials library to instruct cell fate. Proc. Natl. Acad. Sci. USA 2011, 108, 16565–16570. [Google Scholar] [CrossRef]
- Place, E.S.; Evans, N.D.; Stevens, M.M. Complexity in biomaterials for tissue engineering. Nat. Mater. 2009, 8, 457–470. [Google Scholar] [CrossRef]
- Dalby, M.J.; Gadegaard, N.; Tare, R.; Andar, A.; Riehle, M.O.; Herzyk, P.; Wilkinson, C.D.; Oreffo, R.O. The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder. Nat. Mater. 2007, 6, 997–1003. [Google Scholar] [CrossRef]
- Kumar, G.; Tison, C.K.; Chatterjee, K.; Pine, P.S.; McDaniel, J.H.; Salit, M.L.; Young, M.F.; Simon, C.G., Jr. The determination of stem cell fate by 3D scaffold structures through the control of cell shape. Biomaterials 2011, 32, 9188–9196. [Google Scholar] [CrossRef]
- Hall, H.G.; Farson, D.A.; Bissell, M.J. lumen formation by epithelial-cell lines in response to collagen overlay—A morphogenetic model in culture. Proc. Natl. Acad. Sci. USA 1982, 79, 4672–4676. [Google Scholar] [CrossRef]
- Abbott, A. Cell culture: Biology’s new dimension. Nature 2003, 424, 870–872. [Google Scholar] [CrossRef]
- Griffith, L.G.; Swartz, M.A. Capturing complex 3D tissue physiology in vitro. Nat. Rev. Mol. Cell Biol. 2006, 7, 211–224. [Google Scholar] [CrossRef]
- Yang, Y.; Bolikal, D.; Becker, M.L.; Kohn, J.; Zeiger, D.N.; Simon, C.G., Jr. Combinatorial polymer scaffold libraries for screening cell-biomaterial interactions in 3D. Adv. Mater. 2008, 20, 2037–2043. [Google Scholar] [CrossRef]
- Chatterjee, K.; Lin-Gibson, S.; Wallace, W.E.; Parekh, S.H.; Lee, Y.J.; Cicerone, M.T.; Young, M.F.; Simon, C.G., Jr. The effect of 3D hydrogel scaffold modulus on osteoblast differentiation and mineralization revealed by combinatorial screening. Biomaterials 2010, 31, 5051–5062. [Google Scholar] [CrossRef]
- Chatterjee, K.; Young, M.F.; Simon, C.G., Jr. Fabricating gradient hydrogel scaffolds for 3D cell culture. Comb. Chem. High T. Scr. 2010, 14, 227–236. [Google Scholar]
- Yang, F.; Cho, S.W.; Son, S.M.; Hudson, S.P.; Bogatyrev, S.; Keung, L.; Kohane, D.S.; Langer, R.; Anderson, D.G. Combinatorial extracellular matrices for human embryonic stem cell differentiation in 3D. Biomacromolecules 2010, 11, 1909–1914. [Google Scholar] [CrossRef]
- Chatterjee, K.; Sun, L.; Chow, L.C.; Young, M.F.; Simon, C.G., Jr. Combinatorial screening of osteoblast response to 3D calcium phosphate/poly(epsilon-caprolactone) scaffolds using gradients and arrays. Biomaterials 2011, 32, 1361–1369. [Google Scholar] [CrossRef]
- Simon, Jr., C.G.; Stephens, J.S.; Dorsey, S.M.; Becker, M.L. Fabrication of combinatorial polymer scaffold libraries. Rev. Sci. Instrum. 2007, 78, 0722071–072207. [Google Scholar]
- Yang, Y.; Dorsey, S.M.; Becker, M.L.; Lin-Gibson, S.; Schumacher, G.E.; Flaim, G.A.; Kohn, J.C.; Simon, C.G., Jr. X-ray imaging optimization of 3D tissue engineering scaffolds via combinatorial fabrication methods. Biomaterials 2008, 29, 1901–1911. [Google Scholar] [CrossRef]
- Harris, L.D.; Kim, B.S.; Mooney, D.J. Open pore biodegradable matrices formed with gas foaming. J. Biomed. Mater. Res. 1998, 42, 396–402. [Google Scholar] [CrossRef]
- Nam, Y.S.; Yoon, J.J.; Park, T.G. A novel fabrication method of macroporous biodegradable polymer scaffolds using gas foaming salt as a porogen additive. J. Biomed. Mater. Res. 2000, 53, 1–7. [Google Scholar] [CrossRef]
- Shea, L.D.; Wang, D.; Franceschi, R.T.; Mooney, D.J. Engineered bone development from a pre-osteoblast cell line on three-dimensional scaffolds. Tiss. Eng. 2000, 6, 605–617. [Google Scholar] [CrossRef]
- Salerno, A.; Zeppetelli, S.; Di, M.E.; Iannace, S.; Netti, P.A. Processing/structure/property relationship of multi-scaled PCL and PCL-HA composite scaffolds prepared via gas foaming and NaCl reverse templating. Biotechnol. Bioeng. 2011, 108, 963–976. [Google Scholar] [CrossRef]
- Kohn, J. Implants: The biodegradable future. Med. Device Dev. 2006, February, 35–36. [Google Scholar]
- Kim, J.; Magno, M.H.; Alvarez, P.; Darr, A.; Kohn, J.; Hollinger, J.O. Osteogenic differentiation of pre-osteoblasts on biomimetic tyrosine-derived polycarbonate scaffolds. Biomacromolecules 2011, 12, 3520–3527. [Google Scholar] [CrossRef]
- Ertel, S.I.; Kohn, J. Evaluation of a series of tyrosine-derived polycarbonates as degradable biomaterials. J. Biomed. Mater. Res. 1994, 28, 919–930. [Google Scholar] [CrossRef]
- Bailey, L.O.; Becker, M.L.; Stephens, J.S.; Gallant, N.D.; Mahoney, C.M.; Washburn, N.R.; Rege, A.; Kohn, J.; Amis, E.J. Cellular response to phase-separated blends of tyrosine-derived polycarbonates. J. Biomed. Mater. Res A. 2006, 76, 491–502. [Google Scholar]
- Babu, K.S.; Srinivas, P.V.; Praveen, B.; Kishore, K.H.; Murty, U.S.; Rao, J.M. Antimicrobial constituents from the rhizomes of Rheum emodi. Phytochemistry 2003, 62, 203–207. [Google Scholar] [CrossRef]
- Kesters, E.; de Kok, M.M.; Carleer, R.A.A.; Czech, J.H.P.B.; Adriaensens, P.J.; Gelan, J.M.; Vanderzande, D.J. The thermal conversion reaction of sulphonyl substituted poly( para-xylylene): Evidence for the formation of PPV structures. Polymer 2002, 43, 5749–5755. [Google Scholar] [CrossRef]
- Li, X.R.; Xie, J.W.; Lipner, J.; Yuan, X.Y.; Thomopoulos, S.; Xia, Y.N. Nanofiber scaffolds with gradations in mineral content for mimicking the tendon-to-bone insertion site. Nano Lett. 2009, 9, 2763–2768. [Google Scholar] [CrossRef]
- Valmikinathan, C.M.; Wang, J.P.; Smiriglio, S.; Golwala, N.G.; Yu, X.J. Magnetically induced protein gradients on electrospun nanofibers. Comb. Chem. High T. Scr. 2009, 12, 656–663. [Google Scholar]
- Samavedi, S.; Olsen, H.C.; Guelcher, S.A.; Goldstein, A.S.; Whittington, A.R. Fabrication of a model continuously graded co-electrospun mesh for regeneration of the ligament-bone interface. Acta Biomater. 2011, 7, 4131–4138. [Google Scholar] [CrossRef]
- Ramalingam, M.; Young, M.F.; Thomas, V.; Sun, L.; Chow, L.C.; Tison, C.K.; Chatterjee, K.; Miles, W.C.; Simon Jr., C.G. Nanofiber scaffold gradients for interfacial tissue engineering. J. Biomat. Appl. 2012, in press. [Google Scholar]
- Dormer, N.H.; Berkland, C.J.; Detamore, M.S. Emerging techniques in stratified designs and continuous gradients for tissue engineering of interfaces. Ann. Biomed. Eng. 2010, 38, 2121–2141. [Google Scholar] [CrossRef]
- Moffat, K.L.; Sun, W.H.; Pena, P.E.; Chahine, N.O.; Doty, S.B.; Ateshian, G.A.; Hung, C.T.; Lu, H.H. Characterization of the structure-function relationship at the ligament-to-bone interface. Proc. Natl. Acad. Sci. USA 2008, 105, 7947–7952. [Google Scholar]
- Phillips, J.E.; Burns, K.L.; Le Doux, J.M.; Guldberg, R.E.; Garcia, A.J. Engineering graded tissue interfaces. Proc. Natl. Acad. Sci. USA 2008, 105, 12170–12175. [Google Scholar]
- Harley, B.A.; Lynn, A.K.; Wissner-Gross, Z.; Bonfield, W.; Yannas, I.V.; Gibson, L.J. Design of a multiphase osteochondral scaffold III: Fabrication of layered scaffolds with continuous interfaces. J. Biomed. Mater. Res. A 2010, 92, 1078–1093. [Google Scholar]
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Chatterjee, K.; Kraigsley, A.M.; Bolikal, D.; Kohn, J.; Simon, C.G., Jr. Gas-Foamed Scaffold Gradients for Combinatorial Screening in 3D. J. Funct. Biomater. 2012, 3, 173-182. https://doi.org/10.3390/jfb3010173
Chatterjee K, Kraigsley AM, Bolikal D, Kohn J, Simon CG Jr. Gas-Foamed Scaffold Gradients for Combinatorial Screening in 3D. Journal of Functional Biomaterials. 2012; 3(1):173-182. https://doi.org/10.3390/jfb3010173
Chicago/Turabian StyleChatterjee, Kaushik, Alison M. Kraigsley, Durgadas Bolikal, Joachim Kohn, and Carl G. Simon, Jr. 2012. "Gas-Foamed Scaffold Gradients for Combinatorial Screening in 3D" Journal of Functional Biomaterials 3, no. 1: 173-182. https://doi.org/10.3390/jfb3010173
APA StyleChatterjee, K., Kraigsley, A. M., Bolikal, D., Kohn, J., & Simon, C. G., Jr. (2012). Gas-Foamed Scaffold Gradients for Combinatorial Screening in 3D. Journal of Functional Biomaterials, 3(1), 173-182. https://doi.org/10.3390/jfb3010173